Machine Learning in Cardiac Surgery: A Systematic Review of ML Techniques, Applications, and the Road Ahead

Authors

  • Sandeep Kumar
  • Nidhi Rajak
  • Sanjeev Gour
  • Dinesh Salitra
  • Romsha Sharma
  • Swati Namdev

Keywords:

Ursodeoxycholic acid, alcoholic liver disease, hypertension, Spironolactone, Rifaximin, human albumin

Abstract

N\A

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ostberg, N. P., Zafar, M. A., & Elefteriades, J. (2021). Machine learning: principles and applications for thoracic surgery.. European Journal of Cardio-Thoracic Surgery. https://doi.org/10.1093/ejcts/ezab095

Tseng, P., Chen, Y., Wang, C., Chiu, K., Peng, Y., Hsu, S., Chen, K., Yang, C., & Lee, O. K. (2020). Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Critical Care. https://doi.org/10.1186/s13054-020-03179-9

Jalali, A., Lonsdale, H., Do, N., Peck, J., Gupta, M., Kutty, S., Ghazarian, S., Jacobs, J., Rehman, M., & Ahumada, L. (2020). Deep learning for improved risk prediction in surgical outcomes. Scientific Reports. https://doi.org/10.1038/s41598-020-62971-3

Zeng, X., An, J., Lin, R., Dong, C., Zheng, A., Li, J., Duan, H., Shu, Q., & Li, H. (2019). Prediction of complications after paediatric cardiac surgery.. European Journal of Cardio-Thoracic Surgery. https://doi.org/10.1093/ejcts/ezz198

Ghavidel, A., Pazos, P., Suarez, R. D. A., & Atashi, A. (2024). Predicting the need for cardiovascular surgery: a comparative study of machine learning models. Journal of Electronics Electromedical Engineering and Medical Informatics. https://doi.org/10.35882/jeeemi.v6i2.359

Petrosyan, Y., Mesana, T., & Sun, L. Y. (2022). Prediction of acute kidney injury risk after cardiac surgery: using a hybrid machine learning algorithm. BMC Medical Informatics and Decision Making. https://doi.org/10.1186/s12911-022-01859-w

Dong, T., Sinha, S., Zhai, B., Fudulu, D., Chan, J., Narayan, P., Judge, A., Caputo, M., Dimagli, A., Benedetto, U., & Angelini, G. (2023). Cardiac surgery risk prediction using ensemble machine learning to incorporate legacy risk scores: a benchmarking study. Digital Health. https://doi.org/10.1177/20552076231187605

Allyn, J., Allou, N., Augustin, P., Philip, I., Martinet, O., Belghiti, M., Provenchère, S., Montravers, P., & Ferdynus, C. (2017). A comparison of a machine learning model with euroscore ii in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0169772

Du, X., Wang, H., Wang, S., He, Y., Zheng, J., Zhang, H., Hao, Z., Chen, Y., Xu, Z., & Lu, Z. (2022). Machine learning model for predicting risk of in-hospital mortality after surgery in congenital heart disease patients. Reviews in cardiovascular medicine. https://doi.org/10.31083/j.rcm2311376

Yu, Y., Peng, C., Zhang, Z., Shen, K., Zhang, Y., Xiao, J., Xi, W., Wang, P., Jin, Z., & Wang, Z. (2021). Machine learning methods for predicting long-term mortality in patients after cardiac surgery. Frontiers in Cardiovascular Medicine. https://doi.org/10.21203/rs.3.rs-1140660/v1

Parise, O., Parise, G., Vaidyanathan, A., Occhipinti, M., Gharaviri, A., Tetta, C., Bidar, E., Maesen, B., Maessen, J., Meir, M. L., & Gelsomino, S. (2023). Machine learning to identify patients at risk of developing new-onset atrial fibrillation after coronary artery bypass. Journal of Cardiovascular Development and Disease. https://doi.org/10.3390/jcdd10020082

Zhang, N., Fan, K., Ji, H., Ma, X., Wu, J., Huang, Y., Wang, X., Gui, R., Chen, B., Zhang, H., Zhang, Z., Zhang, X., Gong, Z., & Wang, Y. (2023). Identification of risk factors for infection after mitral valve surgery through machine learning approaches. Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2023.1050698

Wang, Z., Zhe, S., Zimmerman, J., Morrisey, C., Tonna, J. E., Sharma, V., & Metcalf, R. (2022). Development and validation of a machine learning method to predict intraoperative red blood cell transfusions in cardiothoracic surgery. Scientific Reports. https://doi.org/10.1038/s41598-022-05445-y

Sinha, S., Dong, T., Dimagli, A., Vohra, H., Holmes, C., Benedetto, U., & Angelini, G. (2023). Comparison of machine learning techniques in prediction of mortality following cardiac surgery: analysis of over 220 000 patients from a large national database. European Journal of Cardio-Thoracic Surgery. https://doi.org/10.1093/ejcts/ezad183

Arafat, A. A., Alamro, S., AlRasheed, M. M., Adam, A. I., Ismail, H. H., Pragliola, C., & Albabtain, M. A. (2023). Applying machine learning methods to predict operative mortality after tricuspid valve surgery. The Cardiothoracic Surgeon. https://doi.org/10.1186/s43057-023-00107-9

Mohammadi, I., Firouzabadi, S. R., Hosseinpour, M., Akhlaghpasand, M., Hajikarimloo, B., Zeraatian-Nejad, S., & Nia, P. S. (2024). Using artificial intelligence to predict post-operative outcomes in congenital heart surgeries: a systematic review. BMC Cardiovascular Disorders. https://doi.org/10.1186/s12872-024-04336-6

Dong, T., Sinha, S., Zhai, B., Fudulu, D., Chan, J., Narayan, P., Judge, A., Caputo, M., Dimagli, A., Benedetto, U., & Angelini, G. D. (2024). Performance drift in machine learning models for cardiac surgery risk prediction: retrospective analysis. JMIRx Med. https://doi.org/10.2196/45973

Zeng, X., Hu, Y., Shu, L., Li, J., Duan, H., Shu, Q., & Li, H. (2021). Explainable machine-learning predictions for complications after pediatric congenital heart surgery. Scientific Reports. https://doi.org/10.1038/s41598-021-96721-w

Mauricio, D., Cárdenas-Grandez, J., Godoy, G. V. U., Mallma, M. J. R., Maculan, N., & Mascaro, P. (2024). Maximizing survival in pediatric congenital cardiac surgery using machine learning, explainability, and simulation techniques. Journal of Clinical Medicine. https://doi.org/10.3390/jcm13226872

Gong, J. J., Sundt, T., Rawn, J., & Guttag, J. (2015). Instance weighting for patient-specific risk stratification models. Knowledge Discovery and Data Mining. https://doi.org/10.1145/2783258.2783397

Montisci, A., Palmieri, V., Vietri, M., Sala, S., Maiello, C., Donatelli, F., & Napoli, C. (2022). Big data in cardiac surgery: real world and perspectives. Journal of Cardiothoracic Surgery. https://doi.org/10.1186/s13019-022-02025-z

Li, Q., Lv, H., Chen, Y., Shen, J., Shi, J., & Zhou, C. (2023). Development and validation of a machine learning predictive model for cardiac surgery-associated acute kidney injury. Journal of Clinical Medicine. https://doi.org/10.3390/jcm12031166

Leivaditis, V., Beltsios, E., Papatriantafyllou, A., Grapatsas, K., Mulita, F., Kontodimopoulos, N., Baikoussis, N., Tchabashvili, L., Tasios, K., Maroulis, I., Dahm, M., & Koletsis, E. (2025). Artificial intelligence in cardiac surgery: transforming outcomes and shaping the future. Clinics and Practice. https://doi.org/10.3390/clinpract15010017

Rellum, S. R., Schuurmans, J., Ven, W. H. V. D., Eberl, S., Driessen, A., Vlaar, A., & Veelo, D. (2021). Machine learning methods for perioperative anesthetic management in cardiac surgery patients: a scoping review. Journal of Thoracic Disease. https://doi.org/10.21037/jtd-21-765

Khalsa, R. K., Khashkhusha, A., Zaidi, S., Harky, A., & Bashir, M. (2021). Artificial intelligence and cardiac surgery during covid‐19 era. Journal of cardiac surgery. https://doi.org/10.1111/jocs.15417

Júnior, J. C., Binuesa, F., Caneo, L., Turquetto, A. L., Arita, E. T., Barbosa, A. C., Fernandes, A. M. D. S., Trindade, E., Jatene, F., Dossou, P., & Jatene, M. (2020). Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: a pilot study. PLoS ONE. https://doi.org/10.1371/journal.pone.0238199

Sulague, R. M., Beloy, F. J., Medina, J. R., Mortalla, E. D., Cartojano, T. D., Macapagal, S., & Kpodonu, J. (2023). Artificial intelligence in cardiac surgery: a systematic review. medRxiv. https://doi.org/10.1101/2023.10.18.23297244

Downloads

Published

2025-04-25

How to Cite

1.
Kumar S, Rajak N, Gour S, Salitra D, Sharma R, Namdev S. Machine Learning in Cardiac Surgery: A Systematic Review of ML Techniques, Applications, and the Road Ahead. J Neonatal Surg [Internet]. 2025Apr.25 [cited 2025Jul.10];14(17S):729-36. Available from: https://jneonatalsurg.com/index.php/jns/article/view/4651

Most read articles by the same author(s)