Proactive Cancer Screening Through Convolution Neural Networks

Authors

  • Aziz Makandar
  • Ayisha Soudagar

DOI:

https://doi.org/10.63682/jns.v14i32S.7308

Keywords:

Computer vision in healthcare, Image classification, CNN, Dermatology, HAM10000

Abstract

Melanoma represent one of the most perilous types of skin cancer due to their rapid progression and the challenges associated with diagnosis. This research used the HAM10000 dataset to demonstrate Convolutional Neural Networks (CNNs), the most sophisticated deep learning model for classifying skin cancer lesions. During this investigation, we gathered 10,015 dermatoscopic images and classified them into seven separate kinds of skin lesions. The model performs feature extraction and classification hierarchically using fully connected, pooling, and convolutional layers. This endeavor has resulted in an impressive 98.57% training accuracy and 93.34% validation accuracy, representing a substantial improvement over the previously used approach. Essential performance metrics, such as accuracy, recall, and F1-score, demonstrate the model's efficacy in detecting different types of skin cancer. We obtained high accuracy, an F1 score, and sub-optimal recall. The evidence indicates that CNN-based approaches may facilitate early diagnosis, improve treatment results, and reduce dermatologists' workloads. This study's results contribute to the advancement of skin cancer research

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Subramanian, R. R., Achuth, D., Kumar, P. S., Kumar Reddy, K. N., Amara, S., & Chowdary, A. S. (2021, January). Skin cancer classification using Convolutional neural networks. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 13-19). IEEE.

Rezaoana, N., Hossain, M. S., & Andersson, K. (2020, December). Detection and classification of skin cancer by using a parallel CNN model. In 2020 IEEE international women in engineering (WIE) conference on electrical and computer engineering (WIECON-ECE) (pp. 380-386). IEEE.

Nugroho, A. A., Slamet, I., & Sugiyanto, S. (2019, December). Skins cancer identification system of HAMl0000 skin cancer dataset using convolutional neural network. In AIP conference proceedings (Vol. 2202, No. 1). AIP Publishing.

CCA, Under Standing Skin Cancer - A Guide for People with Cancer, their Families and Friends, Cancer Council Australia, 2018,https://www.cancer.org.au/.

R.L. Siegel, K.D. Miller, A. Jemal, Cancer. statistics, Cancer statistics 2019, CA Cancer J. Clint. 69 (1) (2019) 7–34.

WHO, World Health Organization (WHO), 2019, https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer.

Yu, L., Chen, H., Dou, Q., Qin, J., & Heng, P. A. (2016). Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE transactions on medical imaging, 36(4), 994-1004.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.

Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., ... & Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 35(5), 1285-1298.

Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B., & Liang, J. (2016). Convolutional neural networks for medical image analysis: Full training or fine tuning?. IEEE transactions on medical imaging, 35(5), 1299-1312.

Schadendorf, D., Fisher, D. E., Garbe, C., Gershenwald, J. E., Grob, J. J., Halpern, A., ... & Hauschild, A. (2015). Melanoma. Nature reviews Disease primers, 1(1), 1-20.

Romanovsky, A. A. (2014). Skin temperature: its role in thermoregulation. Acta physiologica, 210(3), 498-507.

Jablonski, N. G. (2004). The evolution of human skin and skin color. Annu. Rev. Anthropol., 33(1), 585-623.

Yousef, H., Alhajj, M., & Sharma, S. (2017). Anatomy, skin (integument), epidermis.

Montagna, W. (2012). The structure and function of skin. Elsevier.

Panich, U., Sittithumcharee, G., Rathviboon, N., & Jirawatnotai, S. (2016). Ultraviolet radiation‐induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem cells international, 2016(1), 7370642.

Saraiya, M., Glanz, K., Briss, P. A., Nichols, P., White, C., Das, D., ... & Rochester, P. (2004). Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. American journal of preventive medicine, 27(5), 422-466.

Wei, Q., Matanoski, G. M., Farmer, E. R., Hedayati, M. A., & Grossrnan, L. (1995). DNA repair capacity for ultraviolet light-induced damage is reduced in peripheral lymphocytes from patients with basal cell carcinoma. Journal of investigative dermatology, 104(6), 933-936.

Emmett, E. A., & Epstein, J. H. (1973). Ultraviolet radiation as a cause of skin tumors. CRC critical reviews in toxicology, 2(2), 211-255.

Meyle, K. D., & Guldberg, P. (2009). Genetic risk factors for melanoma. Human genetics, 126, 499-510.

Bouzouki, P. (2005). Non-melanoma skin cancer: what drives tumor development and progression?. Carcinogenesis, 26(10), 1657-1667.

Chin, L., Garraway, L. A., & Fisher, D. E. (2006). Malignant melanoma: genetics and therapeutics in the genomic era. Genes & development, 20(16), 2149-2182.

Davis, L. E., Shalin, S. C., & Tackett, A. J. (2019). Current state of melanoma diagnosis and treatment. Cancer biology & therapy, 20(11), 1366-1379.

Damsky Jr, W. E., Rosenbaum, L. E., & Bosenberg, M. (2010). Decoding melanoma metastasis. Cancers, 3(1), 126-163.

Dadras, S. S., Lange‐Asschenfeldt, B., Muzikansky, A., Mihm, M. C., & Detmar, M. (2005). Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Journal of Cutaneous Pathology, 32(1), 84-84.

Kittler, H., Pehamberger, H., Wolff, K., & Binder, M. J. T. I. O. (2002). Diagnostic accuracy of dermoscopy. The lancet oncology, 3(3), 159-165.

Downloads

Published

2025-06-12

How to Cite

1.
Makandar A, Soudagar A. Proactive Cancer Screening Through Convolution Neural Networks. J Neonatal Surg [Internet]. 2025Jun.12 [cited 2025Jul.15];14(32S):69-76. Available from: https://jneonatalsurg.com/index.php/jns/article/view/7308