Neonatal Brain Development and Protein Aggregation: Implications for Alpha-Synucleinopathy and Neurodegenerative Diseases

Authors

  • P. Sivakumar
  • R. Rajan
  • S. Maragathamani
  • G. Thiyagarajan
  • S. Priyatharshni

DOI:

https://doi.org/10.52783/jns.v14.2103

Keywords:

Neonatal brain development, protein aggregation, alpha-synucleinopathy, neurodegeneration, Parkinson’s disease

Abstract

Background: Neonatal brain development is a highly dynamic process characterized by rapid neuronal growth, synaptogenesis, and myelination. Protein homeostasis during this critical period is essential to maintain cellular function and prevent pathological protein aggregation. Alpha-synuclein, a presynaptic neuronal protein, has been implicated in various neurodegenerative disorders, particularly Parkinson's disease and related synucleinopathies.

Methods: This review explores the intersection of neonatal brain development and protein aggregation, focusing on alpha-synucleinopathy and its implications for neurodegenerative diseases.

Results: Recent evidence suggests that early-life protein aggregation may have long-term consequences on neurodegeneration. Dysregulation of proteostasis mechanisms in the neonatal brain may predispose individuals to early alpha-synuclein aggregation, which could act as a priming event for later-life neurodegeneration.

Conclusion: Understanding the developmental origins of alpha-synucleinopathies may aid in identifying early biomarkers and developing neuroprotective strategies to mitigate long-term neurological consequences.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110-24. doi:10.1016/S1474-4422(08)70294-1.

Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35(1):147-68. doi:10.1038/npp.2009.115.

Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell. 2012;146(5):682-95. doi:10.1016/j.cell.2011.10.026.

Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823-30. doi:10.1038/ncb0910-823.

Ciechanover A, Kwon YT. Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci. 2015;9:187. doi:10.3389/fnins.2015.00187.

Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663-7. doi:10.1126/science.1195227.

Vargas KJ, Makani S, Davis T, Westphal CH, Castillo PE, Chandra SS. Synucleins regulate the kinetics of synaptic vesicle endocytosis. J Neurosci. 2014;34(28):9364-76. doi:10.1523/JNEUROSCI.4787-13.2014.

Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA. 1997;94(12):6469-74. doi:10.1073/pnas.94.12.6469.

Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2013;33(5):471-83. doi:10.1111/neup.12018.

Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2016;17(5):301-12. doi:10.1038/nrm.2016.44.

Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896-912. doi:10.1016/S0140-6736(14)61393-3.

Chen X, Hu Y, Cao Z, Liu Q, Cheng Y. The role of environmental risk factors in Alzheimer’s disease: a review. J Biomed Res. 2016;30(4):282-90. doi:10.7555/JBR.30.20160038.

Barlow BK, Richfield EK, Cory-Slechta DA, Thiruchelvam M. A fetal risk factor for Parkinson’s disease. Dev Neurosci. 2007;29(1-2):91-101. doi:10.1159/000096462.

Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron. 2016;37(6):899-909. doi:10.1016/S0896-6273(03)00126-0.

Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6(10):777-88. doi:10.1038/nrm1739.

Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149-84. doi:10.1146/annurev.neuro.051508.135600.

Stolp HB, Liddelow SA, Sá-Pereira I, Dziegielewska KM, Saunders NR. Immune responses at brain barriers and implications for brain development and neurological function in later life. Front Integr Neurosci. 2019;13:73. doi:10.3389/fnint.2019.00073.

McAllister AK. Dynamic aspects of CNS synapse formation. Annu Rev Neurosci. 2007;30:425-50. doi:10.1146/annurev.neuro.30.051606.094307.

Hensch TK. Critical period regulation. Annu Rev Neurosci. 2005;28:549-79. doi:10.1146/annurev.neuro.28.061604.135703.

Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1994;232(4747):232-5. doi:10.1126/science.232.4747.232.

Fields RD. White matter in learning, cognition, and psychiatric disorders. Trends Neurosci. 2008;31(7):361-70. doi:10.1016/j.tins.2008.04.001.

Yakoub AM, Sadek A, Birolini G, McCowan TJ, Meloni BP, Knuckey NW. Neuroprotective effect of hypothermia in neonatal hypoxic-ischemic encephalopathy: A translational perspective. Neural Regen Res. 2021;16(4):707-14. doi:10.4103/1673-5374.295255.

Emery B. Regulation of oligodendrocyte differentiation and myelination. Science. 2010;330(6005):779-82. doi:10.1126/science.1190927.

Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, et al. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis. 2018;17(1):1-12. doi:10.1186/s12944-018-0777-x.

Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci. 2001;21(4):1302-12. doi:10.1523/JNEUROSCI.21-04-01302.2001.

Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9(11):839-55. doi:10.1038/nrn2480.

Dewey CM, Cenik B, Sephton CF, Johnson BA, Herz J, Yu G. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 2021;1462:16-25. doi:10.1016/j.brainres.2021.03.045.

Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurosci. 2017;18(5):215-31. doi:10.1038/nrn.2017.26.

Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081-6. doi:10.1126/science.1209038.

Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson CJ, Wolf CR, Gama MJ. Glutathione S-transferase pi mediates autophagy cross talk with apoptosis in MPP+-induced cell death: relevance to Parkinson’s disease. Mol Neurobiol. 2020;57(8):3579-95. doi:10.1007/s12035-020-01997-x.

Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983-97. doi:10.1038/nm.3232.

Hernandez D, Torres CA, Setlik W, Cebrián C, Mosharov EV, Tang G, et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron. 2012;74(2):277-84. doi:10.1016/j.neuron.2012.02.023.

Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324-32. doi:10.1038/nature10317.

Vos MJ, Hageman J, Carra S, Kampinga HH. Structural and functional diversities among small heat shock proteins. J Biochem. 2018;143(4):157-83. doi:10.1093/jb/mvn004.

Burre J, Vivona S, Diao J, Sharma M, Brunger AT, Sudhof TC. Properties of native brain alpha-synuclein. Nature. 2013;498(7453):E4-6. doi:10.1038/nature12125.

Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, et al. Increased synaptic vesicle recycling by synuclein proteins enhances neurotransmitter release efficiency. Neuron. 2010;65(1):66-79. doi:10.1016/j.neuron.2009.12.023.

Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25(1):239-52. doi:10.1016/S0896-6273(00)80886-7.

Garcia-Reitboeck P, Anichtchik O, Dalley JW, Ninkina N, Tofaris GK, Buchman VL, et al. Alpha-synuclein interacts with the extracellular domain of integrin alphaV. J Neurosci. 2013;33(10):4484-92. doi:10.1523/JNEUROSCI.4768-12.2013.

Lautenschläger J, Stephens AD, Fusco G, Ströhl F, Curry N, Zacharopoulou M, et al. C-terminal calcium binding of alpha-synuclein modulates synaptic vesicle interaction. Nat Commun. 2017;9(1):712. doi:10.1038/s41467-018-03111-4.

Sulzer D, Edwards RH. The physiological role of alpha-synuclein and its relationship to Parkinson’s disease. J Neurochem. 2019;150(5):475-86. doi:10.1111/jnc.14710.

Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA. 2011;108(10):4194-9. doi:10.1073/pnas.1100976108.

Chen X, de Silva HA, Pettenati MJ, Rao PN, Staeber G, Woodard M, et al. Role of oxidative stress in the alpha-synucleinopathy and its association with mitochondrial dysfunction. Free Radic Biol Med. 2020;150:49-61. doi:10.1016/j.freeradbiomed.2020.02.012.

Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, et al. Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol. 2020;157(2):401-10. doi:10.1016/S0002-9440(10)64554-2.

Wang X, Becker K, Levine N, Zhang M, Takahashi H, Becker KG, et al. Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathol. 2016;134(3):489-500. doi:10.1007/s00401-017-1714-1.

Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci. 2015;40(4):200-10. doi:10.1016/j.tibs.2015.02.003.

Xilouri M, Stefanis L. Chaperone mediated autophagy to the rescue: A new-fangled target for neurodegenerative diseases. Mol Cell Neurosci. 2015;66:29-36. doi:10.1016/j.mcn.2015.03.013.

Ginet V, Spiegl N, Rummel C, Rudolphi F, Pauli C, Hoogewijs D, et al. Hypoxia-induced inhibition of mTORC1 activates autophagy through ULK1 in neural cells. Neuroscience. 2014;265:113-24. doi:10.1016/j.neuroscience.2014.01.024.

Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR. A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“Line 61”) mice. Neurotherapeutics. 2012;9(2):297-314. doi:10.1007/s13311-012-0104-2.

Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis V. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2022;15:750008. doi:10.3389/fnana.2021.750008.

Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the Central Valley of California. Am J Epidemiol. 2009;169(8):919-26. doi:10.1093/aje/kfp046.

Deng Y, Xie D, Fang M, Zhu G, Zhang H, Ma S, et al. Perinatal hypoxia-ischemia-induced Parkinson’s disease-like neurodegeneration in adult rats. Exp Neurol. 2020;329:113290. doi:10.1016/j.expneurol.2020.113290.

Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW, Hong JS, et al. Neonatal lipopolysaccharide injection induces long-lasting Parkinson’s disease-like neuroinflammation and selective dopaminergic neurodegeneration in adult rats. Brain Behav Immun. 2004;18(5):365-75. doi:10.1016/j.bbi.2003.12.007.

Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn DJ, et al. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. 2019;14(1):5. doi:10.1186/s13024-019-0306-8.

El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, et al. Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids. J Neurosci. 2017;23(4):696-703. doi:10.1523/JNEUROSCI.23-04-00696.2003.

Shi M, Zabetian CP, Hancock AM, Ginghina C, Hong Z, Yearout D, et al. Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci Lett. 2014;480(1):78-82. doi:10.1016/j.neulet.2010.06.022.

Galiano-Landeira J, Torra A, Vila M, Bové J. CD163-expressing macrophages and microglia as disease-modifying cells in neurodegenerative diseases. Front Aging Neurosci. 2020;12:587021. doi:10.3389/fnagi.2020.587021.

Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, et al. Structural and functional characterization of two alpha-synuclein strains. Nat Commun. 2013;4:2575. doi:10.1038/ncomms3575.

Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93(5):1015-34. doi:10.1016/j.neuron.2017.01.022.

Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Molecular chaperones and protein degradation pathways in Parkinson’s disease: Current and future therapeutic strategies. Neurotherapeutics. 2012;9(4):589-601. doi:10.1007/s13311-012-0138-5.

Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. Alpha-synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol. 2015;80(2):141-58. doi:10.1002/ana.24456.

Gao X, O’Reilly EJ, Schwarzschild MA, Ascherio A. Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology. 2021;77(11):1126-31. doi:10.1212/WNL.0b013e31822f02ff.

Tagliafierro L, Zamora ME, Chiba-Falek O. Multiplications and deletions of the alpha-synuclein locus: a mechanism for variable gene expression and Parkinson’s risk. Mov Disord. 2019;34(2):190-9. doi:10.1002/mds.27561.

Downloads

Published

2025-03-12

How to Cite

1.
Sivakumar P, Rajan R, Maragathamani S, Thiyagarajan G, Priyatharshni S. Neonatal Brain Development and Protein Aggregation: Implications for Alpha-Synucleinopathy and Neurodegenerative Diseases. J Neonatal Surg [Internet]. 2025Mar.12 [cited 2025Mar.20];14(5S):620-9. Available from: https://jneonatalsurg.com/index.php/jns/article/view/2103