Exploring the Anticancer Potential of Some Commonly used Tectaria Plants through Network Pharmacology and Molecular Docking

Authors

  • Neha Jangid
  • Muskan Mall
  • Mohit Sengar
  • Shivang Mishra
  • Priya Bansal
  • Surya Prakash
  • Krishan Kant
  • Abhishek Kumar

Keywords:

Anticancer Potential, Tectaria Plants, Network Pharmacology, Molecular Docking

Abstract

Objective: To evaluate the anticancer potential of four Tectariaceae plants using a network pharmacology approach and identify key molecular mechanisms involved.

Methods: Bioactive compounds were screened via SWISS ADME; targets were predicted using public databases. Overlapping cancer-related targets were analyzed using PPI networks, GO, KEGG, and molecular docking were done to evaluate the mechanism of action.

Result and discussion: Out of 27 compounds, 15 met drug-likeness criteria. 348 overlapping targets were identified; IL-17 and TNF pathways emerged as key anticancer mechanisms. Several compounds showed strong binding affinity (≥ -6 kcal/mol) against targets like 6ESM, 51KV, 2ZOQ, and 1RE1, indicating promising anticancer activity.

Conclusion: The study highlights Tectariaceae plants as potential anticancer agents, with multiple bioactive compounds targeting inflammation and immune-related pathways, supporting their role in future drug development.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Debela, D. T., Muzazu, S. G., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., ... & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE open medicine, 9, 20503121211034366.

Kroemer, G., Chan, T. A., Eggermont, A. M., & Galluzzi, L. (2024). Immunosurveillance in clinical cancer management. CA: A Cancer Journal for Clinicians, 74(2), 187-202.

Zeng, L., Gowda, B.H.J., Ahmed, M.G. et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 22, 10 (2023). https://doi.org/10.1186/s12943-022-01708-4

Zeng, L., Gowda, B.H.J., Ahmed, M.G. et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 22, 10 (2023). https://doi.org/10.1186/s12943-022-01708-4

Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007 Jan;3(1):7-17. doi: 10.1007/s12015-007-0004-8. PMID: 17873377.

Wang, X., Yang, L., Huang, F., Zhang, Q., Liu, S., Ma, L., & You, Z. (2017). Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunology Letters, 184, 7–14. doi:10.1016/j.imlet.2017.02.006

Hu, M., Yan, H., Li, H. et al. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci Rep 13, 9569 (2023). https://doi.org/10.1038/s41598-023-36687-z

3. Rekha Y. Halayal, Zabin K. Bagewadi, Raju B. Maliger, Salim Al Jadidi, Sanjay H. Deshpande, Network pharmacology based anti-diabetic attributes of bioactive compounds from Ocimum gratissimum L. through computational approach, Saudi Journal of Biological Sciences, Volume 30, Issue 9, 2023, 103766, ISSN 1319-562X , https://doi.org/10.1016/j.sjbs.2023.103766

Cragg, G. M., & Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology, 100(1-2), 72–79. doi:10.1016/j.jep.2005.05.011

Praveen, A., & Pandey, V. C. (2019). Pteridophytes in phytoremediation. Environmental Geochemistry and Health. doi:10.1007/s10653-019-00425-0

Sureshkumar, J., Silambarasan, R., Bharati, K. A., Krupa, J., Amalraj, S., & Ayyanar, M. (2018). A review on ethnomedicinally important pteridophytes of India. Journal of Ethnopharmacology, 219, 269–287. doi:10.1016/j.jep.2018.03.024

Baskaran, X., Geo Vigila, A., Zhang, S., Feng, S., & Liao, W. (2018). A review of the use of pteridophytes for treating human ailments. Journal of Zhejiang University-SCIENCE B, 19(2), 1–35. doi:10.1631/jzus.b1600344

Patil SM, Kachhiyapatel RN, Rajput KS. Review on the genus Tectaria Cav. from India. Plant Science Today 2019;6(2):170-182. https://doi.org/10.14719/pst.2019.6.2.511

Reddy MN, Adnan M, Alreshidi MM, Saeed M, Patel M. Evaluation of Anticancer, Antibacterial and Antioxidant Properties of a Medicinally Treasured Fern Tectaria coadunata with its Phytoconstituents Analysis by HR-LCMS. Anticancer Agents Med Chem. 2020;20(15):1845-1856. doi: 10.2174/1871520620666200318101938. PMID: 32188388. (00)

Venkata Samy Manivannan, Marimuthu alias Antony Samy Johnson, Ray S. Almeida, Henrique D.M. Coutinho, Chemical profiling of Tectaria paradoxa (Fee.) Sledge and Bolbitis Appendiculata (Willd.) K. Iwats using UHPLC, Biocatalysis and Agricultural Biotechnology, https://doi.org/10.1016/j.bcab.2021.102043 (20)

Karade, P. G., & Jadhav, N. R. (2017). In vitro studies of the anticancer action of Tectaria cicutaria in human cancer cell lines: G 0 /G 1 p53-associated cell cycle arrest-Part I. Journal of Traditional and Complementary Medicine. doi:10.1016/j.jtcme.2017.07.003 (21)

Hu, M., Yan, H., Li, H. et al. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci Rep 13, 9569 (2023). https://doi.org/10.1038/s41598-023-36687-z

Manivannan, Johnson, M. alias A., Almeida, R. S., & Coutinho, H. D. M. (2021). Chemical profiling of Tectaria paradoxa (Fee.) Sledge and Bolbitis appendiculata (Willd.) K. Iwats using UHPLC. Biocatalysis and Agricultural Biotechnology, 34, 102043. https://doi.org/10.1016/j.bcab.20. (23)

Zhou M, Li J, Luo D, Zhang H, Yu Z, Chen Y, Li Q, Liang F, Chen R. Network Pharmacology and Molecular Docking-Based Investigation: Prunus mume Against Colorectal Cancer via Silencing RelA Expression. Front Pharmacol. 2021 Nov 19;12:761980. doi: 10.3389/fphar.2021.761980. PMID: 34867383; PMCID: PMC8640358. (111)

Jin, L., Guan, Y., Li, X., Wang, M., Shen, Y., Wang, N., & He, Z. (2025). Combining Network Pharmacology, Molecular Docking and Experimental Validation to Explore the Effects and Mechanisms of Indirubin on Acute Lymphoblastic Leukemia. "Drug Design, Development and Therapy, 19, 1083–1103

Zhou, Z., Chen, B., Chen, S., Lin, M., Chen, Y., Jin, S., … Zhang, Y. (2020). Applications of Network Pharmacology in Traditional Chinese Medicine Research. Evidence-Based Complementary and Alternative Medicine, 2020, 1–7. doi:10.1155/2020/1646905 (19)

Emel Akbaba (2024). Molecular Mechanisms of Melatonin for Treating Medullary Thyroid Cancer Using in silico Analysis. Advances in Pharmacology and Pharmacy, 12(4), 430 - 442. DOI: 10.13189/app.2024.120415. (27)

Hu, M., Yan, H., Li, H. et al. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci Rep 13, 9569 (2023). https://doi.org/10.1038/s41598-023-36687-z

https://doi.org/10.1016/j.jksus.2024.103134

Hu, M., Yan, H., Li, H. et al. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci Rep 13, 9569 (2023). https://doi.org/10.1038/s41598-023-36687-z

Suvarna P. Ingale, Anagha M. Joshi, Pramod L. Ingale (2024). Network Pharmacology-Based Evaluation of Therapeutic Potential of Passiflora edulis Leaves in Alzheimer's Disease. Advances in Pharmacology and Pharmacy, 12(3), 186 - 198. DOI: 10.13189/app.2024.120304.

Emel Akbaba (2024). Molecular Mechanisms of Melatonin for Treating Medullary Thyroid Cancer Using in silico Analysis. Advances in Pharmacology and Pharmacy, 12(4), 430 - 442. DOI: 10.13189/app.2024.120415.

Mohammad Ibrahim, Ganesh R Pawar, Shabina Khan, Mohd Mazhar, Sanchita Pathak , "Therapeutic Lead Identification from Ginkgo biloba against Enzyme Causing Alzheimer's Disease Using in-vitro Studies Integrated Network Pharmacology and Molecular Docking," Advances in Pharmacology and Pharmacy, Vol. 12, No. 3, pp. 248 - 255, 2024. DOI: 10.13189/app.2024.120309.

Zhou, J., Li, H., Wu, B. et al. Network pharmacology combined with experimental verification to explore the potential mechanism of naringenin in the treatment of cervical cancer. Sci Rep 14, 1860 (2024). https://doi.org/10.1038/s41598-024-52413-9

Emel Akbaba (2024). Molecular Mechanisms of Melatonin for Treating Medullary Thyroid Cancer Using in silico Analysis. Advances in Pharmacology and Pharmacy, 12(4), 430 - 442. DOI: 10.13189/app.2024.120415.

Premkumar, B & Yesuraj, Samson & Mohan, Santhosh & Chandran, Savitha. (2024). Molecular docking studies for NPACT ligands for the treatment of melanoma skin cancer. International Journal of Pharmaceutical Chemistry and Analysis. 11. 51-54. 10.18231/j.ijpca.2024.007.

Mohammad Ibrahim, Ganesh R Pawar, Shabina Khan, Mohd Mazhar, Sanchita Pathak , "Therapeutic Lead Identification from Ginkgo biloba against Enzyme Causing Alzheimer's Disease Using in-vitro Studies Integrated Network Pharmacology and Molecular Docking," Advances in Pharmacology and Pharmacy, Vol. 12, No. 3, pp. 248 - 255, 2024. DOI: 10.13189/app.2024.120309.

https://doi.org/10.1016/j.jksus.2024.103134

Jin, L., Guan, Y., Li, X., Wang, M., Shen, Y., Wang, N., & He, Z. (2025). Combining Network Pharmacology, Molecular Docking and Experimental Validation to Explore the Effects and Mechanisms of Indirubin on Acute Lymphoblastic Leukemia. "Drug Design, Development and Therapy, 19, 1083–1103. https://doi.org/10.2147/DDDT.S500249 (30)

Emmanuel I. Ugwor, Adewale S. James, Adekunle I. Amuzat, Emmanuel O. Ezenandu, Victory C. Ugbaja, Regina N. Ugbaja,Network pharmacology-based elucidation of bioactive compounds in propolis and putative underlying mechanisms against type-2 diabetes mellitus,Pharmacological Research - Modern Chinese Medicine,Volume 5,2022,100183,ISSN 2667-1425, https://doi.org/10.1016/j.prmcm.2022.100183 (S2)

Emmanuel I. Ugwor, Adewale S. James, Adekunle I. Amuzat, Emmanuel O. Ezenandu, Victory C. Ugbaja, Regina N. Ugbaja,Network pharmacology-based elucidation of bioactive compounds in propolis and putative underlying mechanisms against type-2 diabetes mellitus,Pharmacological Research - Modern Chinese Medicine,Volume 5,2022,100183,ISSN 2667-1425, https://doi.org/10.1016/j.prmcm.2022.100183 (S2)

3. Rekha Y. Halayal, Zabin K. Bagewadi, Raju B. Maliger, Salim Al Jadidi, Sanjay H. Deshpande, Network pharmacology based anti-diabetic attributes of bioactive compounds from Ocimum gratissimum L. through computational approach, Saudi Journal of Biological Sciences, Volume 30, Issue 9, 2023, 103766, ISSN 1319-562X , https://doi.org/10.1016/j.sjbs.2023.103766

4. JOUR Agu, P. Afiukwa, C. aOrji, O. Ezeh, E. M.Ofoke, I. H. Ogbu, C. O. Ugwuja, E. I. Aja, P. M. 20232023/08/17TMolecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management Scientific Reports - 13398 - 13- 1 https://doi.org/10.1038/s41598-023-40160-2

https://doi.org/10.1038/s41598-024-58877-z JOUR- Vikhar Danish Ahmad, Ansari - Khan, Subur W.- Ali, Syed Ayaz - Yasar, Qazi- 2024 2024/04/29- Network pharmacology combined with molecular docking and experimental verification to elucidate the effect of flavan-3-ols and aromatic resin on anxiety - Scientific R eports - 9799 141

] Gogoi, Barbi, Saikia, S. P., Virtual Screening and Network Pharmacology-Based Study to Explore the Pharmacological Mechanism of Clerodendrum Species for Anticancer Treatment, Evidence-Based Complementary and Alternative Medicine, 2022, 3106363, 17 pages, 2022. https://doi.org/10.1155/2022/3106363

[3]Zhou, Zhuchen, Chen, Bing, Chen, Simiao, Lin, Minqiu, Chen, Ying, Jin, Shan, Chen, Weiyan, Zhang, Yuyan, Applications of Network Pharmacology in Traditional Chinese Medicine Research, Evidence-Based Complementary and Alternative Medicine, 2020, 1646905, 7 pages, 2020. https://doi.org/10.1155/2020/1646905

Elisa Nuti, Doretta Cuffaro, Elisa Bernardini, Caterina Camodeca, Laura Panelli, Sílvia Chaves, Lidia Ciccone, Livia Tepshi, Laura Vera, Elisabetta Orlandini, Susanna Nencetti, Enrico A. Stura, M. Amélia Santos, Vincent Dive, and Armando Rossello.Journal of Medicinal Chemistry 2018 61 (10), 4421-4435. DOI: 10.1021/acs.jmedchem.8b00096

Akbari T, Kazemi Fard T, Fadaei R, Rostami R, Moradi N, Movahedi M, Fallah S. Evaluation of MMP-9, IL-6, TNF-α levels and peripheral blood mononuclear cells genes expression of MMP-9 and TIMP-1 in Iranian patients with coronary artery disease. J Cardiovasc Thorac Res. 2023;15(4):223-230. doi: 10.34172/jcvtr.2023.31844. Epub 2023 Dec 30. PMID: 38357561; PMCID: PMC10862034.

Augoff, K.; HryniewiczJankowska, A.; Tabola, R.; Stach, K. MMP9: AToughTarget for Targeted Therapy for Cancer. Cancers 2022, 14, 1847. https://doi.org/10.3390/ cancers14071847

Becker, J. W., Rotonda, J., Soisson, S. M., Aspiotis, R., Bayly, C., Francoeur, S., … Zamboni, R. (2004). Reducing the Peptidyl Features of Caspase-3 Inhibitors: A Structural Analysis. Journal of Medicinal Chemistry, 47(10), 2466–2474. doi:10.1021/jm0305523

Zhao, X., Bausano, B., Pike, B. R., Newcomb-Fernandez, J. K., Wang, K. K. W., Shohami, E., … Hayes, R. L. (2001). TNF-? stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures. Journal of Neuroscience Research, 64(2), 121–131. doi:10.1002/jnr.1059 .

Zhou, Zhuchen, Chen, Bing, Chen, Simiao, Lin, Minqiu, Chen, Ying, Jin, Shan, Chen, Weiyan, Zhang, Yuyan, Applications of Network Pharmacology in Traditional Chinese Medicine Research, Evidence-Based Complementary and Alternative Medicine, 2020, 1646905, 7 pages, 2020. https://doi.org/10.1155/2020/1646905

Noor ZM, Ahmad H, Ain Q, Anjum T, Malik ZS, Hussain Z, et al. Caspase 3 and Its Role in the Pathogenesis of Cancer. Clin Oncol. 2022; 7: 1941. ISSN: 2474-1663

Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83. doi: 10.1128/MMBR.00031-10. Erratum in: Microbiol Mol Biol Rev. 2012 Jun;76(2):496. PMID: 21372320; PMCID: PMC3063353.

Lee S, Rauch J, Kolch W. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 2020 Feb 7;21(3):1102. doi: 10.3390/ijms21031102. PMID: 32046099; PMCID: PMC7037308.

Orlando, B. J., & Malkowski, M. G. (2016). Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone. Journal of Biological Chemistry, 291(29), 15069–15081. doi:10.1074/jbc.m116.725713.

Venè R, Costa D, Augugliaro R, Carlone S, Scabini S, Casoni Pattacini G, Boggio M, Zupo S, Grillo F, Mastracci L, Pitto F, Minghelli S, Ferrari N, Tosetti F, Romairone E, Mingari MC, Poggi A, Benelli R. Evaluation of Glycosylated PTGS2 in Colorectal Cancer for NSAIDS-Based Adjuvant Therapy. Cells. 2020 Mar 11;9(3):683. doi: 10.3390/cells9030683. PMID: 32168749; PMCID: PMC7140631.

Zheng, W., Guo, Y., Kahar, A. et al. RUNX1-induced upregulation of PTGS2 enhances cell growth, migration and invasion in colorectal cancer cells. Sci Rep 14, 11670 (2024). https://doi.org/10.1038/s41598-024-60296-z

Downloads

Published

2025-05-10

How to Cite

1.
Jangid N, Mall M, Sengar M, Mishra S, Bansal P, Prakash S, Kant K, Kumar A. Exploring the Anticancer Potential of Some Commonly used Tectaria Plants through Network Pharmacology and Molecular Docking. J Neonatal Surg [Internet]. 2025May10 [cited 2025Jun.18];14(21S):1065-77. Available from: https://jneonatalsurg.com/index.php/jns/article/view/5499

Most read articles by the same author(s)