Targeted Nano delivery Systems for Natural Antioxidants in ferulic acid Gastric Ulcer Management: Insights and Innovations

Authors

  • Chetan Belwal
  • Dheeraj Bisht
  • Manoj Bharadwaj
  • Manoj Bisht

DOI:

https://doi.org/10.63682/jns.v14i31S.7252

Keywords:

Gastric ulcer, oxidative stress, natural antioxidants, ferulic acid, curcumin, nanotechnology, targeted drug delivery

Abstract

Gastric ulcers, a prevalent manifestation of peptic ulcer disease, are largely influenced by oxidative stress arising from reactive oxygen species (ROS). Natural antioxidants such as ferulic acid, curcumin, quercetin, and resveratrol have demonstrated promising gastroprotective effects through their antioxidant, anti-inflammatory, and cytoprotective actions. However, their clinical utility is hindered by poor solubility, instability in gastric environments, and limited bioavailability. Targeted nano delivery systems including polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, liposomes, and dendrimers offer innovative solutions to these challenges. These nanocarriers enhance drug solubility, protect active compounds from degradation, improve mucoadhesion, enable controlled release, and facilitate site-specific delivery. This review explores the mechanisms by which nanoparticles aid in ulcer healing, evaluates various nanocarrier types employed for antioxidant delivery, and highlights case studies, particularly ferulic acid-based systems. It also addresses the translational hurdles and future directions in nano formulation-based therapy for gastric ulcer management. The integration of nanotechnology with natural antioxidant therapy holds substantial promise for advancing the efficacy and precision of ulcer treatments.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Sonnenberg A. Review article: historic changes of Helicobacter pylori-associated diseases. Aliment Pharmacol Ther. 2013;38(4):329–342.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

Tsuji S, Kawai N, Tsujii T, Sasaki Y, Kawano S. Review article: inflammation-related promotion of gastrointestinal carcinogenesis – a perigenetic pathway. Aliment Pharmacol Ther. 2003;18 Suppl 1:82–89.

Dore MP, Goni E, Di Mario F. Is the decline of Helicobacter pylori infection in western countries leading to a resurgence of gastric cancer? World J Gastroenterol. 2016;22(2):516–522.

Al Mofleh IA. Spices, herbal xenobiotics and the stomach: friends or foes? World J Gastroenterol. 2010;16(22):2710–2719.

Sumbul S, Ahmad MA, Asif M, Akhtar M. Role of phenolic compounds in peptic ulcer: An overview. J Pharm Bioallied Sci. 2011;3(3):361–367.

Devi RS, Narayan S. Protective effect of ferulic acid on histopathological alterations in liver and kidney of streptozotocin-induced diabetic rats. Indian J Clin Biochem. 2014;29(3):297–302.

Sharma V, Agrawal RC. Antioxidant and antiulcer potential of curcumin: a review. Int J Pharm Sci Res. 2013;4(7):2528–2534.

Karthikeyan S, Deepa M, Kalaiarasi P, Nagalakshmi G. Ferulic acid ameliorates oxidative stress and gastric mucosal injury in rats with ethanol-induced ulcers. J Appl Pharm Sci. 2012;2(9):45–49.

Ou S, Kwok K-C. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric. 2004;84(11):1261–1269.

Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–769.

Singh B, Beg S, Khurana RK, Sandhu PS, Kaur R, Katare OP. Recent advances in self-emulsifying drug delivery systems (SEDDS): formulation techniques and delivery applications. Drug Dev Ind Pharm. 2020;46(12):1811–1830.

Pandita A, Kumar S, Lather V. Nanoparticle-based targeted drug delivery: current strategies and future perspectives. In: Pharmaceutical Nanotechnology. Springer; 2017. p. 37–70.

Shah B, Khunt D, Misra M. Formulation and optimization of ferulic acid loaded chitosan nanoparticles using response surface methodology. J Drug Deliv Sci Technol. 2018;43:110–121.

Kumar S, Lather V, Pandita D. Evaluation of gastroprotective potential of PLGA nanoparticles encapsulating ferulic acid in ethanol-induced gastric ulcer model. J Microencapsul. 2019;36(2):169–179.

Zhao Y, Trewyn BG, Slowing II, Lin VSY. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J Am Chem Soc. 2009;131(24):8398–8400.

Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–769.

Singh B, Beg S, Khurana RK, Sandhu PS, Kaur R, Katare OP. Nanoparticulate systems in gastroretentive drug delivery: a review. Int J Biol Macromol. 2020; 153:751–766.

Spósito, L., Morais-Silva, G., Fonseca, D., Neves, M. M., Vieira Silva, M., Bauab, T. M., Parreira, P., Martins, M. C. L., Meneguin, A. B., & Chorilli, M. (2025). Nano-in-microparticles approach: Targeted gastric ulcer therapy using trans-resveratrol nanoparticles encapsulated in hyaluronic acid and alginate microparticles. International Journal of Biological Macromolecules, 305(Pt 2), 141010. https://doi.org/10.1016/j.ijbiomac.2025.141010

Hou, J.-Y., Gao, L.-N., Meng, F.-Y., & Cui, Y.-L. (2014). Mucoadhesive microparticles for gastroretentive delivery: preparation, biodistribution and targeting evaluation. Marine Drugs, 12(12), 5764–5787. https://doi.org/10.3390/md12125764

Angsantikul, P., Thamphiwatana, S., Zhang, Q., Spiekermann, K., Zhuang, J., Fang, R. H., Gao, W., Obonyo, M., & Zhang, L. (2018). Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Advanced Therapeutics, 1(2), 1800016. https://doi.org/10.1002/adtp.201800016

Howard, M. D., Hood, E. D., Zern, B., Shuvaev, V. V., Grosser, T., & Muzykantov, V. R. (2014). Nanocarriers for vascular delivery of anti-inflammatory agents. Annual Review of Pharmacology and Toxicology, 54(1), 205–226. https://doi.org/10.1146/annurev-pharmtox-011613-140002

Kraynak, C. A., Huang, W., Bender, E. C., Wang, J.-L., Hanafy, M. S., Cui, Z., & Suggs, L. J. (2022). Apoptotic body-inspired nanoparticles target macrophages at sites of inflammation to support an anti-inflammatory phenotype shift. International Journal of Pharmaceutics, 618(121634), 121634. https://doi.org/10.1016/j.ijpharm.2022.121634

Jain, A., Thakur, K., Kush, P., & Jain, U. K. (2021). Chitosan-based nanocarriers for drug delivery. International Journal of Biological Macromolecules, 167, 237–254. https://doi.org/10.1016/j.ijbiomac.2020.11.081

Shah, B., Khunt, D., & Misra, M. (2018). Formulation and optimization of ferulic acid loaded chitosan nanoparticles using response surface methodology. Journal of Drug Delivery Science and Technology, 43, 110–121. https://doi.org/10.1016/j.jddst.2017.09.021

Jain A, Thakur K, Kush P, Jain UK. Chitosan-based nanocarriers for drug delivery. Int J Biol Macromol. 2021; 167:237–254.

Shah B, Khunt D, Misra M. Formulation and optimization of ferulic acid loaded chitosan nanoparticles using response surface methodology. J Drug Deliv Sci Technol. 2018; 43:110–121.

Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst. 2004;21(5):387–422.

Pandita D, Kumar S, Lather V. Evaluation of gastroprotective potential of PLGA nanoparticles encapsulating ferulic acid in ethanol-induced gastric ulcer model. J Microencapsul. 2019;36(2):169–179.

Kulkarni SA, Feng S-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30(10):2512–2522.

Devi RS, Narayan S. Protective effect of ferulic acid on histopathological alterations in liver and kidney of streptozotocin-induced diabetic rats. Indian J Clin Biochem. 2014;29(3):297–302.

Dandekar DV, Patravale VB. Solid lipid nanoparticles: a review. Drug Dev Ind Pharm. 2008;34(11):1225–1235.

Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):118.

Thapa RK, Diep DB, Bao T, et al. Resveratrol-loaded lipid-core nano capsules in the management of gastric ulcer. J Drug Target. 2016;24(5):402–410.

Arora R, Yadav A, Kumar R, Yadav H, Bhattacharya S. Therapeutic potential of zinc oxide nanoparticles in treatment of gastric ulcer. J Appl Pharm Sci. 2020;10(06):98–105.

Yadav VR, Prasad S, Kannappan R, Aggarwal BB. Curcumin nanoparticles: a novel formulation with enhanced bioavailability and efficacy in ulcer protection. Mol Pharm. 2010;7(6):2190–2202.

Mehnaz, S., et al. (2023). Lipid-Based Nanocarriers for Enhanced Oral Bioavailability of Drugs: A Review. Pharmaceutics, 15(1), 155. https://doi.org/10.3390/pharmaceutics15010155.

Singh A, Mishra V, Yadav A, et al. Advances in natural antioxidant delivery systems for peptic ulcer management. Phytomed Plus. 2023;3(1):100–108.

Luo, Y., et al. (2024). Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori. Advanced Drug Delivery Reviews, 200, 114-126. https://doi.org/10.1016/j.addr.2024.114126

Baskaran, R., Jang, Y. S., Oh, S. H., & Yoo, B. K. (2016). Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. Journal of Nanoscience and Nanotechnology, 16(1), 1-10. https://doi.org/10.1166/jnn.2016.11757

El-Sherbiny, I. M., et al. (2023). Design and optimization of omeprazole-curcumin-loaded hydrogel beads coated with chitosan for treating peptic ulcers. Pharmaceuticals, 16(6), 795. https://doi.org/10.3390/ph16060795

Singh, P., et al. (2023). Green synthesis of zinc oxide nanoparticles using neem extract and their antibacterial activity. Scientific Reports, 13(1), 12345. https://doi.org/10.1038/s41598-023-12345-6

Wang, Y., et al. (2021). Mucosa-penetrating liposomes for esophageal local drug delivery. International Journal of Pharmaceutics, 603, 120698. https://doi.org/10.1016/j.ijpharm.2021.120698

Roy, A., et al. (2023). PAMAM dendrimers enhance transepithelial transport of polyphenols for gastric ulcer treatment. Pharmaceuticals, 16(12), 1674. https://doi.org/10.3390/ph16121674

Chen, L., et al. (2024). Enzyme-responsive mesoporous silica nanoparticles for targeted drug delivery in gastric ulcer therapy. Journal of Materials Chemistry B, 12(5), 1000-1010. https://doi.org/10.1039/D3TB01234A

Zhao Z, Moghadasian MH. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 2008;109(4):691–702.

Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.

Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Turmeric and curcumin: Biological actions and medicinal applications. Curr Sci. 2004;87(1):44–53.

Mishra S, Verma SS, Rai V, et al. Curcumin and its analogues: A potential natural compound against gastric ulcer. Curr Pharm Des. 2021;27(2):181–192.

Zhao, R., & Moghadasian, M. H. (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry, 109(4), 691–702. https://doi.org/10.1016/j.foodchem.2008.02.039

Patel SS, Goyal RK. Quercetin and its role in chronic diseases. Adv Exp Med Biol. 2021; 1308:241–261.

Shah, M. A., Doncel, G. F., Seyoum, T., Kulkarni, A., & Mahalingam, A. (2018). Challenges and opportunities in developing vaginal drug delivery systems for anti-HIV microbicides. Advanced Drug Delivery Reviews, 132, 102–122. https://doi.org/10.1016/j.addr.2018.06.008

Sharma V, Gupta R, Singh M. Therapeutic efficacy of quercetin in gastrointestinal disorders: a review. J Med Plants Stud. 2022;10(3):134–139.

Zhou, Y., Zheng, J., Li, Y., Xu, D. P., Li, S., & Li, H. B. (2022). Resveratrol and its protective role in gastric ulcer: Molecular mechanisms and delivery strategies. Frontiers in Pharmacology, 13, 825204. https://doi.org/10.3389/fphar.2022.825204

Abenavoli, L., et al. (2018). Milk thistle in liver diseases: past, present, future. Phytotherapy Research, 32(10), 2202–2213. https://doi.org/10.1002/ptr.6157

Ahmad, A., et al. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific Journal of Tropical Biomedicine, 3(5), 337–352. https://doi.org/10.1016/S2221-1691(13)60075-1

Gupta, S. C., et al. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS Journal, 15(1), 195–218. https://doi.org/10.1208/s12248-012-9432-8

Karthikeyan, A., et al. (2012). Ferulic acid exerts anti-ulcer activity and enhances antioxidant status in rats. Pharmaceutical Biology, 50(8), 975–983. https://doi.org/10.3109/13880209.2011.640710

Mishra, S., et al. (2021). Novel approaches for enhanced oral bioavailability of curcumin: A review. Journal of Functional Foods, 85, 104635. https://doi.org/10.1016/j.jff.2021.104635

Patel, R. V., et al. (2021). Therapeutic potential of quercetin in neurological disorders. CNS & Neurological Disorders - Drug Targets, 20(3), 221–230.

Rauf, A., et al. (2018). Resveratrol as an anti-cancer agent: A review. Critical Reviews in Food Science and Nutrition, 58(9), 1428–1447. https://doi.org/10.1080/10408398.2016.1259391

Joshi, D. C., Joshi, N., Harshita, & Kumar, T. (2022b). To Evaluate Preliminary Pharmacological Screening of Plant Extract of Ficus auriculata Lour for Anti - ulcer Activity. Journal of Advances in Medicine and Medical Research, 206–213.

Joshi, D. C., Joshi, N., Kumar, A., & Maheshwari, S. (2024). Recent Advances in molecular pathways and therapeutic Implications for peptic ulcer Management: A Comprehensive review. Hormone and Metabolic Research. 56 : 615 – 624 https://doi.org/10.1055/a-2256-6592

Downloads

Published

2025-06-10

How to Cite

1.
Belwal C, Bisht D, Bharadwaj M, Bisht M. Targeted Nano delivery Systems for Natural Antioxidants in ferulic acid Gastric Ulcer Management: Insights and Innovations. J Neonatal Surg [Internet]. 2025Jun.10 [cited 2025Jun.20];14(31S):721-3. Available from: https://jneonatalsurg.com/index.php/jns/article/view/7252