Statistical Techniques of Exhaled Breath Analysis for Disease Diagnosis and Human Health Monitoring
DOI:
https://doi.org/10.52783/jns.v14.2123Keywords:
SVM, PCA, VOCs, Exhaled Breath, KNNAbstract
Exhaled breath analysis finds patterns of volatile organic compounds in the human body. This paper describes the main types of sensors used for disease diagnosis applications of exhaled breath, data preprocessing, and data analysis techniques of breath data and includes the results of some existing research. First, enlist the sensor mainly used for identifying breath biomarkers. Next, data preprocessing removes the noise from the collected breath data. Then, machine learning algorithms are used to identify discriminators of volatile organic compounds after preprocessing breath data for data analysis. This work comprises data preprocessing and analysis using different breath analysis techniques and machine learning algorithms for real-life situations. The paper includes a brief description of each machine learning algorithm, process, algorithms' condition, and its relevant formula. This work systematically reviews breath data preprocessing and analysis techniques with advantages, disadvantages, applications and some disease results of existing research.
Downloads
Metrics
References
Zhang David, Guo Dongmin, Yan Ke. Breath analysis for medical applications. Springer Nature Singapore Pte Ltd; 2017.
Popov Todor A. Human exhaled breath analysis. CME review, Ann Allergy Asthma Immunol 2011; 106:451–6.
Agnieszka Smolinska, Anne-Christin Hauschild, Jan W Dallinga. Current breathomics - A review on data preprocessing techniques and machine learning in metabolomics breath analysis. Journal of Breath Research 8(2):027105; April 2014.
Kim K-H, Jahan Shamin Ara, Kabir Ehsanul. A review of breath analysis for diagnosis of human health. Trends Anal Chem 2012;33.
Moorhead K T et al 2008 Classifying algorithms for SIFT-MS technology and medical diagnosis Comput. Methods Programs Biomed. 89 226–38.
Yun Sun, Yibing Chen, Chuanqiang Sun, Haipei Liu, Yan Wanga, Xuehui Jiang, Analysis of volatile organic compounds from patients and cell lines for the validation of lung cancer biomarkers by proton-transfer-reaction mass spectrometry, Analytical Methods, The Royal Society of Chemistry 2019.
Rosa Alba Sola Martínez, José María Pastor Hernández, Gema Lozano Terol, Julia Gallego-Jara, Luis García-Marcos, Manuel Cánovas Díaz & Teresa de Diego Puente, Data preprocessing workflow for exhaled breath analysis by GC/MS using open sources, Scientific Reports volume 10, Article number: 22008 (2020).
Hauschild A-C, Baumbach J I and Baumbach J 2012 Integrated statistical learning of metabolic ion mobility - spectrometry profiles for pulmonary disease identification Genet. Mol. Res. 11 2733–44.
Hugues Stefanuto Pierre, Zanella Delphine, Vercammen Joeri, Henket Monique, Florence Schleich, Louis Renaud, Francois Focant Jean. Multimodal combination of GC x GC-HRTOFMS and SIFT-MS for asthma phenotyping using exhaled breath. www.nature.com/scientificreports 2020.
Basanta Maria, Jarvis Roger M, Xu Yun, Blackburn Gavin, Tal-Singer Ruth, Woodcock Ashley, Singh Dave, Goodacre Royston, Paul Thomas CL, Fowler Stephen J. Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers. R. Soc. Chem. 2010;135:315–20. Analyst, 2010.
Van Vilet Dillys, Smolinska Agnieszka, Jobsis Quirjin, Rosias Philippe, et al. Can exhaled volatile organic compounds predict asthma exacerbations in children. J. Breath.Res. 2017;11(1). https://doi.org/10.1088/1752-7163/aa5a8b.
Smolinska Agnieszka, Ester M, Klaassen M, Dallinga Jan W, van de Kant Kim DG, Jobsis Quirijn, Edwin J, Moonen C, van Schayck Onno CP, Dompeling Edward, Frederik J, van Schooten. Profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of asthma in children. PloS One 2014;9(4):e95668.
Ronny Schnabel, Rianne Fijten, Agnieszka Smolinska, Jan Dallinga, Marie-Louise Boumans, Ellen Stobberingh, Agnes Boots, Paul Roekaerts, Dennis Bergmans & Frederik Jan van Schooten, Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia, Scientific Reports volume 5, Article number: 17179 (2015).
Robert A van den Berg, Huub CJ Hoefsloot, Johan A Westerhuis, Age K Smilde and Mariët J van der Werf, Centering, scaling, and transformations: improving the biological information content of metabolomics data, BMC Genomics 2006, 7:142.
Frank Dieterle, Alfred Ross, Go1 tz Schlotterbeck, and Hans Senn, Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics, Anal. Chem. 2006, 78, 4281-4290.
Smilde A K, van der Werf M J, Bijlsma S, van der Werff-van der Vat B J and Jellema R H 2005 Fusion of mass spectrometry-based metabolomics data Anal. Chem. 77 6729–36.
van den Berg R A, Hoefsloot H C J, Westerhuis J A, Smilde A K and van der Werf M J 2006 Centering, scaling, and transformations: improving the biological information content of metabolomics data BMC Genomics 7 142.
Meloun M and Militky J 1994 Computer-assisted data treatment in analytical chemometrics: 3. Data transformation Chem. Pap-Chem. Zvesti. 48 164–9.
Tharwat, Alaaa, Gaber,Tarekc, Ibrahim,Abdelhameedd, Hassanien,Aboul Ella, Linear discriminant analysis: A detailed tutorial, AI Communications, vol. 30, no. 2, pp. 169-190, 2017.
Mario Fordello, Andrea Bellincontro, Fabio Mencarelli, Partial least squares discriminant analysis: a dimensionality reduction method to classify hyper spectral data, Statistica Applicata - Italian Journal of Applied Statistics Vol. 31 (2).
Richard G. Breretona , Gavin R. Lloyd, Partial least squares discriminant analysis: taking the magic away, Published online in Wiley Online Library: 18 March 2014.
SvanteWolda, Michael Sjöströma,Lennart Eriksson, PLS-regression: a basic tool of chemo metrics, Chemometrics and Intelligent Laboratory Systems,Volume 58, Issue 2, 28 October 2001, Pages 109-130.
Herve Abdi ,Partial least squares (PLS) regression, Program in Cognition and Neurosciences, MS: Gr.4.1.
Agnar Höskuldsson ,PLS Regression Methods, Wiley Analytical Science,Journal of Chemometrics.
Hans Stenlund, András Gorzsás, Per Persson, Björn Sundberg, Johan Trygg, Orthogonal projections to laten structures discriminant analysis modeling on in situ FT-IR spectral imaging of liver tissue for identifying sources of variability, Analytical Chemistry 80(18):6898-906, September 2008.
Webb Andrew 2002 Statistical Pattern Recognition (New York: Wiley).
Chung-Yu Chen, Wei-Chi Lin & Hsiao-Yu Yang, Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research, Respiratory Research volume 21, Article number: 45 (2020).
Michał Daszykowski, From projection pursuit to other unsupervised chemometric techniques, JOURNAL OF CHEMOMETRICS, 2007;21: 270–279.
M.Daszykowski, K.Kaczmarek,Y.Vander Heyden.Walczak, Robust statistics in data analysis- A review: Basic Concepts, Chemometrics and Intelligent Laboratory Systems, Volume 85, Issue 2, 15 February 2007, Pages 203-219.
Aapo Hyvärinen, Independent component analysis: recent advances, Philos Trans A Math Phys Eng Sci. 2013, 371(1984): 20110534.
A.Hyvärinen,E.Oja, Independent component analysis: algorithms and applications, Neural Networks, Volume 13, Issues 4–5, June 2000, Pages 411-430.
Dominic Langlois, Sylvain Chartier, Dominique Gosselin, An Introduction to Independent Component Analysis: InfoMax and FastICA algorithms, March 2010Tutorials in Quantitative Methods for Psychology 6(1).
Angela Serra, Roberto Taliaferro, Unsupervised Learning and clustering, Reference Module in Life Sciences, January 2018.
Lantz B. Machine Learning with R. 2nd ed. Birmingham, UK: Packt Publishing Ltd.; 2015.
Francisco de A.T. de Carvalho, Camilo P. Tenório, Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances, Fuzzy Sets and Systems 161 (2010) 2978–2999.
Frederic Cadet, Miguel de la Guardia, Quantitative Analysis infrared, Encyclopedia of Analytical Chemistry, September 2006.
Muhammad Aminu, Noor Atinah Ahmad, Complex Chemical Data Classification and Discrimination using Locality Preserving PLS-DA, ACS Omega 5(41):26601-26610, October 2020.
Anish Singh Shekhawat, Arnav Jain, Dipti Patil, A Study of ECG Steganography for Securing Patient's Confidential Data based on Wavelet Transformation, International Journal of Computer Applications (0975 – 8887) Volume 105 – No. 12, November 2014.
Shamla Mantri, Vidya Dukare, Smita Yeole, Dipti Patil, V. M. Wadhai, A Survey: Fundamental of EEG, International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online), Volume 1, Issue 4, September 2013.
Dipti Patil, Tejashree Chhajed,V. M. Wadhai, Prasad Pomaji, Abhinav Sharma, Bhagyashri Samanta, A Comparative Study of Traditional and Mobile based ECG System Algorithms, International Journal of Computer Applications (0975 – 8887) Volume 41– No.3, March 2012.
Sharwin P. Bobde, Shamla T. Mantri, Dipti D. Patil, Vijay Wadhai, Cognitive Depression Detection Methodology Using EEG Signal Analysis, Intelligent Computing and Information and Communication pp 557-566, Springer link 2018.
Dipti D. Patil, Shamla Mantri, Himangi Pande V.M.Wadhai, M.U.Kharat, Feature Extraction Techniques for Mining ECG Signals in WBAN for Healthcare Applications, International Journal of Advances in Computing and Information Researches, ISSN: 2277-4068, Volume 1– No.1, January 2012.
Shamla Mantri, Dr. Dipti Patil, Dr. Pankaj Agrawal, Dr. Vijay Wadhai, Non Invasive EEG Signal Processing Framework for Real Time Depression Analysis, SAI. Intelligent Systems Conference 2015, November 10-11, 2015 | London, UK.
Maria Kaloumenou,Evangelos Skotadis, Nefeli Lagopati, Efstathios Efstathopoulos, and Dimitris Tsoukalas, Review Breath Analysis: A Promising Tool for Disease Diagnosis—The Role of Sensors, Sensors 2022, 22, 1238. https://doi.org/10.3390/s22031238.
Kaushiki Dixit, Somayeh Fardindoost, Adithya Ravishankara, Nishat Tasnim and Mina Hoorfar, Review Exhaled Breath Analysis for Diabetes Diagnosis and Monitoring: Relevance, Challenges and Possibilities, Biosensors 2021, 11, 476.https://doi.org/10.3390/bios11120476.
Maria Vesna Nikolic, Vladimir Milovanovic, Zorka Z. Vasiljevic, Zoran Stamenkovic, Semiconductor Gas Sensors: Materials, Technology, Design, and Application, Sensors 2020, 20(22), 6694; https://doi.org/10.3390/s20226694.
Andreas T. Güntner, Sebastian Abegg, Karsten Königstein, Philipp A. Gerber, Arno Schmidt-Trucksäss, and Sotiris E. Pratsinis, “Breath Sensors for Health Monitoring”, ACS Sens. 2019, 4, 2, 268–280.
Artur Rydosz, Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring, Sensors (Basel). 2018 Jul; 18(7): 2298. Published online 2018 Jul 16. doi: 10.3390/s18072298.PMCID:PMC6068483PMID: 30012960.
Milua Masikini, Mahabubur Chowdhury, Ouassini Nemraoui, Review—Metal Oxides: Application in Exhaled Breath Acetone Chemiresistive Sensors, Journal of the Electrochemical Society, 2020 167 037537.
Nidheesh V. R.,Aswini Kumar Mohapatra,Unnikrishnan V. K.,Rajeev Kumar Sinha,Rajesh Nayak,Vasudevan Baskaran Kartha & Santhosh Chidangil, Breath analysis for the screening and diagnosis of diseases, Volume 56, 2021 - Issue 8-10: Special issue of Applied Spectroscopy Reviews on Clinical Applications of Spectroscopy.
Sagnik Das and Mrinal Pal, Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review, 2020 J. Electrochem. Soc. 167 037562.
Gopi Battineni, Getu Gamo Sagaro, Nalini Chinatalapudi, Francesco Amenta, Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis, Journal of Personalized Medicine, 2020 Mar 31;10(2):21. doi: 10.3390/jpm10020021.
Anna Paleczek, Artur Rydosz, Review of the algorithms used in exhaled breath analysis for the detection of diabetes, Journal of Breath Research, 2022 Jan 26; 16(2). doi: 10.1088/1752-7163/ac4916.
Yuichi Sakumura, Yutaro Koyama, Hiroaki Tokutake, Toyoaki Hida, Kazuo Sato, Toshio Itoh, Takafumi Akamatsu and Woosuck Shin, Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm, www.mdpi.com/journal/sensors 2017
Maria Basanta, Roger M. Jarvis,,Yun Xu,Gavin Blackburn,,Ruth Tal-Singer,Ashley Woodcock, Dave Singh, Royston Goodacre, C. L. Paul Thomas ,Stephen J. Fowler," Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers", The Royal Society of Chemistry 2010 Analyst, 2010, 135, 315–320.
A.-C. Hauschild1, J.I. Baumbach and J. Baumbach," Integrated statistical learning of metabolic ion mobility spectrometry profiles for pulmonary disease identification", Genetics and Molecular Research 11 (3): 2733-2744 (2012).
Maria Basanta, Baharudin Ibrahim, Rachel Dockry, David Douce, Mike Morris, Dave Singh,Ashley Woodcock, Stephen J Fowler," Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study", Respiratory Research 2012, 13:72.
Akira D.M. Hattesohl, Rudolf A. Jörres, Holger Dressel,Severin Schmid, Claus Vogelmeier, Timm Greulich, Sarah Noeske, Robert Bals ,Andreas Rembert Koczulla," Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose", Respirology (2011) 16, 1258–1264.
J.J.B.N. Van Berkel, J.W. Dallinga, G.M. Mo¨ller, R.W.L. Godschalk, E.J. Moonen, E.F.M. Wouters, F.J. Van Schooten," A profile of volatile organic compounds in breath discriminates COPD patients from controls", Respiratory Medicine (2010) 104, 557e563.
Michael Phillips, Renee N. Cataneo, Rany Condos, Gerald A. Ring Erickson, Joel Greenberg, Vincent La Bombardi, Muhammad I. Munawar, Olaf Tietje, "Volatile biomarkers of pulmonary tuberculosis in the breath", Tuberculosis (2007) 87, 44–52, Elsevier.
Amandip S. Sahota, Ravi Gowda, Ramesh P. Arasaradnam, Emma Daulton, Richard S. Savage, Jim R. Skinner, Emily Adams, Stephen A. Ward, James A. Covington, "A simple breath test for tuberculosis using ion mobility: A pilot study", Tuberculosis 99 (2016) 143e146, Elsevier.
Marco Beccaria, Carly Bobak, Boitumelo Maitshotlo, Theodore R Mellors, Giorgia Purcaro, Flavio A Franchina, Christiaan A Rees, Mavra Nasir, Andrew Black, and Jane E Hill, "Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques", J Breath Res. ; 13(1): 016005, PMC 2019 May 28.
Nicola M. Zetola, Chawangwa Modongo, Ogopotse Matsiri, Tsaone Tamuhla, Bontle Mbongwe, Keikantse Matlhagela, Enoch Sepako, Alexandro Catini, Giorgio Sirugo, Eugenio Martinelli, Roberto Paolesse, Corrado Di Natale, "Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples", Journal of Infection,2016, Elsevier.
E. I. Mohamed,M. A. Mohamed, M. H. Moustafa, S. M. Abdel-Mageed, A. M. Moro, A. I. Baess, S. M. El-Kholy, "Qualitative analysis of biological tuberculosis samples by an electronic nose-based artificial neural network", Int J Tuberc Lung Dis 21(7):810–817 Q 2017 The Union.
Siegel A P, Daneshkhah A, Hardin D S, Shrestha S, Varahramyan K and Agarwal M 2017 Analyzing breath samples of hypoglycemic events in type 1 diabetes patients: towards developing an alternative to diabetes alert dogs J. Breath Res. 11 026007.
Guo D, Zhang D, Li N, Zhang L and Yang J 2010 A novel breath analysis system based on electronic olfaction IEEE Trans. Biomed. Eng. 57 2753–63.
Lekha S and Suchetha M 2017 Real-time non-invasive detection and classification of diabetes using modified convolution neural network IEEE J. Biomed. Health Inform. 22 1630–6.
Sarno R, Sabilla S I and Wijaya D R 2020 Electronic nose for detecting multilevel diabetes using optimized deep neural network Eng. Lett. 28 31–42.
Anand Thati , Arunangshu Biswas , Shubhajit Roy Chowdhury and Tapan Kumar Sau, Breath Acetone-Based Non-Invasive Detection Of Blood Glucose Levels, International Journal On Smart Sensing And Intelligent Systems Vol. 8, No. 2, June 2015.
S. C. Van Beek, N. V. Nhung, D. N. Sy, P. J. Sterk, E. W. Tiemersma, F. G. J. Cobelens, "Measurement of exhaled nitric oxide as a potential screening tool for pulmonary tuberculosis", The International Journal of Tuberculosis and Lung Disease, 15(2):185–191© 2011 The Union.
Peter J Mazzone, Jeffrey Hammel, Raed Dweik, Jie Na, Carmen Czich, Daniel Laskowski, Tarek Mekhail, "Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array" Thorax. 2007 Jul; 62(7): 565–568.
Peter J Mazzone, Xiao-Feng Wang, Yaomin Xu, Tarek Mekhail, Mary C Beukemann, Jie Na, Jonathan W Kemling, Kenneth S Suslick, Madhu Sasidhar, "Exhaled Breath Analysis with a Colorimetric Sensor Array for the Identification and Characterization of Lung Cancer" J Thorac Oncol. 2012 January ; 7(1): 137–142.
Roberto F. Machado, Daniel Laskowski, Olivia Deffenderfer, Timothy Burch, Shuo Zheng, Peter J. Mazzone, Tarek Mekhail, Constance Jennings, James K. Stoller, Jacqueline Pyle, Jennifer Duncan, Raed A. Dweik, and Serpil C. Erzurum "Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath" American Journal of Respiratory and Critical Care Medicine, Volume 171, Issue 11, pp 1286–1291, 2005.
Agnieszka Smolinska, Ester M. M. Klaassen, Jan W. Dallinga, Kim D. G. van de Kant, Quirijn Jobsis, Edwin J. C. Moonen, Onno C. P. van Schayck, Edward Dompeling, Frederik J. van Schooten, "Profiling of Volatile Organic Compounds in Exhaled Breath As a Strategy to Find Early Predictive Signatures of Asthma in Children" Plos One, Volume 9, Issue 4, e95668, April 2014.
Paolo Montuschi, Marco Santonico, Chiara Mondino, Giorgio Pennazza, Giulia Mantini, Eugenio Martinelli, Rosamaria Capuano, Giovanni Ciabattoni, Roberto Paolesse, Corrado Di Natale, Peter J Barnes, Arnaldo D'Amico,” Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma” Chest, Science Direct, Volume 137, Issue 4, pp 790-796, April 2010.
N. Fens, A. C. Roldaan, M. P. van der Schee, R. J. Boksem, A. H. Zwinderman, E. H. Bel, P. J. Sterk," External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease", Clinical & Experimental Allergy, 41, 1371–1378.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.