Long Non-Coding RNAs in Thyroid Cancer

Authors

  • Nour El Hoda H. El Emam
  • Hamdy Sliem
  • Nearmeen M. Rashad
  • Mohamed Ahmed Greash
  • Iman El Sherif

DOI:

https://doi.org/10.63682/jns.v14i17S.5807

Abstract

Background: Accurate preoperative differentiation between benign and malignant thyroid nodules remains a clinical challenge, particularly in cases with indeterminate cytology. Conventional diagnostic tools such as ultrasound and fine-needle aspiration cytology have limited diagnostic accuracy in a subset of patients. Long non-coding RNAs, including Nuclear Enriched Abundant Transcript 1 (NEAT1), have emerged as potential molecular biomarkers in various malignancies, including thyroid cancer.

Method: This observational cross-sectional study included sixty adult participants divided into three equal groups: patients with malignant thyroid nodules, patients with benign thyroid nodules, and healthy controls. Serum samples were collected from all participants. NEAT1 expression levels were quantified using quantitative real-time polymerase chain reaction and analyzed in serum. Statistical analysis and receiver operating characteristic (ROC) curve analysis were performed to assess the diagnostic performance of NEAT1 expression.

Result: NEAT1 expression levels in serum was significantly higher in patients with malignant thyroid nodules compared with benign nodules and controls (p < 0.001). Serum NEAT1 expression showed a strong positive correlation. ROC curve analysis demonstrated high diagnostic accuracy of NEAT1 expression.


Conclusion: NEAT1 is significantly upregulated in malignant thyroid nodules and demonstrates strong diagnostic performance. Circulating NEAT1 may serve as a promising non-invasive molecular biomarker to complement conventional diagnostic tools in the preoperative evaluation of thyroid nodules.

Downloads

Download data is not yet available.

References

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

2. Bray, F., Laversanne, M., Weiderpass, E., & Soerjomataram, I. (2024). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 130(1), 9–16. https://doi.org/10.1002/cncr.34853

3. Ali, S. Z., Cibas, E. S., & The Bethesda System for Reporting Thyroid Cytopathology Committee. (2023). The Bethesda system for reporting thyroid cytopathology: Definitions, criteria, and explanatory notes (3rd ed.). Springer.

4. Haugen, B. R., Alexander, E. K., Bible, K. C., Doherty, G. M., Mandel, S. J., Nikiforov, Y. E., et al. (2016). 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid, 26(1), 1–133. https://doi.org/10.1089/thy.2015.0020

5. Kung, J. T. Y., Colognori, D., & Lee, J. T. (2013). Long noncoding RNAs: Past, present, and future. Genetics, 193(3), 651–669. https://doi.org/10.1534/genetics.112.146704

6. Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs. Genome Research, 22(9), 1775–1789. https://doi.org/10.1101/gr.132159.111

7. Schwarzenbach, H., Nishida, N., Calin, G. A., & Pantel, K. (2014). Clinical relevance of circulating cell-free nucleic acids in cancer. Nature Reviews Clinical Oncology, 11(3), 145–156. https://doi.org/10.1038/nrclinonc.2014.5

8. Ghafouri-Fard, S., & Taheri, M. (2019). Nuclear enriched abundant transcript 1 (NEAT1): A long non-coding RNA with diverse functions in cancer. Biomedicine & Pharmacotherapy, 111, 51–59. https://doi.org/10.1016/j.biopha.2018.12.070

9. Xia, F., Chen, Y., Jiang, B., Bai, N., Li, X., & Xu, Y. (2019). Long noncoding RNA NEAT1 promotes papillary thyroid cancer progression. Cancer Cell International, 19, 44. https://doi.org/10.1186/s12935-019-0756-1

10. Li, X., Wang, Z., Zhang, Z., Li, Y., Xu, Q., & Li, S. (2016). Long non-coding RNA NEAT1 promotes thyroid carcinoma progression through regulation of miR-214. International Journal of Oncology, 48(4), 1704–1712. https://doi.org/10.3892/ijo.2016.3373

11. Zhong, Y., Gao, D., He, S., Shuai, C., Peng, S., & Wang, J. (2019). NEAT1 promotes papillary thyroid carcinoma progression. OncoTargets and Therapy, 12, 8015–8026. https://doi.org/10.2147/OTT.S215821

12. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2⁻ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

13. Kitahara, C. M., & Schneider, A. B. (2022). Epidemiology of thyroid cancer. Cancer Epidemiology, Biomarkers & Prevention, 31(7), 1284–1297. https://doi.org/10.1158/1055-9965.EPI-21-1440

14. Al-Hakami, H. A., Alqahtani, R., Alahmadi, A., Alsharif, A., Alzahrani, A., & Alzahrani, A. (2020). Patterns and risk factors of thyroid cancer in Saudi Arabia. Journal of Thyroid Research, 2020, 8423146. https://doi.org/10.1155/2020/8423146

15. Ramadan, R., Mohamed, A., & El-Sayed, M. (2021). Clinicopathological characteristics of thyroid cancer in an Egyptian population. Endocrine Practice, 27(4), 345–352.

16. Zhao, L., Sun, H., Kong, H., Chen, Z., Chen, B., & Zhou, M. (2020). Differential expression of NEAT1, miR-9 and miR-124 in thyroid nodules. Molecular Medicine Reports, 21(3), 1237–1246. https://doi.org/10.3892/mmr.2020.10923.

Downloads

Published

2025-01-28

How to Cite

1.
H. El Emam NEH, Sliem H, M. Rashad N, Greash MA, El Sherif I. Long Non-Coding RNAs in Thyroid Cancer. J Neonatal Surg [Internet]. 2025 Jan. 28 [cited 2026 Feb. 16];14(1S):1484-92. Available from: https://jneonatalsurg.com/index.php/jns/article/view/5807