Pharmacotherapeutics role of Cannabinoid (CB1 & CB2) Receptor agonists modulator in chemotherapy-induced peripheral neuropathy: A Review
Keywords:
Neuropathic pain, Cannabinoids,, Itaconate, isatin, ABK5, allodyniaAbstract
The injury or illness of the somatosensory nerve system results in pain termed neuropathic pain. It often increases dependence on medication as well as the need to visit hospitals. Allodynia, hyperalgesia, and paresthesia are symptoms that are produced by this disorder. In animal studies,
“Chronic constriction injury (CCI), partial sciatic nerve ligation (Seltzer model), and spinal nerve ligation (SNL) are methods used to reproduce it. Chemotherapy
induced peripheral neuropathy (CIPN) is the most common kind of neuropathic pain among the wide range of manifestations.It frequently results from the use of chemotherapeutic agents, which include but are not limited to ixabepilone, thalidomide, taxanes, and platinum compounds.” While opioids are commonly prescribed for CIPN, these drugs cannot be safely used for prolonged periods due to the high potential for addiction. There has been increasing attention given to cannabinoid receptors, particularly CB2, because of their role in the modulation of inflammation and pain. This review analyzes the possible therapeutic effects of CB2-selective agonists on CIPN and other neuropathic disorders. More recently, itaconates and isatins have been discovered to be CB2 agonists and they show promise in preclinical studies. This article focuses on the neuropathic pain mechanisms associated with these agents’ analgesic effects..
Downloads
References
IASP. IASP taxonomy. https://www.iasp-pain.org/terminology?navItemNumber=576.2019.
Merskey H, Bogduk N. Classification of chronic pain. Seattle: IASP Press, 1994.
Dejerine J, Egger J. Contribution a l’etude de la physiologie pathologiquede l’incoordination motrice. Revue Neurologique. 1903; 11: 1397–1405.
Attal N, Lanteri-Minet M, Laurent B, Fermanian J, Bouhassira D. The specific disease burden of neuropathic pain: results of a French nationwide survey. Pain. 2011; 152: 2836–2843.
Torrance N, Smith BH, Bennett MI, Lee AJ. The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. Journal of Pain. 2006; 7: 281–289.
Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DLH, Bouhassira D, Cruccu G, Freeman R, Hansson P, Nurmikko T, Raja SN, Rice ASC, Serra J, Smith BH, Treede RD, Jensen TS. Neuropathic pain: an updated grading system for research and clinical practice. Pain. 2016; 157:1599–1606.
van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 2014; 155: 654–662.
Bouhassira D, Attal N. Diagnosis and assessment of neuropathic pain: the saga of clinical tools. Pain. 2011; 152:S74–S83.
Bouhassira D, Lanteri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain. 2008; 136: 380–387.
Borsook D. Neurological diseases and pain. Brain. 2012; 135: 320–344.
Watson JC, Sandroni P. Central neuropathic pain syndromes. Mayo Clin Proceedings. 2016; 91: 372–385.
Kent EE, Forsythe L, Scoppa S, Hachey M, Rowland JH. Cancer survivors in the United States: Prevalence across the survivorship trajectory and implications for care. Cancer Epidemiology, Biomarkers & Prevention. 2013; 22: 561–570.
Cioroiu C, Weimer L H. Update on Chemotherapy-Induced Peripheral Neuropathy. Current Neurology & Neuroscience Reports. 2017; 17: 47. DOI: 10.1007/s11910-017-0757-7
Hershman DL, Lacchetti C, Dworkin RH, Lavoie-Smith EM, Bleeker J, Cavaletti G, Chauhan C, Gavin P, Lavino A, Lustberg MB, Paice J, Schneider B, Smith ML, Smith T, Terstriep Sm Wagner-Jonhston N, Bak K, Loprinzi CL. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. Journal of Clinical Oncology. 2014; 32: 1941–1967. DOI: 10.1200/JCO.2013.54.0914
Fallon MT. Neuropathic pain in cancer. British Journal of Anaesthesia. 2013; 111: 105–111. DOI: 10.1093/bja/aet208
Banach M, Juranek JK, Zygulska AL. Chemotherapy-induced neuropathies—A growing problem for patients and health care providers. Brain and Behavior. 2016; 7: e00558. DOI: 10.1002/brb3.558
Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, Colvin LA, Fallon M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain. 2014; 155: 2461–2470.
Areti A, Yerra VG, Naidu VGM, Kumar A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biology. 2014; 2: 289–295.
Windebank AJ, Grisold W. Chemotherapy-induced neuropathy. Journal of Peripheral Nervous System. 2008; 13(1): 27–46.
Cleeland CS, Farrar JT, Hausheer FH. Assessment of cancer-related neuropathy and neuropathic pain. Oncologist. 2010; 15 (Suppl 2): 13–18.
Brzezin´ski K. Chemotherapy-induced peripheral neuropathy. Part II. Prevention. Contemporary Oncolology (Pozn). 2012; 16(3): 258–261.
Polomano RC, Farrar JT. Pain and neuropathy in cancer survivors. Surgery, radiation, and chemotherapy can cause pain; research could improve its detection and treatment. American Journal of Nursing. 2006; 106 (Suppl 3): 39–47.
Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP. Molecular mechanisms of cancer pain. Nat Rev Cancer. 2002;2(3):201–209.
Walker VA, Hoskin PJ, Hanks GW, White ID. Evaluation of WHO analgesic guidelines for cancer pain in a hospital-based palliative care unit. J Pain Symptom Manage. 1988;3(3):145–149.
World Health Organization. Scoping document for WHO guidelines for the pharmacological treatment of persisting pain in adults with medical illnesses. 2012. Available from: http://www.who.int/medicines/areas/quality_safety/Scoping_WHO_GLs_PersistPainAdults_webversionpdf. Accessed October 8, 2013.
Swarm RA, Abernethy AP, Anghelescu DL, et al. Adult cancer pain. Journal of National Comprehensive Cancer Network. 2013; 11(8): 992–1022.
Ripamonti CI, Santini D, Maranzano E, Berti M, Roila F. Management of cancer pain: ESMO Clinical Practice Guidelines. Annals in Oncology. 2012; 23 (Suppl 7): vii139–vii154.
Guindon J, Walczak JS, Beaulieu P. Recent advances in the pharmacological management of pain. Drugs. 2007; 67(15): 2121–2133.
Knotkova H, Pappagallo M. Adjuvant analgesics. Medical Clinics of North America. 2007; 91(1): 113–124.
Portenoy RK, Ganae-Motan ED, Allende S, et al. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. Journal of Pain. 2012; 13(5): 438–449.
Pertwee RG. Cannabinoid pharmacology: the first 66 years. British Journal of Pharmacology. 2006;147 (Suppl 1): S163–S171.
Welch SP, Stevens DL. Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. Journal of Pharmacology and Experimental Therapeutics. 1992; 262(1): 10–18.
Desroches J, Bouchard JF, Gendron L, Beaulieu P. Involvement of cannabinoid receptors in peripheral and spinal morphine analgesia. Neuroscience. 2014; 261: 23–42.
Attal N. Neuropathic pain: mechanisms, therapeutic approach, and interpretation of clinical trials. Continuum. 2012; 18(1): 161–175.
Attal N, Cruccu G, Baron R, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. European Journal of Neurology. 2010; 17(9): 1113–1188.
Dworkin RH, O’Connor AB, Backonja M, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain. 2007; 132(3): 237–251.
McPartland JM, Guy GW, Vincenzo Di Marzo. Care and Feeding of the Endocannabinoid System: A Systematic Review of Potential Clinical Interventions that Upregulate the Endocannabinoid System. PLoS ONE 2014; 9(3): e89566. doi:10.1371/journal.pone.0089566
Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997; 77: 299–318.
Onaivi ES. Commentary: functional neuronal CB2 cannabinoid receptors in the CNS. Current Neuropharmacology. 2011; 9: 205–208.
Atwood BK, Mackie K. CB2: a cannabinoid receptor with an identity crisis. British Journal of Pharmacology. 2010; 160: 467–479.
. Gaoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. Journal of American Chemical Society. 1964; 86: 1946–1947.
Dixon WE. The pharmacology of Cannabis indica. British Medical Journal. 1899; 2: 1354–1357.
Walker JM, Hohmann AG. Cannabinoid mechanisms of pain suppression. Handbook of Experimental Pharmacology. 2005: 509–554.
Rahn EJ, Hohmann AG. Cannabinoids as Pharmacotherapies for Neuropathic Pain: From the Bench to the Bedside. Neurotherapeutics. 2009; 6(4): 713-737
Bujalska M. Effect of cannabinoid receptor agonists on streptozotocin-induced hyperalgesia in diabetic neuropathy. Pharmacology. 2008; 82: 193–200.
Maurer M, Henn V, Dittrich A, Hofmann A. Delta-9-tetrahydro-cannabinol shows antispastic and analgesic effects in a single case double-blind trial. European Archives of Psychiatry & Clinical Neuroscience. 1990; 240: 1–4.
Vera G, Chiarlone A, Cabezos PA, Pascual D, Martin MI, Abalo R. WIN 55,212-2 prevents mechanical allodynia but not alterations in feeding behaviour induced by chronic cisplatin in the rat. Life Science. 2007; 81: 468–479.
Pascual D, Goicoechea C, Suardiaz M, Martin MI. A cannabinoid agonist, WIN 55,212-2, reduces neuropathic nociception induced by paclitaxel in rats. Pain. 2005; 118: 23–34.
Naguib M, Diaz P, Xu JJ, et al. MDA7: a novel selective agonist for CB2 receptors that prevents allodynia in rat neuropathic pain models. British Journal of Pharmacology. 2008; 155: 1104–1116.
Rahn EJ, Zvonok AM, Thakur GA, Khanolkar AD, Makriyannis A, Hohmann AG. Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats. Journal of Pharmacology and Experminental Therapeutics. 2008; 327: 584–591.
Rahn EJ, Makriyannis A, Hohmann AG. Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats. Br J Pharmacol 2007;152:765–777.
Wallace VC, Blackbeard J, Segerdahl AR, et al. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain 2007;130:2688–2702.
Wallace VC, Segerdahl AR, Lambert DM, et al. The effect of the palmitoylethanolamide analogue, palmitoylallylamide (L-29) on pain behaviour in rodent models of neuropathy. Br J Pharmacol 2007;151:1117–1128.
Xiong W, Cheng K, Cui T, Godlewski G, Rice K, Yan X, Zhang L. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nat Chem Biol 2011; 7(5): 296-303. doi:10.1038/nchembio.552.
Xiong W, Cui T, Cheng K, Yang F, Chen S-R, Willenbring D, Guan Y, Pan H-L, Ren K, Xu Y, Zhang L. Cannabinoids suppress inflammatory and neuropathic pain by targeting 3 glycine receptors. Journal of Experimental Medicine 2012; 209(6): 1121-1134. www.jem.org/cgi/doi/10.1084/jem.20120242
Bermudez-Silva FJ, Viveros MP, McPartland JM, de Fonseca FR (2010) The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning? Pharmacology Biochemistry and Behavior 95: 375–382.
Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron. 2006; 49:67–79.
Diaz P, Phatak SS, Xu J, Fronczek FR, Astruc-Diaz F, Thompson CM, et al. 2,3-Dihydro-1-benzofuran derivatives as a novel series of potent selective cannabinoid receptor 2 agonists: design, synthesis, and binding mode prediction through ligand-steered modeling. ChemMedChem. 2009; 4:1615–29.
Bambouskova, M., Gorvel, L., Lampropoulou, V., Sergushichev, A., Loginicheva, E., Johnson, K., et al. (2018). Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature 556, 501–504. doi: 10.1038/s41586-018-0052-z
Basu P, Averitt DL, Maier C, Basu A. The Effects of Nuclear Factor Erythroid 2 (NFE2)—Related Factor 2 (Nrf2) Activation in Preclinical Models of Peripheral Neuropathic Pain. Antioxidants. 2022; 11; 430. Doi: 10.3390/antiox11020430
Ren J, Yu L, Lin J, Ma L, Gao DS, Sun N, Liu Y, Fang L, Cheng Z, Sun K, Yan M. Itaconate as a Promising Therapy for Neuropathic Pain and Inflammatory Pain. Neurochemistry International. 2022; 154: 105296. Doi: 2021. Doi: 10.1016/j.neuint.2022.105296
Gautam AK, kumar P, Raj R, Kumar D, bhattacharya B, Rajinikanth PS, Chidambaram K, mahata T, Maity B, Saha S. Preclinical Evaluation of Dimethyl Itaconate Against Hepatocellular Carcinoma via Activation of the e/iNOS-Mediated NF-κB–Dependent Apoptotic Pathway. Frontiers in Pharmacology. 2022; 12: 823285. Doi: 10.3389/fphar.2021.823285
Lin J, Ren J, Zhu B, Dai Y, Gao DS, Xia S, Cheng Z, Huang Y, Yu L. Dimethyl Itaconate Attenuates CFA-Induced Inflammatory Pain via the NLRP3/ IL-1β Signaling Pathway. Frontiers in Pharmacology. 2022; 13:938979. doi: 10.3389/fphar.2022.938979
K. Faust, S. Gehrke, Y. Yang, L. Yang, M. F. Beal, and B. Lu, “Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease,” BMC Neuroscience, vol. 10, article 109, 2009.
6Yang L, Li Y, Ren J, Zhu C, Fu J, Lin D, Qiu Y. Celastrol Attenuates Inflammatory and Neuropathic Pain Mediated by Cannabinoid Receptor Type 2. International Journal of Molecular Sciences. 2014; 15: 13637-13648. doi:10.3390/ijms150813637.
. Davenport A, Frezza M, Shen M, Ge Y, Huo C, Chan TH, et al. Celastrol and an EGCG pro-drug exhibit potent chemosensitizing activity in human leukemia cells. Int J Mol Med (2010) 25(3):465–70.
. Cascão R, Fonseca JE, Moita LF. Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Forntiers in Medicine. 2017; 4:69. doi: 10.3389/fmed.2017.00069
. Li Y-J, Sun Y-X, Hao R-M, Wu P, Zhang L-J, Ma X, Ma Y, Wang P-X, Xie N, Xie S-Y, Chen W. miR-33a-5p enhances the sensitivity of lung adenocarcinoma cells to celastrol by regulating mTOR signaling. International Journal of Oncology. 2018; 52: 1328-1338
Fiorenzani, P., Lamponi, S., Magnani, A., Ceccarelli, I., and Aloisi, A. M. (2014). In vitro and in vivo characterization of the new analgesic combination Beta-caryophyllene and docosahexaenoic acid. Evid. Based. Complement. Alternat. Med. 2014:596312. doi: 10.1155/2014/596312
Klauke, A.-L., Racz, I., Pradier, B., Markert, A., Zimmer, A. M., Gertsch, J., et al. (2014). The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur. Neuropsychopharmacol. 24, 608–620. doi: 10.1016/j.euroneuro.2013.10.008
Aly, E., Khajah, M. A., and Masocha, W. (2019). β-caryophyllene, a CB2-receptor-selective phytocannabinoid, suppresses mechanical allodynia in a mouse model of antiretroviral-induced neuropathic pain. Molecules 25:106. doi: 10.3390/molecules25010106
Gertsch, L., Leonti, M., Raduner, S., Racz, I., Chen, J. Z., Xie, X. Q., et al. (2008). Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. U.S.A. 105, 9099–9104. doi: 10.1073/pnas.0803601105
Sharma, C., Al Kaabi, J. M., Nurulain, S. M., Goyal, S. N., Kamal, M. A., and Ojha, S. (2016). Polypharmacological properties and therapeutic potential of β-caryophyllene: a dietary phytocannabinoid of pharmaceutical promise. Curr. Pharm. Des. 22, 3237–3264. doi: 10.2174/1381612822666160311115226
Berger, G., Arora, N., Burkovskiy, I., Xia, Y., Chinnadurai, A., Westhofen, R., et al. (2019). Experimental cannabinoid 2 receptor activation by phyto-derived and synthetic cannabinoid ligands in LPS-induced interstitial cystitis in mice. Molecules 24:4239. doi: 10.3390/molecules24234239
Ceccarelli I, Fiorenzani P, Pessina F, Pinassi J, Aglianò M, Miragliotta V, Aloisi AM. The CB2 Agonist β-Caryophyllene in Male and Female Rats Exposed to a Model of Persistent Inflammatory Pain. Frontiers in Neuroscience. 2020; 14: 850. doi: 10.3389/fnins.2020.00850
Huffman, J. W., Liddle, J., Yu, S., Aung, M. M., Abood, M. E., Wiley, J. L., et al. (1999). 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ 8 -THC and Related Compounds:Synthesis of Selective Ligands for the CB 2 Receptor. Bioorg. Med. Chem. 7, 2905–2914. doi:10.1016/s0968-0896(99)00219-9
Hashiesh HM, Sharma C, Goyal SN, Jha NK, Ojha S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Frontiers in Pharmacology. 2021; 12: 702675. doi: 10.3389/fphar.2021.702675
Çakır, M., Tekin, S., Okan, A., Çakan, P., and Doganyigit, Z. (2020). The Ameliorating Effect of Cannabinoid Type 2 Receptor Activation on Brain, Lung, Liver and Heart Damage in Cecal Ligation and Puncture-Induced Sepsis Model in Rats. Int. Immunopharmacol. 78, 105978.
Jonsson, K.-O., Persson, E., and Fowler, C. J. (2006). The Cannabinoid CB2 ReceptorSelective Agonist JWH133 Reduces Mast Cell Oedema in Response to Compound 48/80 In Vivo but Not the Release of β-hexosaminidase from Skin Slices In Vitro. Life Sci. 78, 598–606. doi:10.1016/j.lfs.2005.05.059
Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S., and Matsushima, G. K. (2007). Macrophages and Dendritic Cells Use Different Axl/Mertk/Tyro3 Receptors in Clearance of Apoptotic Cells. J. Immunol. 178, 5635–5642. doi:10.4049/jimmunol.178.9.5635
Jiang, S., Alberich-Jorda, M., Zagozdzon, R., Parmar, K., Fu, Y., Mauch, P., et al. (2011). Cannabinoid Receptor 2 and its Agonists Mediate Hematopoiesis and Hematopoietic Stem and Progenitor Cell Mobilization. Blood 117, 827–838. doi:10.1182/blood-2010-01-265082
Ogawa LM, Burford NT, Liao Y-H, et al. Discovery of selective cannabinoid CB2 receptor agonists by high-throughput screening. Slas Discov: Advan Life Sci R&D. 2017;23(4):375e383.
Scott CE, Tang Y, Alt A, et al. Identification and biochemical analyses of selective CB2 agonists. Eur J Pharmacol. 2019;854:1e8.
Tang Y, Wolk B, Britch SC, Craft RM, Kendall DA. Anti-inflammatory and antinociceptive effects of the selective cannabinoid CB2 receptor agonist ABK5. Journal of Pharmacological Sciences.2021; 145: 319-326. Doi: 10.1016/j.jphs.2020.12.006
. Diaz P, Xu J, Astruc-Diaz F, Pan H-M, Brown D-L, Naguib M. Design and Synthesis of a Novel Series of N-Alkyl Isatin Acylhydrazone Derivatives that Act as Selective Cannabinoid Receptor 2 Agonists for the Treatment of Neuropathic Pain. Journal of Medicinal Chemistry. 2008; 51: 4932-4947.
. Lin X, Dhopeshwarkar AS, Huibregtse M, Mackie K, Hohmann AG, 2018. Slowly Signaling G Protein-Biased CB2 Cannabinoid Receptor Agonist LY2828360 Suppresses Neuropathic Pain with Sustained Efficacy and Attenuates Morphine Tolerance and Dependence. Mol Pharmacol 93, 49–62.
Iyer V, Slivicki RA, Thomaz AC, Crystal JD, Mackie K, Hohmann AG. The cannabinoid CB2 receptor agonist LY2828360 synergizes with morphine to suppress neuropathic nociception and attenuates morphine reward and physical dependence. Eur J Pharmacol. 2020; 886: 173544. doi:10.1016/j.ejphar.2020.173544
Lin X, Xu Z, Carey L, Romero J, Makriyannis A, Hillard CJ, Ruggiero E, Dockum M, Houk G, Mackie K, Albrecht PJ, Rice FL, Hohmann AG. A peripheral CB2 cannabinoid receptor mechanism suppresses chemotherapy-induced peripheral neuropathy: evidence from a CB2 reporter mouse. Pain. 2022; 163; 834-851. Doi: 10.1097/j.pain.0000000000002502
Ibrahim MM, Porreca F, Lai J, Albrecht PJ, Rice FL, Khodorova A, Davar G, Makriyannis A, Vanderah TW, Mata HP, T Philip Malan, Jr. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proceedings of National Academy of Science. 2005; 102(8): 3093-3098. Doi: 10.107/pnas.0409888102
Niu J, Huang D, Zhou R, Yue M, Xu T, Yang J, Tian H, Liu X, Zeng J. Activation of dorsal horn cannabinoid CB2 receptor suppresses the expression of P2Y12 and P2Y13 receptors in neuropathic pain rats. Journal of Neuroinflammation. 2017; 14: 185. DOI 10.1186/s12974-017-0960-0
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.