Electrospun Nanofibers: An Impressive Regimen to Manage Burn Wounds

Authors

  • Rajesh Kumar
  • Deepti Saxena
  • Somendra Kumar
  • Vinita Kumari
  • Sheela Kushwaha
  • Mamta Kumari
  • Shashi Kiran Misra

DOI:

https://doi.org/10.52783/jns.v14.2086

Keywords:

Nanofibers, Burns, Shock, Organ failure, Systemic infection, Electrospun

Abstract

Burns are a worldwide public health issue that poses significant obstacles to both the economy and public health. Shock, multiple organ failure, systemic infection, and even death are common outcomes of severe burns. Because standard dressings only serve one purpose and have several negative consequences, they have not been able to satisfy the growing need for burn wound therapy. In this regard, electrospinning presents a promising avenue for developing cutting-edge wound dressings that encourage wound healing and guard against infection. With its large specific surface area, high porosity, and similar to natural extracellular matrix (ECM), electrospun nanofibers can load drugs and accelerate wound healing. It offers a potentially effective way to control and treat burn injuries. This review article introduces the concept of burn and the types of electrospun nanofibers, and then summarizes the polymers used in electrospun nanofiber dressings. The medications filled with electrospun burn dressings (plant extracts, small molecule medications, and nanoparticles) are finally compiled. Promising elements are suggested for the development of commercial electrospun burn treatments

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC Advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Zheng, W. J., An, N., Yang, J. H., Zhou, J., & Chen, Y. M. (2015). Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS applied materials & interfaces, 7(3), 1758–1764. https://doi.org/10.1021/am507339r

Gholipour-Kanani, A., Bahrami, S. H., & Rabbani, S. (2016). Effect of novel blend nanofibrous scaffolds on diabetic wounds healing. IET nanobiotechnology, 10(1), 1–7. https://doi.org/10.1049/iet-nbt.2014.0066

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Shpichka, A., Butnaru, D., Bezrukov, E. A., Sukhanov, R. B., Atala, A., Burdukovskii, V., Zhang, Y., & Timashev, P. (2019). Skin tissue regeneration for burn injury. Stem cell research & therapy, 10(1), 94. https://doi.org/10.1186/s13287-019-1203-3

Li, Z., & Maitz, P. (2018). Cell therapy for severe burn wound healing. Burns & trauma, 6, 13. https://doi.org/10.1186/s41038-018-0117-0

Luze, H., Nischwitz, S. P., Smolle, C., Zrim, R., & Kamolz, L. P. (2022). The Use of Acellular Fish Skin Grafts in Burn Wound Management-A Systematic Review. Medicina (Kaunas, Lithuania), 58(7), 912. https://doi.org/10.3390/medicina58070912

Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: A review. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 127, 130–141. https://doi.org/10.1016/j.ejpb.2018.02.022

Liang, Y., He, J., & Guo, B. (2021). Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS nano, 15(8), 12687–12722. https://doi.org/10.1021/acsnano.1c04206

Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Nanomaterials for Wound Dressings: An Up-to-Date Overview. Molecules (Basel, Switzerland), 25(11), 2699. https://doi.org/10.3390/molecules25112699

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Caño-Carrillo, S., Lozano-Velasco, E., Castillo-Casas, J. M., Sánchez-Fernández, C., & Franco, D. (2023). The Role of ncRNAs in Cardiac Infarction and Regeneration. Journal of cardiovascular development and disease, 10(3), 123. https://doi.org/10.3390/jcdd10030123

Han, F., Wang, J., Ding, L., Hu, Y., Li, W., Yuan, Z., Guo, Q., Zhu, C., Yu, L., Wang, H., Zhao, Z., Jia, L., Li, J., Yu, Y., Zhang, W., Chu, G., Chen, S., & Li, B. (2020). Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in bioengineering and biotechnology, 8, 83. https://doi.org/10.3389/fbioe.2020.00083

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Kamoun, E. A., Kenawy, E. S., & Chen, X. (2017). A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research, 8(3), 217–233. https://doi.org/10.1016/j.jare.2017.01.005

Tak, U. N., Rashid, S., Kour, P., Nazir, N., Zargar, M. I., & Dar, A. A. (2023). Bergenia stracheyi extract-based hybrid hydrogels of biocompatible polymers with good adhesive, stretching, swelling, self-healing, antibacterial, and antioxidant properties. International journal of biological macromolecules, 234, 123718. https://doi.org/10.1016/j.ijbiomac.2023.123718

Hadisi, Z., Nourmohammadi, J., & Nassiri, S. M. (2018). The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. International journal of biological macromolecules, 107(Pt B), 2008–2019. https://doi.org/10.1016/j.ijbiomac.2017.10.061

Mi P. (2020). Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 10(10), 4557–4588. https://doi.org/10.7150/thno.38069

Huang, C., Wang, M., Yu, S., Yu, D. G., & Bligh, S. W. A. (2024). Electrospun Fenoprofen/Polycaprolactone @ Tranexamic Acid/Hydroxyapatite Nanofibers as Orthopedic Hemostasis Dressings. Nanomaterials (Basel, Switzerland), 14(7), 646. https://doi.org/10.3390/nano14070646

Song, J., Kim, M., & Lee, H. (2020). Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers, 12(6), 1386. https://doi.org/10.3390/polym12061386

Cheng, K. C. K., Bedolla-Pantoja, M. A., Kim, Y. K., Gregory, J. V., Xie, F., de France, A., Hussal, C., Sun, K., Abbott, N. L., & Lahann, J. (2018). Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science (New York, N.Y.), 362(6416), 804–808. https://doi.org/10.1126/science.aar8449

Yang, W., Hosford, S. R., Dillon, L. M., Shee, K., Liu, S. C., Bean, J. R., Salphati, L., Pang, J., Zhang, X., Nannini, M. A., Demidenko, E., Bates, D., Lewis, L. D., Marotti, J. D., Eastman, A. R., & Miller, T. W. (2016). Strategically Timing Inhibition of Phosphatidylinositol 3-Kinase to Maximize Therapeutic Index in Estrogen Receptor Alpha-Positive, PIK3CA-Mutant Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(9), 2250–2260. https://doi.org/10.1158/1078-0432.CCR-15-2276

Jiang, L., Ding, L., & Liu, G. (2023). Nanoparticle formulations for therapeutic delivery, pathogen imaging and theranostic applications in bacterial infections. Theranostics, 13(5), 1545–1570. https://doi.org/10.7150/thno.82790

Kohsari, I., Shariatinia, Z., & Pourmortazavi, S. M. (2016). Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydrate polymers, 140, 287–298. https://doi.org/10.1016/j.carbpol.2015.12.075

Iacob, A. T., Drăgan, M., Ionescu, O. M., Profire, L., Ficai, A., Andronescu, E., Confederat, L. G., & Lupașcu, D. (2020). An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics, 12(10), 983. https://doi.org/10.3390/pharmaceutics12100983

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D., & Liu, P. (2024b). Recent progress of electrospun nanofibers as burning dressings. RSC Advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Peng, J., Garcia, M. A., Choi, J. S., Zhao, L., Chen, K. J., Bernstein, J. R., Peyda, P., Hsiao, Y. S., Liu, K. W., Lin, W. Y., Pyle, A. D., Wang, H., Hou, S., & Tseng, H. R. (2014). Molecular recognition enables nanosubstrate-mediated delivery of gene-encapsulated nanoparticles with high efficiency. ACS nano, 8(5), 4621–4629. https://doi.org/10.1021/nn5003024

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D., & Liu, P. (2024c). Recent progress of electrospun nanofibers as burning dressings. RSC Advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Pezeshki-Modaress, M., Akbarzadeh, M., Ebrahimibagha, D., Zandi, M., Ghadimi, T., Sadeghi, A., & Rajabi, S. (2022). Fabrication and In Vitro Evaluation of A Chondroitin Sulphate-Polycaprolactone Composite Nanofibrous Scaffold for Potential Use in Dermal Tissue Engineering. Cell journal, 24(1), 36–43. https://doi.org/10.22074/cellj.2022.7655

Kenawy, E., El-Moaty, M. S. A., Ghoneum, M., Soliman, H. M. A., El-Shanshory, A. A., & Shendy, S. (2024). Biobran-loaded core/shell nanofibrous scaffold: a promising wound dressing candidate. RSC Advances, 14(7), 4930–4945. https://doi.org/10.1039/d3ra08609g

Patty, D. J., Nugraheni, A. D., Ana, I. D., Aminatun, N., Sari, Y. W., Gunawarman, N., & Yusuf, Y. (2023). The enhanced properties and bioactivity of poly-ε-caprolactone/poly lactic-co-glycolic acid doped with carbonate hydroxyapatite–egg white. RSC Advances, 13(49), 34427–34438. https://doi.org/10.1039/d3ra07486b

Zheng, Q., Xi, Y., & Weng, Y. (2024). Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Advances, 14(5), 3359–3378. https://doi.org/10.1039/d3ra07075a

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D., & Liu, P. (2024d). Recent progress of electrospun nanofibers as burning dressings. RSC Advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). An in-depth and in vitro evaluation of the antioxidant and neuroprotective activity of aqueous and ethanolic extract of Asparagus racemosus Linn seed. Research Journal of Chemistry and Environment, 27 (10),45-66. https://doi.org/10.25303/2710rjce046066

Kumari, M., Dubey, A., Agarwal, S., Kushwaha, S., & Sachan, A. K. (2023). Recent Technology and Software for GDP in the Pharmaceutical Industry. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 16(5), 7004–7007. https://doi.org/10.37285/ijpsn.2023.16.5.9

Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). Effects of aqueous and ethanolic seed extract of Asparagus racemosus Linn on neurobehavioral pattern of acrylamide induced experimental Zebra fish. Research Journal of Biotechnology.18(11),81-88. https://doi.org/10.25303/1811rjbt081088.

Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). Role of Aqueous and Ethanolic Seed Extract of Asparagus racemosus on Acr- Induced Neurotoxicity in Adult Zebrafish: Emergence of Neuroprotective Results. Egyptian Journal of Aquatic Biology & Fisheries, 27(6), 285-296.DOI: 10.21608/EJABF.2023.329192

Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). A Toxicological Study on Seed Extracts of Asparagus Racemosus Linn (Ethanolic and Water) in Experimental Animals. Journal of Advanced Zoology, 44(2), 71–78. https://doi.org/10.17762/jaz.v44i2.194

Dubey Anubhav, Basak Mrinmoy, Dey Biplab and Ghosh Niladry, (2023). Queen of all herbs (Asparagus racemosus): an assessment of its botany, conventional utilization, phytochemistry and pharmacology. Research Journal of Biotechnology.18(6), Pages- 146-154. https://doi.org/10.25303/1806rjbt1460154.

Dash, S. L., Gupta, P.., Dubey, A.., Sahu, V. K.., & Amit Mishra. (2023). An Experimental Models (In-Vivo and In-Vitro) Used for the Study of Antidiabetic agents. Journal of Advanced Zoology, 44(4), 86–95. https://doi.org/10.17762/jaz.v44i4.1461.

Dubey A, Ghosh NS, Singh Karuna, Verma Princy, (2023).Haematological and hypolipidemic effects of methanol extract of oldenandia corymbose (rubiaceous) seeds in streptozotocin (stz) diabetic in wistar rats A Journal for New Zealand Herpetology,12(3),2203-2210.DOI : http://biogecko.co.nz/.2023.v12.i03.pp2309-2317

Dubey A, Pandey M, Yadav S, Tripathi D, Kumari M, Purohit D, Hypolipidemic and haematological effects of ethanolic extract of Tecoma stans linn(bignoniaceae) seeds in alloxan-induced diabetic albino rats. Korean Journal of Physiology and Pharmacology, 2023:27(1),85-90. DOI:10.25463/kjpp.27.1.2023.8.

Dubey A, Dash SL, Kumari P, Patel S, Singh S, Agarwal S, A Comprehensive Review on Recent Progress in Invivo and Invitro Models for Hyperlipidemia Studies. Pakistan Heart Journal, 2023:56(01),286-297. http://www.pkheartjournal.com

Anubhav Dubey, Mamta Kumari (2024). Antimicrobial activity, Phytochemical Screening of Crude Extracts, and Essential Constituents of Syzygium Aromaticum, Tymus Vulgaris and Eucalyptus Globulus on Selected Pathogens, Microbial Bioactives, 7(1), 1-5, 979 https://doi.org/10.25163/microbbioacts.719791

Arora S, Dubey A, Kumari M. The role of 3- D printing technologies. Int J Pharm Chem Anal 2024;11(2):112-120. https://doi.org/10.18231/j.ijpca.2024.016.

Anubhav Dubey, Mamta Kumari, Vimal Kumar. In vivo antidiabetic activity of asparagus racemosus seeds in streptozotocin induced diabetic model. May-June 2024, V2 – I3, Pages - 0146 – 0152. Doi: https://doi.org/10.55522/ijti.V2I3.0037.

Anubhav Dubey, Mamta Kumari, Vimal Kumar. Formulation and Evaluation of Antiviral Agent Loaded Polymeric Nanoparticles. May-June 2024, V2 – I3, Pages - 0163 – 0169. Doi: https://doi.org/10.55522/ijti.V2I3.0052.

Gautam MK, Panda PK, Dubey A, Kumari M, Ghosh NS. Zebrafish as a Fascinating Animal Model: A Robust Platform for in vivo Screening for Biomedical Research. Int. J. Pharm. Investigation. 2024;14(3):696-701.

Dr. Deepika Shukla, Dr. Ajay Kumar Tripathi, Suyesh Pandey, Mamta Kumari, Manu Dwivedi, & Anubhav Dubey. (2024). A Systematic Study on Social-Environmental Risk Variables for Bacterial and Viral Conjunctivitis. Revista Electronica De Veterinaria, 25(1S), 220-228. Retrieved from https://www.veterinaria.org/index.php/REDVET/article/view/605

Dubey A, Samra, Sahu VK, and Mishra A: In Vitro Assessment of Antioxidants and Hepatoprotective Activity of Opilia Celtidifolia. Afr.J.Bio.Sc. 6(7):2705-2724.

Dwivedi S., Bais N., Chhabra G., Joshi D., Jadhav5 S.A., Dubey A., Chhajed M. (2024). Investigation of Antiulcer Activity of Leonotis nepetaefolia (L.) R.Br. in Pylorus ligation induced and Ethanol induced Gastric ulcer in rats. Afr.J.Bio.Sc. 6(4):446-451. doi.org/10.33472/AFJBS.6.4.2024.231-240

Kumari M., Mishra G., Shukla D., Dwivedi M., Ghosh N., Tripathi A.K., Dubey A. (2024). A Novel scientific Approach: Zebrafish as an Informative in-vivo testing platform in Physiological Investigation. Afr.J.Bio.Sc. 6(4) (2024) 231-240. doi.org/10.33472/AFJBS.6.4.2024.231-240

Anubhav Dubey, Shilpi arora, Swikriti Sharma, Gurpreet Kaur, Vaishali Goel, Meenakshi Ghildiyal, & Mamta Kumari. (2024). A Systemic Education Of Therapeutic Approaches Using Native Herbs To Treat Rheumatoid Joint Dysfunction. Educational Administration: Theory and Practice, 30(5), 67–83. https://doi.org/10.53555/kuey.v30i4.2774

Roopesh, M., Davis, D., Jyothi, M. S., Vandana, M., Thippeswamy, B. S., Hegde, G., Vinod, T. P., & Keri, R. S. (2023). Wound healing efficacy of curcumin-loaded sandalwood bark-derived carbon nanosphere/PVA nanofiber matrix. RSC Advances, 13(35), 24320–24330. https://doi.org/10.1039/d3ra04181f

Das, A., Shetty, S., N, C. K., Shetty, R., & Salins, S. S. (2024). Electrospun nanofibers: transformative innovations in biomedical applications and Future prospects in healthcare advancement. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2433147

Jiang, X., Zeng, Y. E., Li, C., Wang, K., & Yu, D. G. (2024). Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Frontiers in bioengineering and biotechnology, 12, 1354286. https://doi.org/10.3389/fbioe.2024.1354286

Du, X., Lin, Z., Wang, X., Zhang, K., Hu, H., & Dai, S. (2023). Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors. Molecules (Basel, Switzerland), 28(17), 6432. https://doi.org/10.3390/molecules28176432

Kim, A., Dash, J. K., & Patel, R. (2023). Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. Membranes, 13(2), 183. https://doi.org/10.3390/membranes13020183

Zhou, J., Dai, Y., Fu, J., Yan, C., Yu, D. G., & Yi, T. (2023). Dual-Step Controlled Release of Berberine Hydrochloride from the Trans-Scale Hybrids of Nanofibers and Microparticles. Biomolecules, 13(6), 1011. https://doi.org/10.3390/biom13061011

Armengol, E. S., Hock, N., Saribal, S., To, D., Summonte, S., Veider, F., Kali, G., Bernkop-Schnürch, A., & Laffleur, F. (2024b). Unveiling the potential of biomaterials and their synergistic fusion in tissue engineering. European Journal of Pharmaceutical Sciences, 196, 106761. https://doi.org/10.1016/j.ejps.2024.106761

Gautam, M. K., Panda, P. K., Dubey, A., Kumari, M., & Ghosh, N. S. (2024). Zebrafish as a Fascinating Animal Model: A Robust Platform for in vivo Screening for Biomedical Research. International Journal of Pharmaceutical Investigation, 14(3), 696–701. https://doi.org/10.5530/ijpi.14.3.80

Anubhav Dubey, Shilpi arora, Swikriti Sharma, Gurpreet Kaur, Vaishali Goel, Meenakshi Ghildiyal, & Mamta Kumari. (2024). A Systemic Education of Therapeutic Approaches Using Native Herbs to Treat Rheumatoid Joint Dysfunction. Educational Administration: Theory and Practice, 30(5), 67–83. https://doi.org/10.53555/kuey.v30i4.2774

Kumari, M., Dubey, A., Agarwal, S., Kushwaha, S., & Sachan, A. K. (2023). Recent Technology and Software for GDP in the Pharmaceutical Industry. International Journal of Pharmaceutical Sciences and Nanotechnology,16(5),7004–7007. https://doi.org/10.37285/ijpsn.2023.16.5.9

Dubey A, Dash SL, Kumari M, Patel S, Singh S, Agarwal S, A, (2023). Comprehensive Review on Recent Progress in In vivo and In-vitro Models for Hyperlipidaemia Studies. Pakistan Heart Journal,56(01),286-297.http://www.pkheartjournal.com

Dubey A, Pandey M, Yadav S, Tripathi D, Kumari M, Purohit D, Hypolipidemic and haematological effects of ethanolic extract of Tecoma stans linn (Bignoniaceae) seeds in alloxan-induced diabetic albino rats. Korean Journal of Physiology and Pharmacology, 7(1),85-90. http://doi.org/10.25463/kjpp.27.1.2023.8

Dubey, A., Kumari M., Sahu, V. K., Mishra, A Dash, S. L., &. (2024). Zebrafish as a fascinating animal model: a robust platform for in vivo screening for biomedical researches. International Journal of Agricultural Sciences and Veterinary Medicine, 12(1), 173–187. https://doi.org/10.25303/1201ijasvm034039

Dubey, A., Kumari M., Pandey M., (2024). Homeopathic Medicinal Products and Importance in Diabetes International Journal of Homeopathy & Natural Medicines. 10(1), 17–26. https://doi.org/10.11648/j.ijhnm.20241001.12

Kodolova Chukhontseva, V. V., Dresvyanina, E. N., Nashchekina, Y. A., Dobrovol'skaya, I. P., Bystrov, S. G., Ivan'kova, E. M., Yudin, V. E., & Morganti, P. (2022). Application of the Composite Fibers Based on Chitosan and Chitin Nanofibrils in Cosmetology. Journal of functional biomaterials, 13(4), 198. https://doi.org/10.3390/jfb13040198

Zhong, Q., Xiao, X., Qiu, Y., Xu, Z., Chen, C., Chong, B., Zhao, X., Hai, S., Li, S., An, Z., & Dai, L. (2023). Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm, 4(3), e261. https://doi.org/10.1002/mco2.261

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Miron, A., Giurcaneanu, C., Mihai, M. M., Beiu, C., Voiculescu, V. M., Popescu, M. N., Soare, E., & Popa, L. G. (2023). Antimicrobial Biomaterials for Chronic Wound Care. Pharmaceutics, 15(6), 1606. https://doi.org/10.3390/pharmaceutics15061606

Mata, G. C. D., Morais, M. S., Oliveira, W. P., & Aguiar, M. L. (2022). Composition Effects on the Morphology of PVA/Chitosan Electrospun Nanofibers. Polymers, 14(22), 4856. https://doi.org/10.3390/polym14224856

Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b

Lee C. H. (2019). Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers, 11(12), 1841. https://doi.org/10.3390/cancers11121841

Du, M., Liu, S., Lan, N., Liang, R., Liang, S., Lan, M., Feng, D., Zheng, L., Wei, Q., & Ma, K. (2024). Electrospun PCL/gelatin/arbutin nanofiber membranes as potent reactive oxygen species scavengers to accelerate cutaneous wound healing. Regenerative biomaterials, 11, rbad114. https://doi.org/10.1093/rb/rbad114

Ji, W., Sun, Y., Yang, F., van den Beucken, J. J., Fan, M., Chen, Z., & Jansen, J. A. (2011). Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical research, 28(6), 1259–1272. https://doi.org/10.1007/s11095-010-0320-6

Abid S, Hussain T, Nazir A, Zahir A, Ramakrishna S, Hameed M, Khenoussi N. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int J Biol Macromol. 2019 Aug 15;135:1222-1236. doi: 10.1016/j.ijbiomac.2019.06.022. Epub 2019 Jun 5. PMID: 31173830.

Li, A., Li, L., Zhao, B., Li, X., Liang, W., Lang, M., Cheng, B., & Li, J. (2022). Antibacterial, antioxidant and anti-inflammatory PLCL/gelatin nanofiber membranes to promote wound healing. International journal of biological macromolecules, 194, 914–923. https://doi.org/10.1016/j.ijbiomac.2021.11.146

Yang, P., Lu, Y., Gou, W., Qin, Y., Tan, J., Luo, G., & Zhang, Q. (2024). Glycosaminoglycans' Ability to Promote Wound Healing: From Native Living Macromolecules to Artificial Biomaterials. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 11(9), e2305918. https://doi.org/10.1002/advs.202305918

Xie, Z., Yu, W., Zheng, G., Li, J., Cen, S., Ye, G., Li, Z., Liu, W., Li, M., Lin, J., Su, Z., Che, Y., Ye, F., Wang, P., Wu, Y., & Shen, H. (2021). TNF-α-mediated m6A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nature communications, 12(1), 5373. https://doi.org/10.1038/s41467-021-25710-4

Downloads

Published

2025-03-12

How to Cite

1.
Kumar R, Saxena D, Kumar S, Kumari V, Kushwaha S, Kumari M, Kiran Misra S. Electrospun Nanofibers: An Impressive Regimen to Manage Burn Wounds. J Neonatal Surg [Internet]. 2025Mar.12 [cited 2025Mar.20];14(5S):481-98. Available from: https://jneonatalsurg.com/index.php/jns/article/view/2086