Nanocellulose from Agricultural Waste for Neonatal and Biomedical Implant Applications

Authors

  • Chetan Singh Chouhan
  • Hitin Dagur
  • Ravi Kant Rahi

DOI:

https://doi.org/10.63682/jns.v14i32S.7316

Keywords:

Nanocellulose, Agricultural Residues, Biomedical Implants, Neonatal Applications, Biocompatibility, Tissue Engineering, Drug Delivery, Sustainable Biomaterials

Abstract

Nanocellulose, a nanoscale form of cellulose derived from plant biomass, has emerged as a promising sustainable material owing to its exceptional properties such as high mechanical strength, large surface area, biocompatibility, biodegradability, and surface chemistry. This review explores the extraction of nanocellulose from various agricultural residues including wheat straw, rice husk, sugarcane bagasse, corn stalks, and coconut husk using eco-friendly methods such as acid hydrolysis, enzymatic treatment, and mechanical disintegration. Emphasis is placed on optimizing extraction processes to yield biomedical-grade nanocellulose while minimizing environmental impact. The application of nanocellulose in biomedical implants, particularly for neonatal use, is discussed with a focus on its roles in tissue engineering scaffolds, wound healing matrices, and drug delivery systems. Its structural similarity to natural extracellular matrices, along with non-toxicity and minimal immunogenicity, makes nanocellulose a highly favourable material for sensitive clinical applications. Additionally, functionalization of nanocellulose surfaces enables antimicrobial, anti-inflammatory, and regenerative enhancements tailored to neonatal care. This review highlights the dual benefits of agricultural waste valorisation and the development of advanced green biomaterials, positioning nanocellulose as a next-generation component in biomedical implants while addressing sustainability and health care innovation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ali, S., Khan, T., Ullah, R., & Ahmad, M. (2020). Extraction and characterization of cellulose from different agricultural wastes using environmentally friendly methods. Cellulose Chemistry and Technology, 54(3-4), 243–250.

Asem, M., Abdolmaleki, M. K., & Bazgir, S. (2022). Bio-based cellulose composites from agricultural residues for green materials development. Polymer Composites, 43(5), 2511–2523.

Azizi, H., Ehsani, A., & Tabil, L. G. (2020). Recent advances in pretreatment methods for biomass conversion to biofuels. Renewable and Sustainable Energy Reviews, 116, 109435.

Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Kallio, P., Kolarova, K., & Svorcik, V. (2019). Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials, 9(2), 164.

Bello, F., et al. (2021). Valorization of corn stalks via nanocellulose extraction. Industrial Crops and Products, 170, 113770.

Cruz, A. J., Pires, P. A., & Baptista, C. M. (2021). Nanocellulose for sustainable industrial applications. Current Opinion in Green and Sustainable Chemistry, 30, 100490.

Czaja, W., Krystynowicz, A., Bielecki, S., & Brown Jr, R. M. (2020). Microbial cellulose—the natural power to heal wounds. Biomaterials, 30(11), 2241–2251. https://doi.org/10.1016/j.biomaterials.2020.01.005

Domingues, R. M. A., Gomes, M. E., & Reis, R. L. (2021). The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 22(3), 915–935.

Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., & Li, B. (2019). Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 209, 130–144.

Dufresne, A. (2022). Nanocellulose: From nature to high performance tailored materials. De Gruyter.

European Commission. (2020). A new circular economy action plan for a cleaner and more competitive Europe.

Fang, Z., Smith, R. L., & Qi, X. (2020). Production of nanocellulose from agricultural residues using environmentally friendly processes. Bioresource Technology, 309, 123456.

Fortea-Verdejo, M., Stromberg, E., & Mihranyan, A. (2023). Nanocellulose-based wound dressings: A review of recent advances. Carbohydrate Polymers, 299, 120192. https://doi.org/10.1016/j.carbpol.2022.120192

Foster, E. J., Moon, R. J., Agarwal, U. P., Bortner, M. J., Bras, J., Camarero-Espinosa, S., ... & Youngblood, J. (2018). Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 47(8), 2609–2679.

Gong, Y., Yang, H., & Wu, Z. (2023). Green solvents for cellulose extraction: A critical review on ionic liquids and deep eutectic solvents. Journal of Cleaner Production, 388, 135039.

Guragain, Y. N., Muthukumaran, M., & Dahal, N. (2022). Cellulose-derived bioplastics from rice husk and sugarcane bagasse. Materials Today: Proceedings, 59, 2183–2189.

Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500.

Hossain, M. A., Salleh, A., & Ang, H. M. (2019). Industrial waste management challenges and green technologies. Environmental Progress & Sustainable Energy, 38(3), e13031.

Hosseini Koupaie, E., Irani, M., & Ghasemi, M. (2019). Recovery and characterization of cellulose fibres from agricultural wastes. Waste and Biomass Valorization, 10(5), 1211–1223.

Hou, X., Zhu, Y., & Wang, S. (2020). Supercritical CO₂ extraction of cellulose: A sustainable approach. Journal of CO₂ Utilization, 36, 75–83.

Ilyas, R. A., Sapuan, S. M., & Harussani, M. M. (2023). Sustainable nanocellulose-based biosensors for wearable healthcare monitoring systems. Sensors and Actuators B: Chemical, 374, 132598. https://doi.org/10.1016/j.snb.2022.132598

Jiang, F., Wang, S., & Chen, M. (2021). Sustainable cellulose-based materials for flexible electronics. Advanced Materials, 33(9), 2006046.

Jin, H., Wang, C., Wang, J., & Zhang, W. (2020). Biomedical applications of nanocellulose-based composites. Carbohydrate Polymers, 247, 116678.

Johar, N., et al. (2020). Silica removal from rice husk for optimized nanocellulose yield. Cellulose, 27(8), 4321–4333.

Jorfi, M., & Foster, E. J. (2015). Recent advances in nanocellulose for biomedical applications. Journal of Applied Polymer Science, 132(14). https://doi.org/10.1002/app.41719

Kaur, N., Singh, J., Dhaliwal, H. S., & Kaur, M. (2022). Biogenic cellulose from agricultural residues: Extraction, characterization and application. Carbohydrate Polymers, 281, 119034.

Kim, T. H., Kwak, H., Kim, T. H., & Oh, K. K. (2020). Extraction behaviors of lignin and hemicellulose-derived sugars during organosolv fractionation of agricultural residues using a bench-scale ball milling reactor. Energies, 13(2), 352.

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2018). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 57(11), 3702–3718.

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50(24), 5438–5466. https://doi.org/10.1002/anie.201001273

Kumar, A., Sharma, A., & Upadhyay, S. N. (2021). Valorization of agricultural residues: Different biorefinery routes. Journal of Environmental Chemical Engineering, 9(4), 105435.

Li, M. F., Fan, Y. M., Xu, F., Sun, R. C., & Zhang, X. L. (2020). Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Industrial Crops and Products, 32(3), 551–559.

Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

Lou, C., Zhou, Y., Yan, A., & Liu, Y. (2022). Extraction cellulose from corn-stalk taking advantage of pretreatment technology with immobilized enzyme. RSC Advances, 12(2), 1208–1215.

Mahendiran, D., Muthusamy, S., Kumar, R. S., & Anandan, S. (2021). Antimicrobial activity of silver-loaded nanocellulose films. Carbohydrate Polymers, 263, 117984. https://doi.org/10.1016/j.carbpol.2021.117984

Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D., & Gatenholm, P. (2015). 3D bioprinting human cartilage with nanocellulose–alginate bioink. Biomacromolecules, 16(5), 1489–1496. https://doi.org/10.1021/acs.biomac.5b00188

McGain, F., Muret, J., Lawson, C., & Sherman, J. D. (2020). Environmental sustainability in anesthesia and critical care. British Journal of Anaesthesia, 125(5), 680–692.

Miao, C., Xie, D., & Li, H. (2021). Application of nanocellulose in drug delivery and pharmaceutical formulation. International Journal of Biological Macromolecules, 172, 265–277.

Mohite, B. V., Patil, S. V., & Mahajan, V. S. (2021). Bacterial cellulose: A review of sustainable production and applications in bioplastics. Sustainable Chemistry and Pharmacy, 22, 100462.

Nair, S. S., Zhu, J., Deng, Y., & Ragauskas, A. J. (2021). Characterization of cellulose nanofibrillation by micro grinding. Journal of Nanoparticle Research, 23(2), 1–15.

Nasution, H., Siregar, L. A. M., & Fitriani, E. (2021). Characterization of cellulose extracted from banana pseudostem waste. Materials Science Forum, 1034, 118–123.

Norrrahim, M. N. F., Kasim, N. A. M., Knight, V. F., & Janudin, N. (2021). Emerging trends in nanocellulose applications in biomedical engineering: A review. Materials Today: Proceedings, 42, 324–333. https://doi.org/10.1016/j.matpr.2020.10.168

Noshadi, I., Sadeghifar, H., & Ragauskas, A. J. (2021). Techno-economic analysis of cellulose nanomaterials production from agricultural residues. ACS Sustainable Chemistry & Engineering, 9(2), 718–728.

Panaitescu, D. M., Frone, A. N., & Nicolae, C. A. (2021). Cellulose nanofibers from agro-waste for food packaging. Food Packaging and Shelf Life, 30, 100743.

Pereira, P. H. F., Souza, V. G. L., da Silva, J. B., & Fernandes, F. M. (2022). Carboxylated nanocellulose as a pH-sensitive carrier for neonatal drug delivery. International Journal of Biological Macromolecules, 212, 229–239.

Picheth, G. F., Pirich, C. L., Sierakowski, M. R., Woehl, M. A., Sakakibara, C. N., de Souza, C. F., ... & Martin, A. A. (2017). Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 104, 97–106. https://doi.org/10.1016/j.ijbiomac.2017.05.171

Portela, R., Leal, C. R., Almeida, P. L., & Sobral, R. G. (2019). Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microbial Biotechnology, 12(4), 586–610. https://doi.org/10.1111/1751-7915.13392

Putro, J. N., Suryani, N. E., & Munawar, A. A. (2020). Comparative analysis of cellulose crystallinity from agricultural residues. Journal of Renewable Materials, 8(5), 535–547.

Reddy, R. M., Kota, A., & Karthik, K. (2020). Thermal and physicochemical properties of cellulose isolated from corn husks. Polymer Testing, 85, 106433.

Ribeiro, S., Soares, C., & Ferreira, P. (2019). Nanocellulose-based materials as biosensors: A review. Biosensors, 9(2), 20. https://doi.org/10.3390/bios9020020

Saini, A., Gaba, A., & Kumar, S. (2023). Lignocellulosic biomass from agricultural residues: Variability and impact on biorefinery processes. Bioresource Technology Reports, 23, 101048.

Santos, C. A., Ferreira, J. C., & Sousa, F. (2021). Nanocellulose bioinks for 3D bioprinting in tissue engineering: A review. Materials Science and Engineering: C, 127, 112225. https://doi.org/10.1016/j.msec.2021.112225

Sauodi, M. H., & Hasan, H. R. (2021). Cellulose from agricultural and industrial waste: Extraction and characterization. In New Innovations in Chemistry and Biochemistry (Vol. 6, pp. 44–51).

Shah, S., Patel, R., & Shah, M. P. (2022). Environmental impact of cellulose extraction techniques: A comparative review. Environmental Technology & Innovation, 25, 102065.

Siddiqui, M. H., Aslam, S., & Tabrez, S. (2024). Integrated biorefinery model for sustainable production of biofuels and biopolymers from agricultural residues. Biomass and Bioenergy, 179, 106684.

Singh, R. K., Pandey, M., & Mishra, S. (2021). Development of eco-friendly fibers from banana pseudostem cellulose for textile applications. Cellulose, 28, 9889–9901.

Stark, A., Smith, P. B., Hornik, C. P., Zimmerman, K. O., Hornik, C. D., Pradeep, S., ... & Benjamin, D. K. (2018). Medication use in the neonatal intensive care unit and changes from 2010 to 2018. The Journal of Pediatrics, 200, 102–108.e4.

Sun, S. N., Li, M. F., Yuan, T. Q., Xu, F., & Sun, R. C. (2014). Effect of lignin content on enzymatic hydrolysis of furfural residues. Bioresource Technology, 155, 337–343.

Tang, Y., Zhao, Y., Liu, C., & Huang, Y. (2020). Preparation, characterization and application of cellulose derived from wheat straw. International Journal of Biological Macromolecules, 151, 514–522.

Thomas, B., Raj, M. C., Athira, K. B., Rubiyah, M. H., Joy, J., Moores, A., ... & Sanchez, C. (2018). Nanocellulose, a versatile green platform: From biosources to materials and their applications. Chemical Reviews, 118(24), 11575–11625.

Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry, 8, 392.

Tripathi, D., Sharma, S., & Tuli, D. K. (2023). Decentralized biomass processing for rural economies: A case for modular cellulose extraction plants. Renewable Energy, 204, 1–10.

Vallejo, M., Cordeiro, R., Dias, P. A. N., & Silvestre, A. J. D. (2021). Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit, and fava. Bioresources and Bioprocessing, 8, 25.

Xu, Y., Chen, W., & Zhou, G. (2021). Engineering nanocellulose production from agro-waste: Challenges and solutions. Carbohydrate Polymers, 252, 117199.

Yuan, Z., Wen, Y., & Kapu, N. S. (2020). Valorization of agricultural lignocellulosic plant byproducts through enzymatic and enzyme-assisted extraction of high-value-added compounds: A review. ACS Sustainable Chemistry & Engineering, 8(35), 13112–13125.

Yustira, A., Harahap, H., Nasution, H., & Pranata, A. (2021). Isolation of cellulose from agricultural waste using different treatments: A review. IOP Conference Series: Earth and Environmental Science, 912, 012020.

Yusuf, M., & Abdullahi, M. (2020). Extraction and characterization of celluloses from various plant byproducts. International Journal of Biological Macromolecules, 164, 2321–2331.

Zedin, N. K., Salman, R. A., & Jaber, A. A. (2022). Extraction of cellulose nanoparticles via modified thermochemical processes from agricultural wastes. International Journal on Advanced Science, Engineering and Information Technology, 12(2), 747–751.

Zhang, Y., Wang, Y., & Li, X. (2021). Microbial engineering for cellulose degradation and valorization. Biotechnology Advances, 49, 107767.

Zhao, X., Zhang, L., & Liu, D. (2017). Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 11(5), 706–720.

Downloads

Published

2025-06-13

How to Cite

1.
Singh Chouhan C, Dagur H, Kant Rahi R. Nanocellulose from Agricultural Waste for Neonatal and Biomedical Implant Applications. J Neonatal Surg [Internet]. 2025Jun.13 [cited 2025Jul.12];14(32S):90-101. Available from: https://jneonatalsurg.com/index.php/jns/article/view/7316