A Novel Steganography Method Without Embedding Using Generative Adversarial Networks

Authors

  • D Sreedhar
  • P Padmanabham
  • J.V.R Murthy

Keywords:

GAN,Steganopraphy,Embedding and hasing

Abstract

Abstract: Steganography traditionally relies on embedding secret information into a cover medium, introducing potential distortion and susceptibility to detection. This paper proposes a novel steganographic method that avoids explicit embedding, leveraging the capabilities of Generative Adversarial Networks (GANs) to generate images that inherently represent the hidden message. The proposed method utilizes a conditional GAN framework where the secret message serves as a condition to generate a visually plausible image. We present a comprehensive literature review, detail the architecture of the proposed system, and validate its effectiveness through rigorous experiments. Comparative analysis with traditional and recent deep learning-based methods highlights the superiority of the proposed approach in terms of security, imperceptibility, and payload capacity.

Downloads

Download data is not yet available.

References

C. Cachin, ``An information-theoretic model for steganography,'' in Infor-mation Hiding. Berlin, Germany: Springer, 1998, pp. 306_318. [Online].Available: https://doi.org/10.1007/3-540-49380-8_21

T. Pevný, T. Filler, and P. Bas, ``Using high-dimensional image modelsto perform highly undetectable steganography,'' in Information Hid-ing (Lecture Notes in Computer Science), vol. 6387. Berlin, Germany:Springer-Verlag, 2010, pp. 161_177.

V. Holub, J. Fridrich, and T. Denemark, ``Universal distortion function forsteganography in an arbitrary domain,'' EURASIP J. Inf. Secur., vol. 2014,no. 1, p. 1, Dec. 2014.

V. Holub and J. Fridrich, ``Designing steganographic distortion usingdirectional _lters,'' in Proc. IEEE Int. Workshop Inf. Forensics Secur.,Dec. 2013, pp. 234_239.

J. Fridrich and J. Kodovský, ``Rich models for steganalysis of digital images,'' IEEE Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 868_882,Jun. 2012.

Kodovský and J. Fridrich, ``Quantitative steganalysis using rich models,'' roc. SPIE, vol. 8665, pp. 86650O-1_86650O-11, Mar. 2013.

M. Goljan, J. Fridrich, and R. Cogranne, ``Rich model for steganalysis of color images,'' in Proc. IEEE Int. Workshop Inf. Forensics Secur.,Dec. 2015, pp. 185_190.

L. Pibre, P. Jérôme, D. Ienco, and M. Chaumont. (Nov. 2015). ``Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch.'' [Online]. Available: https://arxiv.org/abs/1511.04855

J. Zeng, S. T, B. Li, and J. Huang. (Nov. 2016). ``Large-scale JPEG steganalysis using hybrid deep-learning framework.'' [Online]. Available: https://arxiv.org/abs/1611.03233

Y. Qian, J. Dong, T. Tan, and W. Wang, ``Deep learning for steganalysis via convolutional neural networks,'' Proc. SPIE, vol. 9409,pp. 94090J-1_94090J-10, Mar. 2015.

M. Barni, ``Steganography in digital media: Principles, algorithms, and applications (Fridrich, J. 2010) [book reviews],'' IEEE Signal Process. Mag., vol. 28, no. 5, pp. 142_144, Sep. 2011.

Z.-L. Zhou, Y. Cao, and X.-M. Sun, ``Coverless information hiding based on bag-of-words model of image,'' J. Appl. Sci., vol. 34, no. 5, pp. 527_536, 2016.

Z. Zhou, H. Sun, R. Harit, X. Chen, and X. Sun, ``Coverless image steganography without embedding,'' in Proc. Int. Conf. Cloud Comput.Secur., 2015, pp. 123_132.

S. Zheng, L. Wang, B. Ling, and D. Hu, ``Coverless information hiding based on robust image hashing,'' in Intelligent Computing Methodologies.Cham, Switzerland: Springer, 2017, pp. 536_547, doi: 10.1007/978-3-319- 63315-2_47.

J. Xu et al., ``Hidden message in a deformation-based texture,'' Vis. Comput. Int. J. Comput. Graph., vol. 31, no. 12, pp. 1653_1669, 2015.

[K.-C. Wu and C.-M. Wang, ``Steganography using reversible texture synthesis,'' IEEE Trans. Image Process., vol. 24, no. 1, pp. 130_139, Jan. 2015.

I. Goodfellow et al., ``Generative adversarial nets,'' in Proc. Int. Conf. Neural Inf. Process. Syst., 2014, pp. 2672_2680.

[M. Mirza and S. Osindero, ``Conditional generative adversarial nets,'' CoRR, vol. abs/1411.1784, 2014. [Online]. Available: http://arxiv.org/abs/1411.1784

E. Denton, S. Chintala, A. Szlam, and R. Fergus, ``Deep generative image models using a Laplacian pyramid of adversarial networks,'' in Proc.28th Int. Conf. Neural Inf. Process. Syst. (NIPS), vol. 1. Cambridge, MA, USA: MIT Press, 2015, pp. 1486_1494. [Online]. Available: http://dl.acm.org/citation.cfm?id=2969239.2969405

M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. (Nov. 2017). ``Are GANs created equal? A large-scale study.'' [Online].Available: https://arxiv.org/abs/1711.10337

A. Radford, L. Metz, and S. Chintala, Unsupervised Representation Learn-ing With Deep Convolutional Generative Adversarial Networks. Cham,Switzerland: Springer, 2017, pp. 97_108.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. (Jun. 2016). ``Generative adversarial text to image synthesis.'' [Online].Available: https://arxiv.org/abs/1605.05396

D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. (Dec. 2016). ``Generating images with recurrent adversarial networks.'' [Online]. Available:https://arxiv.org/abs/1602.05110

R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N. Do. (Jul. 2016). ``Semantic image inpainting with deep generativemodels.'' [Online]. Available: https://arxiv.org/abs/1607.07539

J. Hayes and G. Danezis. (Jul. 2017). ``Generating steganographic images via adversarial training.'' [Online]. Available: https://arxiv.org/abs/1703.00371

D. Volkhonskiy, B. Borisenko, and E. Burnaev, ``Steganographic generative adversarial networks,'' CoRR, vol. abs/1703.05502, 2017. [Online].Available: http://arxiv.org/abs/1703.05502

W. Tang, S. Tan, B. Li, and J. Huang, ``Automatic steganographic distortion learning using a generative adversarial network,'' IEEE Signal Process.Lett., vol. 24, no. 10, pp. 1547_1551, Oct. 2017.

J. Mielikainen, ``LSB matching revisited,'' IEEE Signal Process. Lett., vol. 13, no. 5, pp. 285_287, May 2006 [29] T. Pevný, P. Bas, and J. Fridrich, ``Steganalysis by subtracti pp. 215_224, Jun. 2010.

J. Fridrich, M. Goljan, and R. Du, ``Detecting LSB steganography ve pixel adjacency matrix,'' IEEE Trans. Inf. Forensics Security, vol. 5, no. 2,in color, and gray-scale images,'' IEEE Multimedia Mag., vol. 8, no. 4, pp. 22_28, Oct. 2001.

Downloads

Published

2025-05-06

How to Cite

1.
Sreedhar D, Padmanabham P, Murthy J. A Novel Steganography Method Without Embedding Using Generative Adversarial Networks. J Neonatal Surg [Internet]. 2025 May 6 [cited 2025 Dec. 15];14(18S):805-11. Available from: https://jneonatalsurg.com/index.php/jns/article/view/5265

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.