Machine Learning in Cardiac Surgery: A Systematic Review of ML Techniques, Applications, and the Road Ahead
Keywords:
Ursodeoxycholic acid, alcoholic liver disease, hypertension, Spironolactone, Rifaximin, human albuminAbstract
N\A
Downloads
Metrics
References
Ostberg, N. P., Zafar, M. A., & Elefteriades, J. (2021). Machine learning: principles and applications for thoracic surgery.. European Journal of Cardio-Thoracic Surgery. https://doi.org/10.1093/ejcts/ezab095
Tseng, P., Chen, Y., Wang, C., Chiu, K., Peng, Y., Hsu, S., Chen, K., Yang, C., & Lee, O. K. (2020). Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Critical Care. https://doi.org/10.1186/s13054-020-03179-9
Jalali, A., Lonsdale, H., Do, N., Peck, J., Gupta, M., Kutty, S., Ghazarian, S., Jacobs, J., Rehman, M., & Ahumada, L. (2020). Deep learning for improved risk prediction in surgical outcomes. Scientific Reports. https://doi.org/10.1038/s41598-020-62971-3
Zeng, X., An, J., Lin, R., Dong, C., Zheng, A., Li, J., Duan, H., Shu, Q., & Li, H. (2019). Prediction of complications after paediatric cardiac surgery.. European Journal of Cardio-Thoracic Surgery. https://doi.org/10.1093/ejcts/ezz198
Ghavidel, A., Pazos, P., Suarez, R. D. A., & Atashi, A. (2024). Predicting the need for cardiovascular surgery: a comparative study of machine learning models. Journal of Electronics Electromedical Engineering and Medical Informatics. https://doi.org/10.35882/jeeemi.v6i2.359
Petrosyan, Y., Mesana, T., & Sun, L. Y. (2022). Prediction of acute kidney injury risk after cardiac surgery: using a hybrid machine learning algorithm. BMC Medical Informatics and Decision Making. https://doi.org/10.1186/s12911-022-01859-w
Dong, T., Sinha, S., Zhai, B., Fudulu, D., Chan, J., Narayan, P., Judge, A., Caputo, M., Dimagli, A., Benedetto, U., & Angelini, G. (2023). Cardiac surgery risk prediction using ensemble machine learning to incorporate legacy risk scores: a benchmarking study. Digital Health. https://doi.org/10.1177/20552076231187605
Allyn, J., Allou, N., Augustin, P., Philip, I., Martinet, O., Belghiti, M., Provenchère, S., Montravers, P., & Ferdynus, C. (2017). A comparison of a machine learning model with euroscore ii in predicting mortality after elective cardiac surgery: a decision curve analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0169772
Du, X., Wang, H., Wang, S., He, Y., Zheng, J., Zhang, H., Hao, Z., Chen, Y., Xu, Z., & Lu, Z. (2022). Machine learning model for predicting risk of in-hospital mortality after surgery in congenital heart disease patients. Reviews in cardiovascular medicine. https://doi.org/10.31083/j.rcm2311376
Yu, Y., Peng, C., Zhang, Z., Shen, K., Zhang, Y., Xiao, J., Xi, W., Wang, P., Jin, Z., & Wang, Z. (2021). Machine learning methods for predicting long-term mortality in patients after cardiac surgery. Frontiers in Cardiovascular Medicine. https://doi.org/10.21203/rs.3.rs-1140660/v1
Parise, O., Parise, G., Vaidyanathan, A., Occhipinti, M., Gharaviri, A., Tetta, C., Bidar, E., Maesen, B., Maessen, J., Meir, M. L., & Gelsomino, S. (2023). Machine learning to identify patients at risk of developing new-onset atrial fibrillation after coronary artery bypass. Journal of Cardiovascular Development and Disease. https://doi.org/10.3390/jcdd10020082
Zhang, N., Fan, K., Ji, H., Ma, X., Wu, J., Huang, Y., Wang, X., Gui, R., Chen, B., Zhang, H., Zhang, Z., Zhang, X., Gong, Z., & Wang, Y. (2023). Identification of risk factors for infection after mitral valve surgery through machine learning approaches. Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2023.1050698
Wang, Z., Zhe, S., Zimmerman, J., Morrisey, C., Tonna, J. E., Sharma, V., & Metcalf, R. (2022). Development and validation of a machine learning method to predict intraoperative red blood cell transfusions in cardiothoracic surgery. Scientific Reports. https://doi.org/10.1038/s41598-022-05445-y
Sinha, S., Dong, T., Dimagli, A., Vohra, H., Holmes, C., Benedetto, U., & Angelini, G. (2023). Comparison of machine learning techniques in prediction of mortality following cardiac surgery: analysis of over 220 000 patients from a large national database. European Journal of Cardio-Thoracic Surgery. https://doi.org/10.1093/ejcts/ezad183
Arafat, A. A., Alamro, S., AlRasheed, M. M., Adam, A. I., Ismail, H. H., Pragliola, C., & Albabtain, M. A. (2023). Applying machine learning methods to predict operative mortality after tricuspid valve surgery. The Cardiothoracic Surgeon. https://doi.org/10.1186/s43057-023-00107-9
Mohammadi, I., Firouzabadi, S. R., Hosseinpour, M., Akhlaghpasand, M., Hajikarimloo, B., Zeraatian-Nejad, S., & Nia, P. S. (2024). Using artificial intelligence to predict post-operative outcomes in congenital heart surgeries: a systematic review. BMC Cardiovascular Disorders. https://doi.org/10.1186/s12872-024-04336-6
Dong, T., Sinha, S., Zhai, B., Fudulu, D., Chan, J., Narayan, P., Judge, A., Caputo, M., Dimagli, A., Benedetto, U., & Angelini, G. D. (2024). Performance drift in machine learning models for cardiac surgery risk prediction: retrospective analysis. JMIRx Med. https://doi.org/10.2196/45973
Zeng, X., Hu, Y., Shu, L., Li, J., Duan, H., Shu, Q., & Li, H. (2021). Explainable machine-learning predictions for complications after pediatric congenital heart surgery. Scientific Reports. https://doi.org/10.1038/s41598-021-96721-w
Mauricio, D., Cárdenas-Grandez, J., Godoy, G. V. U., Mallma, M. J. R., Maculan, N., & Mascaro, P. (2024). Maximizing survival in pediatric congenital cardiac surgery using machine learning, explainability, and simulation techniques. Journal of Clinical Medicine. https://doi.org/10.3390/jcm13226872
Gong, J. J., Sundt, T., Rawn, J., & Guttag, J. (2015). Instance weighting for patient-specific risk stratification models. Knowledge Discovery and Data Mining. https://doi.org/10.1145/2783258.2783397
Montisci, A., Palmieri, V., Vietri, M., Sala, S., Maiello, C., Donatelli, F., & Napoli, C. (2022). Big data in cardiac surgery: real world and perspectives. Journal of Cardiothoracic Surgery. https://doi.org/10.1186/s13019-022-02025-z
Li, Q., Lv, H., Chen, Y., Shen, J., Shi, J., & Zhou, C. (2023). Development and validation of a machine learning predictive model for cardiac surgery-associated acute kidney injury. Journal of Clinical Medicine. https://doi.org/10.3390/jcm12031166
Leivaditis, V., Beltsios, E., Papatriantafyllou, A., Grapatsas, K., Mulita, F., Kontodimopoulos, N., Baikoussis, N., Tchabashvili, L., Tasios, K., Maroulis, I., Dahm, M., & Koletsis, E. (2025). Artificial intelligence in cardiac surgery: transforming outcomes and shaping the future. Clinics and Practice. https://doi.org/10.3390/clinpract15010017
Rellum, S. R., Schuurmans, J., Ven, W. H. V. D., Eberl, S., Driessen, A., Vlaar, A., & Veelo, D. (2021). Machine learning methods for perioperative anesthetic management in cardiac surgery patients: a scoping review. Journal of Thoracic Disease. https://doi.org/10.21037/jtd-21-765
Khalsa, R. K., Khashkhusha, A., Zaidi, S., Harky, A., & Bashir, M. (2021). Artificial intelligence and cardiac surgery during covid‐19 era. Journal of cardiac surgery. https://doi.org/10.1111/jocs.15417
Júnior, J. C., Binuesa, F., Caneo, L., Turquetto, A. L., Arita, E. T., Barbosa, A. C., Fernandes, A. M. D. S., Trindade, E., Jatene, F., Dossou, P., & Jatene, M. (2020). Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: a pilot study. PLoS ONE. https://doi.org/10.1371/journal.pone.0238199
Sulague, R. M., Beloy, F. J., Medina, J. R., Mortalla, E. D., Cartojano, T. D., Macapagal, S., & Kpodonu, J. (2023). Artificial intelligence in cardiac surgery: a systematic review. medRxiv. https://doi.org/10.1101/2023.10.18.23297244
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.