A Comprehensive Review on Solid Lipid Nanoparticle Using Herbal Plant Extract
DOI:
https://doi.org/10.63682/jns.v14i28S.6697Keywords:
Nanotechnology, Drug Delivery Systems, Solid Lipid Nanoparticles, Nanocarriers, Controlled Release, BioavailabilityAbstract
Drug delivery systems have seen a revolution because to nanotechnology, which provides precise, regulated, and targeted treatment solutions with the fewest possible negative effects. This study examines several nanocarriers that are essential for improving medication efficacy, such as dendrimers, liposomes, solid lipid nanoparticles (SLNs), nanoparticles, nanosuspensions, and polymeric nanoparticles. SLNs provide a better option than the others because of their physiological lipid content, which reduces toxicity and maximizes medication absorption. Solvent evaporation, emulsification-diffusion, polymerization, and ultrasonication are some of the preparation techniques that guarantee the structural soundness and functional effectiveness of SLNs. Their flexibility in pharmaceuticals is demonstrated by their broad variety of uses, which include oral, parenteral, transdermal, topical, and cosmetic formulations. Additionally, extracts from ashwagandha, eugenol, neem, aloe vera, and curcumin have been shown to have improved bioavailability and therapeutic efficacy in herbal-loaded SLNs, especially in anti-inflammatory, antibacterial, antioxidant, and anti-tumor therapies. The stability and effectiveness of SLN are continuously being improved by formulation technology innovations, despite obstacles such burst drug release and fast systemic clearance. This research demonstrates the enormous potential of medication delivery powered by nanotechnology in improving contemporary medical treatments and offering creative ways for improved therapeutic results
Downloads
Metrics
References
Nadkar S, Lokhande C. Current Trends in Novel Drug DeliveryAn OTC Perspective. Pharma Times 2010; 42 Suppl 4 :17-23.
Loxley, A. (2009). Solid lipid nanoparticles for the delivuery of pharmaceutical actives. Drug Delivery Technology, 9(8), 32.
.Mishra, B. B. T. S., Patel, B. B., & Tiwari, S. (2010). Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, biology and medicine, 6(1), 9-24.
Maravajhala V, Papishetty S, Bandlapalli S. Nanotechnology in Development of Drug Delivery System. International Journal of Pharmaceutical Science and Research2011; 3 Suppl 1 :84-96.
.Muller, R. H., Bohm, B. H. L., Grau, J., & Wise, D. L. (2000). Nanosuspensions: a formulation approach for poorly soluble and poorly bioavailable drugs. Handbook of pharmaceutical controlled release technology, 345-357.
Duchêne, D., &Ponchel, G. (1997). Bioadhesion of solid oral dosage forms, why and how?. European Journal of Pharmaceutics and Biopharmaceutics, 44(1), 15-23.
Liversidge, G. C., & Cundy, K. C. (1996, July). Drug nanocrystals for improved drug delivery. In Proceedings of the CRS Workshop on Particulate Drug Delivery Systems.
Gillies, E. R., &Frechet, J. M. (2005). Dendrimers and dendritic polymers in drug delivery. Drug discovery today, 10(1), 35-43.
Åkerman, M. E., Chan, W. C., Laakkonen, P., Bhatia, S. N., &Ruoslahti, E. (2002). Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences, 99(20), 12617-12621.
Nahar, M., Dutta, T., Murugesan, S., Asthana, A., Mishra, D., Rajkumar, V., ... & Jain, N. K. (2006). Functional polymeric nanoparticles: an efficient and promisintool for active delivery of bioactives. Critical Reviews™ in Therapeutic Drug Carrier Systems, 23(4).
Ekambaram P, Sathali AH, Priyanka K. Solid Lipid Nanoparticles: A Review. Scientific Reviews and Chemical. Communication2012; 2 Suppl 1 :80-102.
Müller, R. H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics, 50(1), 161-177.
Mandawgade, S. D., & Patravale, V. B. (2008). Development of SLNs from natural lipids: application to topical delivery of tretinoin. International journal of pharmaceutics, 363(1-2), 132-138.
Helgason, T., Awad, T. S., Kristbergsson, K., McClements, D. J., & Weiss, J. (2009). Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). Journal of colloid and interface science, 334(1), 75-81.
Sinha, V. R., Srivastava, S., Goel, H., & Jindal, V. (2010). Solid lipid nanoparticles (SLN'S)-trends and implications in drug targeting. International Journal of Advances in Pharmaceutical Sciences, 1(3).
Müller, R. H., Runge, S., Ravelli, V., Mehnert, W., Thünemann, A. F., & Souto, E. B. (2006). Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals. International journal of pharmaceutics, 317(1), 82-89.
Sangsen, Y., Wiwattanawongsa, K., Likhitwitayawuid, K., Sritularak, B., &Wiwattanapatapee, R. (2015). Modification of oral absorption of oxyresveratrol using lipid based nanoparticles. Colloids and Surfaces B: Biointerfaces, 131, 182-190.
Zhuang, C. Y., Li, N., Wang, M., Zhang, X. N., Pan, W. S., Peng, J. J., ... & Tang, X. (2010). Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. International journal of pharmaceutics, 394(1-2), 179-185.
Bhise, K., Kashaw, S. K., Sau, S., & Iyer, A. K. (2017). Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach. International journal of pharmaceutics, 526(1-2), 506-515.
Xiang, Q. Y., Wang, M. T., Chen, F., Gong, T., Jian, Y. L., Zhang, Z. R., & Huang, Y. (2007). Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Archives of pharmacal research, 30, 519-525.
.Dal Magro, R., Ornaghi, F., Cambianica, I., Beretta, S., Re, F., Musicanti, C., ... &Sancini, G. (2017). ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier. Journal of Controlled Release, 249, 103-110.
.Patil-Gadhe, A., Kyadarkunte, A., Patole, M., &Pokharkar, V. (2014). Montelukast-loaded nanostructured lipid carriers: Part II Pulmonary drug delivery and in vitro–in vivo aerosol performance. European journal of pharmaceutics and biopharmaceutics, 88(1), 169-177.
Mehnert, W., & Mäder, K. (2012). Solid lipid nanoparticles: production, characterization and applications. Advanced drug delivery reviews, 64, 83-101.
Müller, R. H., Radtke, M., & Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced drug delivery reviews, 54, S131-S155.
Kwon, H. Y., Lee, J. Y., Choi, S. W., Jang, Y., & Kim, J. H. (2001). Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 182(1-3), 123-130.
Zambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., ... & Vigneron, C. (1998). Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. Journal of controlled release, 50(1-3), 31-40.
Song, C. X., Labhasetwar, V., Murphy, H., Qu, X., Humphrey, W. R., Shebuski, R. J., & Levy, R. J. (1997). Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. Journal of controlled release, 43(2-3), 197-212
Jaiswal, J., Gupta, S. K., & Kreuter, J. (2004). Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. Journal of Controlled Release, 96(1), 169-178.
Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release, 70(1-2), 1-20.
Niwa, T., Takeuchi, H., Hino, T., Kunou, N., & Kawashima, Y. (1993). Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. Journal of controlled release, 25(1-2), 89-98.
Vandervoort, J., & Ludwig, A. (2002). Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. International journal of pharmaceutics, 238(1-2), 77-92.
Takeuchi, H., Yamamoto, H., & Kawashima, Y. (2001). Mucoadhesive nanoparticulate systems for peptide drug delivery. Advanced drug delivery reviews, 47(1), 39-54
Zhang, Q., Shen, Z., & Nagai, T. (2001). Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. International journal of pharmaceutics, 218(1-2), 75-80.
.Boudad, H., Legrand, P., Lebas, G., Cheron, M., Duchene, D., &Ponchel, G. (2001). Combined hydroxypropyl-β-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. International journal of pharmaceutics, 218(1-2), 113-124.
Parhi, R., & Suresh, P. (2012). Preparation and characterization of solid lipid nanoparticles-a review. Current drug discovery technologies, 9(1), 2-16
Duan, Y., Dhar, A., Patel, C., Khimani, M., Neogi, S., Sharma, P., ... &Vekariya, R. L. (2020). A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC advances, 10(45), 26777-26791.
Subramanian, P. (2021). Lipid-based nanocarrier system for the effective delivery of nutraceuticals. Molecules, 26(18), 5510.
Bhaskar, K., Anbu, J., Ravichandiran, V., Venkateswarlu, V., & Rao, Y. M. (2009). Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies. Lipids in health and disease, 8, 1-15.].
Teeranachaideekul, V., Souto, E. B., Müller, R. H., & Junyaprasert, V. B. (2005, November). Effect of surfactant on the physical and chemical stability of ascorbyl palmitate-loaded NLC system. In AAPS Annual Meeting and Exposition (Nashville, USA) M (Vol. 1256).
Lippacher, A., Müller, R. H., & Mäder, K. (2001). Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. International journal of pharmaceutics, 214(1-2), 9-12
Gupta, T., Singh, J., Kaur, S., Sandhu, S., Singh, G., & Kaur, I. P. (2020). Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness. Frontiers in bioengineering and biotechnology, 8, 879.
Ulanowska, M., & Olas, B. (2021). Biological properties and prospects for the application of eugenol—a review. International journal of molecular sciences, 22(7), 3671.
Chaturvedi, P., & Sharma, P. (2024). Formulation and In vitro Evaluation of Holoptelea integrifolia Planch. Extract Loaded Solid Lipid Nanoparticles.
Batiha, G. E. S., Tene, S. T., Teibo, J. O., Shaheen, H. M., Oluwatoba, O. S., Teibo, T. K. A., ... & Papadakis, M. (2023). The phytochemical profiling, pharmacological activities, and safety of malva sylvestris: a review. Naunyn-Schmiedeberg's archives of pharmacology, 396(3), 421-440.
Mehdizadeh, S., Ghasemi, N., Ramezani, M., & Mahanpoor, K. (2021). Biosynthesis of silver nanoparticles using malva sylvestris flower extract and its antibacterial and catalytic activity. Chem. Methodol, 5(4), 356-366.
Yadav, R., Chawra, H. S., Dubey, G., Alam, M. S., Kumar, V., Sharma, P., ... & Yadav, T. (2025). Herbal based nanoparticles as a possible and potential treatment of cancer: a review. Exploration of Targeted Anti-tumor Therapy, 6, 1002285.
Badawi, N. M., Teaima, M. H., El-Say, K. M., Attia, D. A., El-Nabarawi, M. A., & Elmazar, M. M. (2018). Pomegranate extract-loaded solid lipid nanoparticles: design, optimization, and in vitro cytotoxicity study. International journal of nanomedicine, 1313-1326.
Nemati, S., Mohammad Rahimi, H., Hesari, Z., Sharifdini, M., Jalilzadeh Aghdam, N., Mirjalali, H., & Zali, M. R. (2022). Formulation of Neem oil-loaded solid lipid nanoparticles and evaluation of its anti-Toxoplasma activity. BMC Complementary Medicine and Therapies, 22(1), 122.
Koratala, A., Chandra, N. C., Rabiei, Y., Rezvani, Z., & Neshat, S. (2022). Aloe vera applications and Aloe vera based nanomaterials. Journal of Renal Endocrinology, 9(1), e22063-e22063.
Rodrigues, L. R., & Jose, J. (2020). Exploring the photo protective potential of solid lipid nanoparticle-based sunscreen cream containing Aloe vera. Environmental Science and Pollution Research, 27(17), 20876-20888.
Arora, S., Samanta, K., Chettri, S., Rawat, D., Percha, V., & Kumar, D. (2023). Ashwagandha: A Flagship Herb of Ayurveda from Past to Present Nano Era. International Journal of Pharmaceutical Investigation, 13(3).
Wang, B., Wu, K., Liu, R., Huang, Y., Chang, Z., Gao, Y., Liu, Y., Chen, H., Wang, Z., Cui, Y., Wang, L., Ma, P., & Zhang, L. (2023). Phyllanthi Tannin Loaded Solid Lipid Nanoparticles for Lung Cancer Therapy: Preparation, Characterization, Pharmacodynamics and Safety Evaluation. Molecules, 28(21), 7399.
Arana, L., Salado, C., Vega, S., Aizpurua-Olaizola, O., de la Arada, I., Suarez, T., ... & Alkorta, I. (2015). Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids and Surfaces B: Biointerfaces, 135, 18-26.
Bindu, R. H., Lakshmi, S. M., Himaja, N., Nirosha, K., & Pooja, M. (2014). Formulation characterization and antidiabetic evaluation of Talinum portulacifolium (Forssk.) loaded solid lipid nanoparticles in Streptozotocin and high fat diet induced diabetic rats. J. Glob. Trends. Pharm. Sci, 5(4), 2108-2114.
Sabapati, M., Palei, N. N., CK, A. K., & Molakpogu, R. B. (2019). Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studies. Drug development and industrial pharmacy, 45(4), 577-586.
Sutthanut, K., Lu, X., Jay, M., & Sripanidkulchai, B. (2009). Solid lipid nanoparticles for topical administration of Kaempferia parviflora extracts. Journal of biomedical nanotechnology, 5(2), 224-232.
Gad, H. A., Abd El-Rahman, F. A., & Hamdy, G. M. (2019). Chamomile oil loaded solid lipid nanoparticles: A naturally formulated remedy to enhance the wound healing. Journal of Drug Delivery Science and Technology, 50, 329-338.
Mostafa, E. S., Maher, A., Mostafa, D. A., Gad, S. S., Nawwar, M. A., & Swilam, N. (2021). A unique acylated flavonol glycoside from Prunus persica (L.) var. florida prince: a new solid lipid nanoparticle cosmeceutical formulation for skincare. Antioxidants, 10(3), 436.
Garud, A., Singh, D., & Garud, N. (2012). Solid lipid nanoparticles (SLN): method, characterization and applications. International Current Pharmaceutical Journal, 1(11), 384-393.
Luo, Y., Chen, D., Ren, L., Zhao, X., & Qin, J. (2006). Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. Journal of controlled release, 114(1), 53-59.
Meyer, E., & Heinzelmann, H. (1992). Scanning force microscopy (SFM). In Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques (pp. 99-149). Berlin, Heidelberg: Springer Berlin Heidelberg.
Mukherjee, S., Ray, S., & Thakur, R. S. (2009). Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian journal of pharmaceutical sciences, 71(4), 349-358.
Cometa, S., Bonifacio, M. A., Trapani, G., Di Gioia, S., Dazzi, L., De Giglio, E., & Trapani, A. (2020). In vitro investigations on dopamine loaded Solid Lipid Nanoparticles. Journal of pharmaceutical and biomedical analysis, 185, 113257.
Siekmann, B., & Westesen, K. (1994). Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids and surfaces B: Biointerfaces, 3(3), 159-175.
Hou, D., Xie, C., Huang, K., & Zhu, C. (2003). The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials, 24(10), 1781-1785.
Omwoyo, W. N., Ogutu, B., Oloo, F., Swai, H., Kalombo, L., Melariri, P., ... & Gathirwa, J. W. (2014). Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. International Journal of nanomedicine, 3865-3874.
Bisht, D., Joshi, D. C., Bisht, M., Joshi, N., Azizov, S., Lalhlenmawia, H., Kumar, D., Dua, K., Shetty, S. R., & Suares, D. (2024). Natural product-based compounds for chronic respiratory disorders. In Elsevier eBooks (pp. 309–333). https://doi.org/10.1016/b978-0-443-27345-2.00010-2.
Joshi, D. C., Joshi, N., Harshita, & Kumar, T. (2022). To Evaluate Preliminary Pharmacological Screening of Plant Extract of Ficus auriculata Lour for Anti - ulcer Activity. Journal of Advances in Medicine and Medical Research, 206–213. https://doi.org/10.9734/jammr/2022/v34i2231594.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.