Diagnostic Potential of Biosensors and Biomarkers in Pancreatic Cancer: A Comprehensive Review

Authors

  • Jyoti Rani
  • Saravjeet Singh
  • Surender Kumar Sehrawat
  • Nitesh Singh

DOI:

https://doi.org/10.52783/jns.v14.3534

Keywords:

Biomarker, Biosensor, Imaging techniques, Diagnosis, Cancer detection

Abstract

Pancreatic cancer (PC) being the primary cause of cancer-related fatalities across the globe is a hard and aggressive type of cancer that is typically diagnosed in the patients at the last phase. Currently, the average chance of surviving pancreatic cancer five years after detection is just 6 percent which highlights the need for early diagnosis and monitoring. Pancreatic cancer is traditionally diagnosed through imaging techniques such as CT scans, PET scans, magnetic resonance imaging, ultrasound, and biopsy. To get precise and understandable results, these methods are prolonged, expensive, and need the knowledge of experts in the field. Biosensors are emerging at a rapid pace that are used in the diagnosis of pancreatic cancer owing to their easy accessibility, cost-effectiveness accompanied with a high degree of precision. The present review investigated various biomarkers and biosensors along with their benefits and shortcomings which are extensively used in cancer detection. The study found that CA 19-9 biomarkers are best suited for diagnosis of pancreatic cancer due to its better performance and sensitivity. This review primarily helps biomedical engineers, doctors, and others researchers working in same domain in identification of potential research gaps and selection of most suitable biosensors for diagnosing pancreatic cancer

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA. Cancer J. Clin., vol. 69, no. 1, pp. 7–34, 2019, doi: 10.3322/caac.21551.

M. Capula, G. Mantini, N. Funel, and E. Giovannetti, “New avenues in pancreatic cancer: exploiting microRNAs as predictive biomarkers and new approaches to target aberrant metabolism,” Expert Rev. Clin. Pharmacol., vol. 12, no. 12, pp. 1081–1090, 2019, doi: 10.1080/17512433.2019.1693256.

Y. Liu, C. Guo, F. Li, and L. Wu, “LncRNA LOXL1-AS1/miR-28-5p/SEMA7A axis facilitates pancreatic cancer progression,” Cell Biochem. Funct., vol. 38, no. 1, pp. 58–65, 2020, doi: 10.1002/cbf.3449.

T. Du et al., “The diagnosis and staging of pancreatic cancer: A comparison of endoscopic ultrasound and computed tomography with pancreas protocol,” Am. J. Surg., vol. 215, no. 3, pp. 472–475, 2018, doi: 10.1016/j.amjsurg.2017.11.021.

N. Khalaf, H. B. El-Serag, H. R. Abrams, and A. P. Thrift, “Burden of Pancreatic Cancer: From Epidemiology to Practice,” Clin. Gastroenterol. Hepatol., vol. 19, no. 5, pp. 876–884, 2021, doi: 10.1016/j.cgh.2020.02.054.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 68, no. 6, pp. 394–424, 2018, doi: 10.3322/caac.21492.

K. Abe, M. Kitago, Y. Kitagawa, and A. Hirasawa, “Hereditary pancreatic cancer,” Int. J. Clin. Oncol., vol. 26, no. 10, pp. 1784–1792, 2021, doi: 10.1007/s10147-021-02015-6.

A. P. Klein et al., “Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds,” Cancer Res., vol. 64, no. 7, pp. 2634–2638, 2004, doi: 10.1158/0008-5472.CAN-03-3823.

S. J. Rulyak, A. B. Lowenfels, P. Maisonneuve, and T. A. Brentnall, “Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds,” Gastroenterology, vol. 124, no. 5, pp. 1292–1299, 2003, doi: 10.1016/S0016-5085(03)00272-5.

T. Conroy et al., “Current standards and new innovative approaches for treatment of pancreatic cancer,” Eur. J. Cancer, vol. 57, pp. 10–22, 2016, doi: 10.1016/j.ejca.2015.12.026.

L. Qian et al., “Biosensors for early diagnosis of pancreatic cancer: a review,” Transl. Res., vol. 213, pp. 67–89, 2019, doi: 10.1016/j.trsl.2019.08.002.

K. Foley, V. Kim, E. Jaffee, and L. Zheng, “Current progress in immunotherapy for pancreatic cancer,” Cancer Lett., vol. 381, no. 1, pp. 244–251, 2016, doi: 10.1016/j.canlet.2015.12.020.

R. Freelove and A. D. Walling, “Pancreatic cancer: Diagnosis and management,” Am. Fam. Physician, vol. 73, no. 3, pp. 485–492, 2006.

J. A. Pietryga and D. E. Morgan, “Imaging preoperatively for pancreatic adenocarcinoma,” J. Gastrointest. Oncol., vol. 6, no. 4, pp. 343–357, 2015, doi: 10.3978/j.issn.2078-6891.2015.024.

M. C. Chang et al., “Pancreatic cancer screening in different risk individuals with family history of pancreatic cancer-a prospective cohort study in Taiwan,” Am. J. Cancer Res., vol. 7, no. 2, pp. 357–369, 2017.

K. Takaori et al., “International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer,” Pancreatology, vol. 16, no. 1, pp. 14–27, 2016, doi: 10.1016/j.pan.2015.10.013.

J. C. Gui, W. L. Yan, and X. D. Liu, “CA19-9 and CA242 as tumor markers for the diagnosis of pancreatic cancer: a meta-analysis,” Clin. Exp. Med., vol. 14, no. 2, pp. 225–233, 2014, doi: 10.1007/s10238-013-0234-9.

F. Ishige et al., “MIR1246 in body fluids as a biomarker for pancreatic cancer,” Sci. Rep., vol. 10, no. 1, pp. 2–8, 2020, doi: 10.1038/s41598-020-65695-6.

J. Y. Yang, Y. W. Sun, D. J. Liu, J. F. Zhang, J. Li, and R. Hua, “MicroRNAs in stool samples as potential screening biomarkers for pancreatic ductal adenocarcinoma cancer,” Am. J. Cancer Res., vol. 4, no. 6, pp. 663–673, 2014.

G. Ibáñez-Redín et al., “Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9,” Mater. Sci. Eng. C, vol. 99, no. February, pp. 1502–1508, 2019, doi: 10.1016/j.msec.2019.02.065.

V. Gajdosova, L. Lorencova, P. Kasak, and J. Tkac, “Electrochemical nanobiosensors for detection of breast cancer biomarkers,” Sensors (Switzerland), vol. 20, no. 14, pp. 1–37, 2020, doi: 10.3390/s20144022.

A. P. Klein, “Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors,” Nat. Rev. Gastroenterol. Hepatol., vol. 18, no. 7, pp. 493–502, 2021, doi: 10.1038/s41575-021-00457-x.

M. R. Young et al., “Validation of Biomarkers for Early Detection of Pancreatic Cancer: Summary of the Alliance of Pancreatic Cancer Consortia for Biomarkers for Early Detection Workshop,” Pancreas, vol. 47, no. 2, pp. 135–141, 2018, doi: 10.1097/MPA.0000000000000973.

G. Ibáñez-Redín et al., “Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9,” Mater. Sci. Eng. C, vol. 99, no. September 2018, pp. 1502–1508, 2019, doi: 10.1016/j.msec.2019.02.065.

D. Moschovis, G. Bamias, and I. Delladetsima, “Mucins in Neoplasms of Pancreas, Ampulla of Vater and Biliary System,” World J. Gastrointest. Oncol., vol. 8, no. 10, pp. 725–734, 2016, doi: 10.4251/wjgo.v8.i10.725.

H. Cao, X. Fang, H. Li, H. Li, and J. Kong, “Ultrasensitive detection of mucin 1 biomarker by immuno-loop-mediated isothermal amplification,” Talanta, vol. 164, no. July 2016, pp. 588–592, 2017, doi: 10.1016/j.talanta.2016.07.018.

S. Yokoyama et al., “Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas,” Oncotarget, vol. 7, no. 27, pp. 42553–42565, 2016, doi: 10.18632/oncotarget.9924.

N. Ideno, Y. Mori, M. Nakamura, and T. Ohtsuka, “Early detection of pancreatic cancer: Role of biomarkers in pancreatic fluid samples,” Diagnostics, vol. 10, no. 12, pp. 1–9, 2020, doi: 10.3390/diagnostics10121056.

A. L. Sun and Q. A. Qi, “Silver-functionalized g-C3N4 nanohybrids as signal-transduction tags for electrochemical immunoassay of human carbohydrate antigen 19-9,” Analyst, vol. 141, no. 14, pp. 4366–4372, 2016, doi: 10.1039/c6an00696e.

P. Liu, L. Kong, H. Jin, Y. Wu, X. Tan, and B. Song, “Differential secretome of pancreatic cancer cells in serum-containing conditioned medium reveals CCT8 as a new biomarker of pancreatic cancer invasion and metastasis,” Cancer Cell Int., vol. 19, no. 1, pp. 1–10, 2019, doi: 10.1186/s12935-019-0980-1.

D. M. Simeone et al., “CEACAM1, a novel serum biomarker for pancreatic cancer,” Pancreas, vol. 34, no. 4, pp. 436–443, 2007, doi: 10.1097/MPA.0b013e3180333ae3.

E. Miyoshi and Y. Kamada, “Application of glycoscience to the early detection of pancreatic cancer,” Cancer Sci., vol. 107, no. 10, pp. 1357–1362, 2016, doi: 10.1111/cas.13011.

K. Miyabayashi, H. Ijichi, and M. Fujishiro, “The Role of the Microbiome in Pancreatic Cancer,” Cancers (Basel)., vol. 14, no. 18, pp. 777–789, 2022, doi: 10.3390/cancers14184479.

Y. He et al., “Current state of circulating microRNAs as cancer biomarkers,” Clin. Chem., vol. 61, no. 9, pp. 1138–1155, 2015, doi: 10.1373/clinchem.2015.241190.

Y. Zhang, J. Yang, H. Li, Y. Wu, H. Zhang, and W. Chen, “Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: A meta-analysis,” Int. J. Clin. Exp. Med., vol. 8, no. 7, pp. 11683–11691, 2015.

H. Sakahara et al., “Serum CA 19‐9 concentrations and computed tomography findings in patients with pancreatic carcinoma,” Cancer, vol. 57, no. 7, pp. 1324–1326, 1986, doi: 10.1002/1097-0142(19860401)57:7<1324::AID-CNCR2820570712>3.0.CO;2-A.

A. Nakaizumi et al., “Effectiveness of the cytologic examination of pure pancreatic juice in the diagnosis of early neoplasia of the pancreas,” Cancer, vol. 76, no. 5, pp. 750–757, 1995, doi: 10.1002/1097-0142(19950901)76:5<750::AID-CNCR2820760507>3.0.CO;2-#.

K. Matsumoto et al., “Clinical Impact of the KL-6 Concentration of Pancreatic Juice for Diagnosing Pancreatic Masses,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/528304.

I. A. Bandara, M. Baltatzis, S. Sanyal, and A. K. Siriwardena, “Evaluation of tumor M2-pyruvate kinase (Tumor M2-PK) as a biomarker for pancreatic cancer,” World J. Surg. Oncol., vol. 16, no. 1, pp. 1–6, 2018, doi: 10.1186/s12957-018-1360-3.

M. T. Joergensen, N. H. H. Heegaard, and O. B. Schaffalitzky De Muckadell, “Comparison of plasma Tu-M2-PK and CA19-9 in pancreatic cancer,” Pancreas, vol. 39, no. 2, pp. 243–247, 2010, doi: 10.1097/MPA.0b013e3181bae8ab.

K. S. Goonetilleke, J. M. Mason, P. Siriwardana, N. K. King, M. W. France, and A. K. Siriwardena, “Diagnostic and prognostic value of plasma tumor M2 pyruvate kinase in periampullary cancer: Evidence for a novel biological marker of adverse prognosis,” Pancreas, vol. 34, no. 3, pp. 318–324, 2007, doi: 10.1097/MPA.0b013e31802ee9c7.

T. Kamisawa, Y. Zen, S. Pillai, and J. H. Stone, “IgG4-related disease,” Lancet, vol. 385, no. 9976, pp. 1460–1471, 2015, doi: 10.1016/S0140-6736(14)60720-0.

P. A. Hart, Y. Zen, and S. T. Chari, “Recent Advances in Autoimmune Pancreatitis,” Gastroenterology, vol. 149, no. 1, pp. 39–51, 2015, doi: 10.1053/j.gastro.2015.03.010.

T. Ngwa, R. Law, P. Hart, T. C. Smyrk, and S. T. Chari, “Serum IgG4 elevation in pancreatic cancer,” Pancreas, vol. 44, no. 4, pp. 557–560, 2015, doi: 10.1097/MPA.0000000000000297.

Y. Y. Yako, D. Kruger, M. Smith, and M. Brand, “Cytokines as biomarkers of pancreatic ductal adenocarcinoma: A systematic review,” PLoS One, vol. 11, no. 5, pp. 1–33, 2016, doi: 10.1371/journal.pone.0154016.

H. Özkan, S. Demirbaş, M. Ibiş, E. Akbal, and S. Köklü, “Diagnostic validity of serum macrophage inhibitor cytokine and tissue polypeptide-specific antigen in pancreatobiliary diseases,” Pancreatology, vol. 11, no. 3, pp. 295–300, 2011, doi: 10.1159/000328963.

S. Kaur et al., “Potentials of Plasma NGAL and MIC-1 as Biomarker(s) in the Diagnosis of Lethal Pancreatic Cancer,” PLoS One, vol. 8, no. 2, 2013, doi: 10.1371/journal.pone.0055171.

M. J. Baine et al., “Differential gene expression analysis of peripheral blood mononuclear cells reveals novel test for early detection of pancreatic cancer,” Cancer Biomarkers, vol. 11, no. 1, pp. 1–14, 2011, doi: 10.3233/CBM-2012-0260.

Y. Yang, S. Yan, H. Tian, and Y. Bao, “Macrophage inhibitory cytokine-1 versus carbohydrate antigen 19-9 as a biomarker for diagnosis of pancreatic cancer,” Med. (United States), vol. 97, no. 9, 2018, doi: 10.1097/MD.0000000000009994.

S. H. Loosen, U. P. Neumann, C. Trautwein, C. Roderburg, and T. Luedde, “Current and future biomarkers for pancreatic adenocarcinoma,” Tumor Biol., vol. 39, no. 6, 2017, doi: 10.1177/1010428317692231.

J. F. Peng, Y. Y. Zhuang, F. T. Huang, and S. N. Zhang, “Noncoding RNAs and pancreatic cancer,” World J. Gastroenterol., vol. 22, no. 2, pp. 801–814, 2016, doi: 10.3748/wjg.v22.i2.801.

T. Kishikawa, M. Otsuka, M. Ohno, T. Yoshikawa, A. Takata, and K. Koike, “Circulating RNAs as new biomarkers for detecting pancreatic cancer,” World J. Gastroenterol., vol. 21, no. 28, pp. 8527–8540, 2015, doi: 10.3748/wjg.v21.i28.8527.

J. Liu et al., “Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer,” Int. J. Cancer, vol. 131, no. 3, pp. 683–691, 2012, doi: 10.1002/ijc.26422.

A. S. Bauer et al., “Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue.,” PLoS One, vol. 7, no. 4, pp. 3–8, 2012, doi: 10.1371/journal.pone.0034151.

A. Gharibi, Y. Adamian, and J. A. Kelber, “Cellular and molecular aspects of pancreatic cancer,” Acta Histochem., vol. 118, no. 3, pp. 305–316, 2016, doi: 10.1016/j.acthis.2016.01.009.

G. P. Gupta and J. Massagué, “Cancer Metastasis: Building a Framework,” Cell, vol. 127, no. 4, pp. 679–695, 2006, doi: 10.1016/j.cell.2006.11.001.

[A. R. Lewis, J. W. Valle, and M. G. McNamara, “Pancreatic cancer: Are ‘liquid biopsies’ ready for prime-time?,” World J. Gastroenterol., vol. 22, no. 32, pp. 7175–7185, 2016, doi: 10.3748/wjg.v22.i32.7175.

M. Herreros-Villanueva and L. Bujanda, “Non-invasive biomarkers in pancreatic cancer diagnosis: What we need versus what we have,” Ann. Transl. Med., vol. 4, no. 7, pp. 1–8, 2016, doi: 10.21037/atm.2016.03.44.

F. Riva et al., “Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer,” Mol. Oncol., vol. 10, no. 3, pp. 481–493, 2016, doi: 10.1016/j.molonc.2016.01.006.

A. D. Rhim et al., “EMT and dissemination precede pancreatic tumor formation,” Cell, vol. 148, no. 1–2, pp. 349–361, 2012, doi: 10.1016/j.cell.2011.11.025.

I. Iwanicki-Caron et al., “Usefulness of circulating tumor cell detection in pancreatic adenocarcinoma diagnosis,” Am. J. Gastroenterol., vol. 108, no. 1, pp. 152–155, 2013, doi: 10.1038/ajg.2012.367.

B. Kulemann et al., “Circulating tumor cells found in patients with localized and advanced pancreatic cancer,” Pancreas, vol. 44, no. 4, pp. 547–550, 2015, doi: 10.1097/MPA.0000000000000324.

J. S. Ankeny et al., “Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer,” Br. J. Cancer, vol. 114, no. 12, pp. 1367–1375, 2016, doi: 10.1038/bjc.2016.121.

T. Imamura et al., “Liquid biopsy in patients with pancreatic cancer: Circulating tumor cells and cell-free nucleic acids,” World J. Gastroenterol., vol. 22, no. 25, pp. 5627–5641, 2016, doi: 10.3748/wjg.v22.i25.5627.

X. Zhang, S. Shi, B. Zhang, Q. Ni, X. Yu, and J. Xu, “Circulating biomarkers for early diagnosis of pancreatic cancer: facts and hopes.,” Am. J. Cancer Res., vol. 8, no. 3, pp. 332–353, 2018, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/29636993%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5883088

B. Zhou et al., “Early detection of pancreatic cancer: Where are we now and where are we going?,” Int. J. Cancer, vol. 141, no. 2, pp. 231–241, 2017, doi: 10.1002/ijc.30670.

E. Takai and S. Yachida, “Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer,” World J. Gastroenterol., vol. 22, no. 38, pp. 8480–8488, 2016, doi: 10.3748/wjg.v22.i38.8480.

M. (US); Frank DIEHL, Schortens (DE): Luis Diaz, Eldridge, M. (US); K. Kenneth W. Kinzler, Baltimore, MD (US); Bert Vogelstein, Baltimore, and M. (US Schmidt, Nashville, “Circulating Mutant Dnato Assess Tumor Dynamics,” vol. 1, no. 19, 2010.

A. Yanagisawa et al., “Frequent c-Ki-ras Oncogene Activation in Mucous Cell Hyperplasias of Pancreas Suffering from Chronic Inflammation,” Cancer Res., vol. 53, no. 5, pp. 953–956, 1993.

Y. Gao, Y. Zhu, and Z. Yuan, “Circulating tumor cells and circulating tumor DNA provide new insights into pancreatic cancer,” Int. J. Med. Sci., vol. 13, no. 12, pp. 902–913, 2016, doi: 10.7150/ijms.16734.

M. Sausen et al., “Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients,” Nat. Commun., vol. 6, pp. 1–6, 2015, doi: 10.1038/ncomms8686.

F. N. Al-Shaheri et al., “Blood biomarkers for differential diagnosis and early detection of pancreatic cancer,” Cancer Treat. Rev., vol. 96, 2021, doi: 10.1016/j.ctrv.2021.102193.

R. S. O’Neill and A. Stoita, “Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket?,” World J. Gastroenterol., vol. 27, no. 26, pp. 4045–4087, 2021, doi: 10.3748/wjg.v27.i26.4045.

C. Lau et al., “Role of pancreatic cancer-derived exosomes in salivary biomarker development,” J. Biol. Chem., vol. 288, no. 37, pp. 2688–2697, 2013, doi: 10.1074/jbc.M113.452458.

M. Humeau et al., “Salivary microRNA in pancreatic cancer patients,” PLoS One, vol. 10, no. 6, pp. 1–13, 2015, doi: 10.1371/journal.pone.0130996.

T. P. Radon et al., “Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma,” Clin. Cancer Res., vol. 21, no. 15, pp. 3512–3521, 2015, doi: 10.1158/1078-0432.CCR-14-2467.

S. Debernardi et al., “Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma,” Am. J. Cancer Res., vol. 5, no. 11, pp. 3455–3466, 2015.

Y. Huo et al., “High expression of DDR1 is associated with the poor prognosis in Chinese patients with pancreatic ductal adenocarcinoma,” J. Exp. Clin. Cancer Res., vol. 34, no. 1, pp. 1–7, 2015, doi: 10.1186/s13046-015-0202-1.

J. Wang et al., “Circulating microRNAs in pancreatic juice as candidate biomarkers of pancreatic cancer,” J. Cancer, vol. 5, no. 8, pp. 696–705, 2014, doi: 10.7150/jca.10094.

M. Arnold et al., “Current and future burden of breast cancer: Global statistics for 2020 and 2040,” Breast, vol. 66, no. September, pp. 15–23, 2022, doi: 10.1016/j.breast.2022.08.010.

D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: Recommended definitions and classification,” Anal. Lett., vol. 34, no. 5, pp. 635–659, 2001, doi: 10.1081/AL-100103209.

E. Burcu Aydın, M. Aydın, and M. Kemal Sezgintürk, “Biosensors and the evaluation of food contaminant biosensors in terms of their performance criteria,” Int. J. Environ. Anal. Chem., vol. 100, no. 5, pp. 602–622, 2020, doi: 10.1080/03067319.2019.1672675.

M. Torequl Islam, “Biosensors, the Emerging Tools in the Identification and Detection of Cancer Markers,” J. Gynecol. Womens Heal., vol. 5, no. 4, 2017, doi: 10.19080/jgwh.2017.05.555667.

F. Piroozmand, F. Mohammadipanah, and F. Faridbod, “Emerging biosensors in detection of natural products,” Synth. Syst. Biotechnol., vol. 5, no. 4, pp. 293–303, 2020, doi: 10.1016/j.synbio.2020.08.002.

J. Cornman-Homonoff, D. J. Holzwanger, K. S. Lee, D. C. Madoff, and D. Li, “Celiac Plexus Block and Neurolysis in the Management of Chronic Upper Abdominal Pain,” Semin. Intervent. Radiol., vol. 34, no. 4, pp. 376–386, 2017, doi: 10.1055/s-0037-1608861.

Y. Ahmadi and K. H. Kim, “Functionalization and customization of polyurethanes for biosensing applications: A state-of-the-art review,” TrAC - Trends Anal. Chem., vol. 126, p. 115881, 2020, doi: 10.1016/j.trac.2020.115881.

H. Ye et al., “An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers,” ACS Nano, vol. 11, no. 2, pp. 2052–2059, 2017, doi: 10.1021/acsnano.6b08232.

F. Zhao, J. Liu, and J. Luo, “Development of a high-quality ELISA method for dinotefuran based on a novel and newly-designed antigen,” Molecules, vol. 24, no. 13, pp. 1–11, 2019, doi: 10.3390/molecules24132426.

F. Gunawan et al., “Comparison of platform host cell protein ELISA to process-specific host cell protein ELISA,” Biotechnol. Bioeng., vol. 115, no. 2, pp. 382–389, 2018, doi: 10.1002/bit.26466.

J. Wang, “Electrochemical biosensors: Towards point-of-care cancer diagnostics,” Biosens. Bioelectron., vol. 21, no. 10, pp. 1887–1892, 2006, doi: 10.1016/j.bios.2005.10.027.

R. Blum and Y. Kloog, “Metabolism addiction in pancreatic cancer,” Cell Death Dis., vol. 5, no. 2, pp. 1–13, 2014, doi: 10.1038/cddis.2014.38.

G. Luo et al., “CA19-9-Low&Lewis (+) pancreatic cancer: A unique subtype,” Cancer Lett., vol. 385, no. 270, pp. 46–50, 2017, doi: 10.1016/j.canlet.2016.10.046.

C. W. Su, J. H. Tian, J. J. Ye, H. W. Chang, and Y. C. Tsai, “Construction of a label-free electrochemical immunosensor based on zn-co-s/graphene nanocomposites for carbohydrate antigen 19-9 detection,” Nanomaterials, vol. 11, no. 6, 2021, doi: 10.3390/nano11061475.

Y. Cao et al., “Integration of fluorescence imaging and electrochemical biosensing for both qualitative location and quantitative detection of cancer cells,” Biosens. Bioelectron., vol. 130, no. November 2018, pp. 132–138, 2019, doi: 10.1016/j.bios.2019.01.024.

J. Sapiezynski, O. Taratula, L. Rodriguez-Rodriguez, and T. Minko, “Precision targeted therapy of ovarian cancer,” J. Control. Release, vol. 243, pp. 250–268, 2016, doi: 10.1016/j.jconrel.2016.10.014.

A. C. Soares et al., “A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9,” Analyst, vol. 143, no. 14, pp. 3302–3308, 2018, doi: 10.1039/c8an00430g.

G. Ibáñez-Redín et al., “Screen-printed electrodes modified with carbon black and polyelectrolyte films for determination of cancer marker carbohydrate antigen 19-9,” Microchim. Acta, vol. 187, no. 7, pp. 1–11, 2020, doi: 10.1007/s00604-020-04404-6.

S. Biswas, Q. Lan, Y. Xie, X. Sun, and Y. Wang, “Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT,” ACS Appl. Mater. Interfaces, vol. 13, no. 2, pp. 3295–3302, 2021, doi: 10.1021/acsami.0c14946.

Y. Yang et al., “Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer,” Mater. Today Bio, vol. 13, no. December 2021, p. 100218, 2022, doi: 10.1016/j.mtbio.2022.100218.

Ü. Anik, Y. Tepeli, and M. F. Diouani, “Fabrication of Electrochemical Model Influenza A Virus Biosensor Based on the Measurements of Neuroaminidase Enzyme Activity,” Anal. Chem., vol. 88, no. 12, pp. 6151–6153, 2016, doi: 10.1021/acs.analchem.6b01720.

J. C. Soares et al., “Immunosensor for pancreatic cancer based on electrospun nanofibers coated with carbon nanotubes or gold nanoparticles,” ACS Omega, vol. 2, no. 10, pp. 6975–6983, 2017, doi: 10.1021/acsomega.7b01029.

Q. Yan et al., “Sensitive amperometric immunosensor with improved electrocatalytic Au@Pd urchin-shaped nanostructures for human epididymis specific protein 4 antigen detection,” Anal. Chim. Acta, vol. 1069, pp. 117–125, 2019, doi: 10.1016/j.aca.2019.04.023.

N. S. Li, W. L. Lin, Y. P. Hsu, Y. T. Chen, Y. L. Shiue, and H. W. Yang, “Combined Detection of CA19-9 and MUC1 Using a Colorimetric Immunosensor Based on Magnetic Gold Nanorods for Ultrasensitive Risk Assessment of Pancreatic Cancer,” ACS Appl. Bio Mater., vol. 2, no. 11, pp. 4847–4855, 2019, doi: 10.1021/acsabm.9b00616.

T. Yang, N. Zhou, Q. Li, Q. Guan, W. Zhang, and K. Jiao, “Highly sensitive electrochemical impedance sensing of PEP gene based on integrated Au-Pt alloy nanoparticles and polytyramine,” Colloids Surfaces B Biointerfaces, vol. 97, pp. 150–154, 2012, doi: 10.1016/j.colsurfb.2012.04.007.

K. S. Prasad et al., “A low-cost nanomaterial-based electrochemical immunosensor on paper for high-sensitivity early detection of pancreatic cancer,” Sensors Actuators, B Chem., vol. 305, p. 127516, 2020, doi: 10.1016/j.snb.2019.127516.

J. Li, S. Li, and C. F. Yang, “Electrochemical Biosensors for Cancer Biomarker Detection,” Electroanalysis, vol. 24, no. 12, pp. 2213–2229, 2012, doi: 10.1002/elan.201200447.

A. Guo et al., “An electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 199 based on Au@CuxOS yolk-shell nanostructures with porous shells as labels,” Biosens. Bioelectron., vol. 63, pp. 39–46, 2015, doi: 10.1016/j.bios.2014.07.017.

Y. Yu et al., “Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting,” Analyst, vol. 141, no. 14, pp. 4424–4431, 2016, doi: 10.1039/c6an00375c.

H. Xu, Y. Wang, L. Wang, Y. Song, J. Luo, and X. Cai, “A label-free microelectrode array based on one-step synthesis of chitosan-multi-walled carbon nanotube-thionine for ultrasensitive detection of carcinoembryonic antigen,” Nanomaterials, vol. 6, no. 7, 2016, doi: 10.3390/nano6070132.

F. D. Gudagunti, L. Velmanickam, D. Nawarathna, and I. T. Lima, “Label-free biosensing method for the detection of a pancreatic cancer biomarker based on dielectrophoresis spectroscopy,” Chemosensors, vol. 6, no. 3, 2018, doi: 10.3390/chemosensors6030033.

M. S. Chiriacò et al., “Towards pancreatic cancer diagnosis using EIS biochips,” Lab Chip, vol. 13, no. 4, pp. 730–734, 2013, doi: 10.1039/c2lc41127j.

J. Li et al., “An electrochemical biosensor for double-stranded Wnt7B gene detection based on enzymatic isothermal amplification,” Biosens. Bioelectron., vol. 86, pp. 75–82, 2016, doi: 10.1016/j.bios.2016.06.031.

B. Gu, C. Xu, C. Yang, S. Liu, and M. Wang, “ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9,” Biosens. Bioelectron., vol. 26, no. 5, pp. 2720–2723, 2011, doi: 10.1016/j.bios.2010.09.031.

Q. Rong, F. Feng, and Z. Ma, “Metal ions doped chitosan-poly(acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer,” Biosens. Bioelectron., vol. 75, pp. 148–154, 2015, doi: 10.1016/j.bios.2015.08.041.

P. Patel, “Biosensors and Biomarkers: Promising Tools for Cancer Diagnosis,” Int. J. Biosens. Bioelectron., vol. 3, no. 4, 2017, doi: 10.15406/ijbsbe.2017.03.00072.

P. Damborský, J. Švitel, and J. Katrlík, “Optical biosensors,” Essays Biochem., vol. 60, no. 1, pp. 91–100, 2016, doi: 10.1042/EBC20150010.

S. M. Borisov and O. S. Wolfbeis, “Borisov2008.Pdf,” chem. Rev., vol. 106, no. 941, pp. 423–461, 2008.

S. Griffin, “Missouri S & T ’ s Peer to Peer Biosensors for Cancer Detection Applications,” Missouri S&T’s Peer to Peer, vol. 1, no. 2, pp. 1–12, 2017, [Online]. Available: https://scholarsmine.mst.edu/peer2peer/vol1/iss2/6

H. Sha, L. D. Bin, W. Zhuo, C. K. Yong, and J. X. Yu, “Utilization of unmodified gold nanoparticles in colorimetric detection,” Sci. China Physics, Mech. Astron., vol. 54, no. 10, pp. 1757–1765, 2011, doi: 10.1007/s11433-011-4486-7.

J. Li, H. E. Fu, L. J. Wu, A. X. Zheng, G. N. Chen, and H. H. Yang, “General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe,” Anal. Chem., vol. 84, no. 12, pp. 5309–5315, 2012, doi: 10.1021/ac3006186.

L. Y. Chau, Q. He, A. Qin, S. P. Yip, and T. M. H. Lee, “Platinum nanoparticles on reduced graphene oxide as peroxidase mimetics for the colorimetric detection of specific DNA sequence,” J. Mater. Chem. B, vol. 4, no. 23, pp. 4076–4083, 2016, doi: 10.1039/c6tb00741d.

L. Xiao, A. Zhu, Q. Xu, Y. Chen, J. Xu, and J. Weng, “Colorimetric Biosensor for Detection of Cancer Biomarker by Au Nanoparticle-Decorated Bi2Se3 Nanosheets,” ACS Appl. Mater. Interfaces, vol. 9, no. 8, pp. 6931–6940, 2017, doi: 10.1021/acsami.6b15750.

I. E. Tothill, “Biosensors for cancer markers diagnosis,” Semin. Cell Dev. Biol., vol. 20, no. 1, pp. 55–62, 2009, doi: 10.1016/j.semcdb.2009.01.015.

Q. M. Feng, Z. Liu, H. Y. Chen, and J. J. Xu, “Paper-based electrochemiluminescence biosensor for cancer cell detection,” Electrochem. commun., vol. 49, pp. 88–92, 2014, doi: 10.1016/j.elecom.2014.10.015.

C. D. Corso, D. D. Stubbs, S. H. Lee, M. Goggins, R. H. Hruban, and W. D. Hunt, “Real-time detection of mesothelin in pancreatic cancer cell line supernatant using an acoustic wave immunosensor,” Cancer Detect. Prev., vol. 30, no. 2, pp. 180–187, 2006, doi: 10.1016/j.cdp.2006.03.004.

L. Wang, J. Shan, F. Feng, and Z. Ma, “Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199,” Anal. Chim. Acta, vol. 911, pp. 108–113, 2016, doi: 10.1016/j.aca.2016.01.016.

X. Du et al., “A label-free electrochemical immunosensor for detection of the tumor marker CA242 based on reduced graphene oxide-gold-palladium nanocomposite,” Nanomaterials, vol. 9, no. 9, 2019, doi: 10.3390/nano9091335.

Z. Huang et al., “Simple and effective label-free electrochemical immunoassay for carbohydrate antigen 19-9 based on polythionine-Au composites as enhanced sensing signals for detecting different clinical samples,” Int. J. Nanomedicine, vol. 12, pp. 3049–3058, 2017, doi: 10.2147/IJN.S131805.

Z. Jiang, C. Zhao, L. Lin, S. Weng, Q. Liu, and X. Lin, “A label-free electrochemical immunosensor based on poly(thionine)-SDS nanocomposites for CA19-9 detection,” Anal. Methods, vol. 7, no. 11, pp. 4508–4513, 2015, doi: 10.1039/c5ay00576k.

X. Weng, Y. Liu, Y. Xue, A. J. Wang, L. Wu, and J. J. Feng, “L-Proline bio-inspired synthesis of AuPt nanocalliandras as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 19-9,” Sensors Actuators, B Chem., vol. 250, pp. 61–68, 2017, doi: 10.1016/j.snb.2017.04.156.

T. Kalyani, A. Sangili, A. Nanda, S. Prakash, A. Kaushik, and S. Kumar Jana, “Bio-nanocomposite based highly sensitive and label-free electrochemical immunosensor for endometriosis diagnostics application,” Bioelectrochemistry, vol. 139, p. 107740, 2021, doi: 10.1016/j.bioelechem.2021.107740.

A. Thapa et al., “Carbon Nanotube Matrix for Highly Sensitive Biosensors to Detect Pancreatic Cancer Biomarker CA19-9,” ACS Appl. Mater. Interfaces, vol. 9, no. 31, pp. 25878–25886, 2017, doi: 10.1021/acsami.7b07384.

N. A. Alarfaj, M. F. El-Tohamy, and H. F. Oraby, “CA 19-9 pancreatic tumor marker fluorescence immunosensing detection via immobilized carbon quantum dots conjugated gold nanocomposite,” Int. J. Mol. Sci., vol. 19, no. 4, 2018, doi: 10.3390/ijms19041162.

H. Rahmani, S. M. Majd, and A. Salimi, “Highly sensitive and selective detection of the pancreatic cancer biomarker CA 19-9 with the electrolyte-gated MoS2-based field-effect transistor immunosensor,” Ionics (Kiel)., vol. 29, no. 9, pp. 3769–3779, 2023, doi: 10.1007/s11581-023-05136-2.

F. Hu, S. Chen, and R. Yuan, “Application of magnetic core-shell microspheres on reagentless immunosensor based on direct electrochemistry of glucose oxidase for detection of carbohydrate antigen 19-9,” Sensors Actuators, B Chem., vol. 176, pp. 713–722, 2013, doi: 10.1016/j.snb.2012.08.072.

V. Pérez-Ginés et al., “Electrochemical immunoplatform to help managing pancreatic cancer,” J. Electroanal. Chem., vol. 935, no. February, 2023, doi: 10.1016/j.jelechem.2023.117312.

Z. Yan, J. Xing, R. He, Q. Guo, and J. Li, “Probe-Integrated Label-Free Electrochemical Immunosensor Based on Binary Nanocarbon Composites for Detection of CA19-9,” Molecules, vol. 27, no. 20, 2022, doi: 10.3390/molecules27206778.

S. Zhang, C. Sun, and W. Zhou, “Electrochemical immunoassay determination of a cancer biomarker (CA19-9) by horseradish peroxidase,” Int. J. Electrochem. Sci., vol. 12, no. 9, pp. 8447–8456, 2017, doi: 10.20964/2017.09.31.

X. Wang et al., “Detection of two markers for pancreatic cancer (CEA, CA199) based on a nano-silicon sphere-cyclodextrin recognition platform,” Alexandria Eng. J., vol. 75, pp. 383–389, 2023, doi: 10.1016/j.aej.2023.05.073.

B. Li et al., “An ultrasensitive split-type electrochemical immunosensor based on controlled-release strategy for detection of CA19-9,” Biosens. Bioelectron., vol. 227, no. February, p. 115180, 2023, doi: 10.1016/j.bios.2023.115180.

X. Han, S. Lin, Y. Li, C. Cheng, and X. Han, “Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer,” Anal. Chim. Acta, vol. 1098, pp. 117–124, 2020, doi: 10.1016/j.aca.2019.11.027.

Z. Wei, X. Cai, W. Cui, and J. Zhang, “Electrochemical Immunoassay for Tumor Marker CA19-9 Detection Based on Self-Assembled Monolayer,” Molecules, vol. 27, no. 14, pp. 1–9, 2022, doi: 10.3390/molecules27144578.

Y. Zhou, X. Luo, F. Yan, and Y. Mou, “Electrostatic Nanocage-Confined Probe for Electrochemical Detection of CA19-9 in Human Serum,” ACS Omega, pp. 4–11, 2023, doi: 10.1021/acsomega.3c08370.

M. L. Yola and N. Atar, “Carbohydrate antigen 19-9 electrochemical immunosensor based on 1D-MoS2 nanorods/LiNb3O8 and polyoxometalate-incorporated gold nanoparticles,” Microchem. J., vol. 170, no.

W. Chen et al., “Label-Free Detection of CA19-9 Using a BSA/Graphene-Based Antifouling Electrochemical Immunosensor,” Sensors, vol. 23, no. 24, 2023, doi: 10.3390/s23249693.

N. Zhang, D. Zhang, C. Chu, and Z. Ma, “Label-assisted chemical adsorption triggered conversion of electroactivity of sensing interface to achieve the Ag/AgCl process for ultrasensitive detection of CA 19-9,” Anal. Chim. Acta, vol. 1093, pp. 43–51, 2020, doi: 10.1016/j.aca.2019.09.061.

A. Zhang et al., “A novel sandwich electrochemiluminescence immunosensor for ultrasensitive detection of carbohydrate antigen 19-9 based on immobilizing luminol on Ag at BSA core/shell microspheres,” Biosens. Bioelectron., vol. 75, pp. 206–212, 2016, doi: 10.1016/j.bios.2015.08.047.

H. Zhu, G. C. Fan, E. S. Abdel-Halim, J. R. Zhang, and J. J. Zhu, “Ultrasensitive photoelectrochemical immunoassay for CA19-9 detection based on CdSe@ZnS quantum dots sensitized TiO2NWs/Au hybrid structure amplified by quenching effect of Ab2@V2+ conjugates,” Biosens. Bioelectron., vol. 77, pp. 339–346, 2016, doi: 10.1016/j.bios.2015.09.051.

Q. Zhang, X. Chen, Y. Tang, L. Ge, B. Guo, and C. Yao, “Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase,” Anal. Chim. Acta, vol. 815, no. 30, pp. 42–50, 2014, doi: 10.1016/j.aca.2014.01.033.

D. Gholamin, P. Karami, Y. Pahlavan, and M. Johari-Ahar, “Highly sensitive photoelectrochemical immunosensor for detecting cancer marker CA19-9 based on a new SnSe quantum dot,” Microchim. Acta, vol. 190, no. 4, 2023, doi: 10.1007/s00604-023-05718-x.

F. Yang, Z. Yang, Y. Zhuo, Y. Chai, and R. Yuan, “Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers,” Biosens. Bioelectron., vol. 66, pp. 356–362, 2015, doi: 10.1016/j.bios.2014.10.066.

Downloads

Published

2025-04-12

How to Cite

1.
Rani J, Singh S, Kumar Sehrawat S, Singh N. Diagnostic Potential of Biosensors and Biomarkers in Pancreatic Cancer: A Comprehensive Review. J Neonatal Surg [Internet]. 2025Apr.12 [cited 2025Apr.24];14(15S):562-80. Available from: https://jneonatalsurg.com/index.php/jns/article/view/3534

Similar Articles

You may also start an advanced similarity search for this article.