Electrospun Nanofibers: An Impressive Regimen to Manage Burn Wounds
DOI:
https://doi.org/10.52783/jns.v14.2086Keywords:
Nanofibers, Burns, Shock, Organ failure, Systemic infection, ElectrospunAbstract
Burns are a worldwide public health issue that poses significant obstacles to both the economy and public health. Shock, multiple organ failure, systemic infection, and even death are common outcomes of severe burns. Because standard dressings only serve one purpose and have several negative consequences, they have not been able to satisfy the growing need for burn wound therapy. In this regard, electrospinning presents a promising avenue for developing cutting-edge wound dressings that encourage wound healing and guard against infection. With its large specific surface area, high porosity, and similar to natural extracellular matrix (ECM), electrospun nanofibers can load drugs and accelerate wound healing. It offers a potentially effective way to control and treat burn injuries. This review article introduces the concept of burn and the types of electrospun nanofibers, and then summarizes the polymers used in electrospun nanofiber dressings. The medications filled with electrospun burn dressings (plant extracts, small molecule medications, and nanoparticles) are finally compiled. Promising elements are suggested for the development of commercial electrospun burn treatments
Downloads
Metrics
References
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC Advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Zheng, W. J., An, N., Yang, J. H., Zhou, J., & Chen, Y. M. (2015). Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS applied materials & interfaces, 7(3), 1758–1764. https://doi.org/10.1021/am507339r
Gholipour-Kanani, A., Bahrami, S. H., & Rabbani, S. (2016). Effect of novel blend nanofibrous scaffolds on diabetic wounds healing. IET nanobiotechnology, 10(1), 1–7. https://doi.org/10.1049/iet-nbt.2014.0066
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Shpichka, A., Butnaru, D., Bezrukov, E. A., Sukhanov, R. B., Atala, A., Burdukovskii, V., Zhang, Y., & Timashev, P. (2019). Skin tissue regeneration for burn injury. Stem cell research & therapy, 10(1), 94. https://doi.org/10.1186/s13287-019-1203-3
Li, Z., & Maitz, P. (2018). Cell therapy for severe burn wound healing. Burns & trauma, 6, 13. https://doi.org/10.1186/s41038-018-0117-0
Luze, H., Nischwitz, S. P., Smolle, C., Zrim, R., & Kamolz, L. P. (2022). The Use of Acellular Fish Skin Grafts in Burn Wound Management-A Systematic Review. Medicina (Kaunas, Lithuania), 58(7), 912. https://doi.org/10.3390/medicina58070912
Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: A review. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 127, 130–141. https://doi.org/10.1016/j.ejpb.2018.02.022
Liang, Y., He, J., & Guo, B. (2021). Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS nano, 15(8), 12687–12722. https://doi.org/10.1021/acsnano.1c04206
Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Nanomaterials for Wound Dressings: An Up-to-Date Overview. Molecules (Basel, Switzerland), 25(11), 2699. https://doi.org/10.3390/molecules25112699
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Caño-Carrillo, S., Lozano-Velasco, E., Castillo-Casas, J. M., Sánchez-Fernández, C., & Franco, D. (2023). The Role of ncRNAs in Cardiac Infarction and Regeneration. Journal of cardiovascular development and disease, 10(3), 123. https://doi.org/10.3390/jcdd10030123
Han, F., Wang, J., Ding, L., Hu, Y., Li, W., Yuan, Z., Guo, Q., Zhu, C., Yu, L., Wang, H., Zhao, Z., Jia, L., Li, J., Yu, Y., Zhang, W., Chu, G., Chen, S., & Li, B. (2020). Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in bioengineering and biotechnology, 8, 83. https://doi.org/10.3389/fbioe.2020.00083
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Kamoun, E. A., Kenawy, E. S., & Chen, X. (2017). A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research, 8(3), 217–233. https://doi.org/10.1016/j.jare.2017.01.005
Tak, U. N., Rashid, S., Kour, P., Nazir, N., Zargar, M. I., & Dar, A. A. (2023). Bergenia stracheyi extract-based hybrid hydrogels of biocompatible polymers with good adhesive, stretching, swelling, self-healing, antibacterial, and antioxidant properties. International journal of biological macromolecules, 234, 123718. https://doi.org/10.1016/j.ijbiomac.2023.123718
Hadisi, Z., Nourmohammadi, J., & Nassiri, S. M. (2018). The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. International journal of biological macromolecules, 107(Pt B), 2008–2019. https://doi.org/10.1016/j.ijbiomac.2017.10.061
Mi P. (2020). Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 10(10), 4557–4588. https://doi.org/10.7150/thno.38069
Huang, C., Wang, M., Yu, S., Yu, D. G., & Bligh, S. W. A. (2024). Electrospun Fenoprofen/Polycaprolactone @ Tranexamic Acid/Hydroxyapatite Nanofibers as Orthopedic Hemostasis Dressings. Nanomaterials (Basel, Switzerland), 14(7), 646. https://doi.org/10.3390/nano14070646
Song, J., Kim, M., & Lee, H. (2020). Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers, 12(6), 1386. https://doi.org/10.3390/polym12061386
Cheng, K. C. K., Bedolla-Pantoja, M. A., Kim, Y. K., Gregory, J. V., Xie, F., de France, A., Hussal, C., Sun, K., Abbott, N. L., & Lahann, J. (2018). Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science (New York, N.Y.), 362(6416), 804–808. https://doi.org/10.1126/science.aar8449
Yang, W., Hosford, S. R., Dillon, L. M., Shee, K., Liu, S. C., Bean, J. R., Salphati, L., Pang, J., Zhang, X., Nannini, M. A., Demidenko, E., Bates, D., Lewis, L. D., Marotti, J. D., Eastman, A. R., & Miller, T. W. (2016). Strategically Timing Inhibition of Phosphatidylinositol 3-Kinase to Maximize Therapeutic Index in Estrogen Receptor Alpha-Positive, PIK3CA-Mutant Breast Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(9), 2250–2260. https://doi.org/10.1158/1078-0432.CCR-15-2276
Jiang, L., Ding, L., & Liu, G. (2023). Nanoparticle formulations for therapeutic delivery, pathogen imaging and theranostic applications in bacterial infections. Theranostics, 13(5), 1545–1570. https://doi.org/10.7150/thno.82790
Kohsari, I., Shariatinia, Z., & Pourmortazavi, S. M. (2016). Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydrate polymers, 140, 287–298. https://doi.org/10.1016/j.carbpol.2015.12.075
Iacob, A. T., Drăgan, M., Ionescu, O. M., Profire, L., Ficai, A., Andronescu, E., Confederat, L. G., & Lupașcu, D. (2020). An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics, 12(10), 983. https://doi.org/10.3390/pharmaceutics12100983
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D., & Liu, P. (2024b). Recent progress of electrospun nanofibers as burning dressings. RSC Advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Peng, J., Garcia, M. A., Choi, J. S., Zhao, L., Chen, K. J., Bernstein, J. R., Peyda, P., Hsiao, Y. S., Liu, K. W., Lin, W. Y., Pyle, A. D., Wang, H., Hou, S., & Tseng, H. R. (2014). Molecular recognition enables nanosubstrate-mediated delivery of gene-encapsulated nanoparticles with high efficiency. ACS nano, 8(5), 4621–4629. https://doi.org/10.1021/nn5003024
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D., & Liu, P. (2024c). Recent progress of electrospun nanofibers as burning dressings. RSC Advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Pezeshki-Modaress, M., Akbarzadeh, M., Ebrahimibagha, D., Zandi, M., Ghadimi, T., Sadeghi, A., & Rajabi, S. (2022). Fabrication and In Vitro Evaluation of A Chondroitin Sulphate-Polycaprolactone Composite Nanofibrous Scaffold for Potential Use in Dermal Tissue Engineering. Cell journal, 24(1), 36–43. https://doi.org/10.22074/cellj.2022.7655
Kenawy, E., El-Moaty, M. S. A., Ghoneum, M., Soliman, H. M. A., El-Shanshory, A. A., & Shendy, S. (2024). Biobran-loaded core/shell nanofibrous scaffold: a promising wound dressing candidate. RSC Advances, 14(7), 4930–4945. https://doi.org/10.1039/d3ra08609g
Patty, D. J., Nugraheni, A. D., Ana, I. D., Aminatun, N., Sari, Y. W., Gunawarman, N., & Yusuf, Y. (2023). The enhanced properties and bioactivity of poly-ε-caprolactone/poly lactic-co-glycolic acid doped with carbonate hydroxyapatite–egg white. RSC Advances, 13(49), 34427–34438. https://doi.org/10.1039/d3ra07486b
Zheng, Q., Xi, Y., & Weng, Y. (2024). Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Advances, 14(5), 3359–3378. https://doi.org/10.1039/d3ra07075a
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D., & Liu, P. (2024d). Recent progress of electrospun nanofibers as burning dressings. RSC Advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). An in-depth and in vitro evaluation of the antioxidant and neuroprotective activity of aqueous and ethanolic extract of Asparagus racemosus Linn seed. Research Journal of Chemistry and Environment, 27 (10),45-66. https://doi.org/10.25303/2710rjce046066
Kumari, M., Dubey, A., Agarwal, S., Kushwaha, S., & Sachan, A. K. (2023). Recent Technology and Software for GDP in the Pharmaceutical Industry. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 16(5), 7004–7007. https://doi.org/10.37285/ijpsn.2023.16.5.9
Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). Effects of aqueous and ethanolic seed extract of Asparagus racemosus Linn on neurobehavioral pattern of acrylamide induced experimental Zebra fish. Research Journal of Biotechnology.18(11),81-88. https://doi.org/10.25303/1811rjbt081088.
Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). Role of Aqueous and Ethanolic Seed Extract of Asparagus racemosus on Acr- Induced Neurotoxicity in Adult Zebrafish: Emergence of Neuroprotective Results. Egyptian Journal of Aquatic Biology & Fisheries, 27(6), 285-296.DOI: 10.21608/EJABF.2023.329192
Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). A Toxicological Study on Seed Extracts of Asparagus Racemosus Linn (Ethanolic and Water) in Experimental Animals. Journal of Advanced Zoology, 44(2), 71–78. https://doi.org/10.17762/jaz.v44i2.194
Dubey Anubhav, Basak Mrinmoy, Dey Biplab and Ghosh Niladry, (2023). Queen of all herbs (Asparagus racemosus): an assessment of its botany, conventional utilization, phytochemistry and pharmacology. Research Journal of Biotechnology.18(6), Pages- 146-154. https://doi.org/10.25303/1806rjbt1460154.
Dash, S. L., Gupta, P.., Dubey, A.., Sahu, V. K.., & Amit Mishra. (2023). An Experimental Models (In-Vivo and In-Vitro) Used for the Study of Antidiabetic agents. Journal of Advanced Zoology, 44(4), 86–95. https://doi.org/10.17762/jaz.v44i4.1461.
Dubey A, Ghosh NS, Singh Karuna, Verma Princy, (2023).Haematological and hypolipidemic effects of methanol extract of oldenandia corymbose (rubiaceous) seeds in streptozotocin (stz) diabetic in wistar rats A Journal for New Zealand Herpetology,12(3),2203-2210.DOI : http://biogecko.co.nz/.2023.v12.i03.pp2309-2317
Dubey A, Pandey M, Yadav S, Tripathi D, Kumari M, Purohit D, Hypolipidemic and haematological effects of ethanolic extract of Tecoma stans linn(bignoniaceae) seeds in alloxan-induced diabetic albino rats. Korean Journal of Physiology and Pharmacology, 2023:27(1),85-90. DOI:10.25463/kjpp.27.1.2023.8.
Dubey A, Dash SL, Kumari P, Patel S, Singh S, Agarwal S, A Comprehensive Review on Recent Progress in Invivo and Invitro Models for Hyperlipidemia Studies. Pakistan Heart Journal, 2023:56(01),286-297. http://www.pkheartjournal.com
Anubhav Dubey, Mamta Kumari (2024). Antimicrobial activity, Phytochemical Screening of Crude Extracts, and Essential Constituents of Syzygium Aromaticum, Tymus Vulgaris and Eucalyptus Globulus on Selected Pathogens, Microbial Bioactives, 7(1), 1-5, 979 https://doi.org/10.25163/microbbioacts.719791
Arora S, Dubey A, Kumari M. The role of 3- D printing technologies. Int J Pharm Chem Anal 2024;11(2):112-120. https://doi.org/10.18231/j.ijpca.2024.016.
Anubhav Dubey, Mamta Kumari, Vimal Kumar. In vivo antidiabetic activity of asparagus racemosus seeds in streptozotocin induced diabetic model. May-June 2024, V2 – I3, Pages - 0146 – 0152. Doi: https://doi.org/10.55522/ijti.V2I3.0037.
Anubhav Dubey, Mamta Kumari, Vimal Kumar. Formulation and Evaluation of Antiviral Agent Loaded Polymeric Nanoparticles. May-June 2024, V2 – I3, Pages - 0163 – 0169. Doi: https://doi.org/10.55522/ijti.V2I3.0052.
Gautam MK, Panda PK, Dubey A, Kumari M, Ghosh NS. Zebrafish as a Fascinating Animal Model: A Robust Platform for in vivo Screening for Biomedical Research. Int. J. Pharm. Investigation. 2024;14(3):696-701.
Dr. Deepika Shukla, Dr. Ajay Kumar Tripathi, Suyesh Pandey, Mamta Kumari, Manu Dwivedi, & Anubhav Dubey. (2024). A Systematic Study on Social-Environmental Risk Variables for Bacterial and Viral Conjunctivitis. Revista Electronica De Veterinaria, 25(1S), 220-228. Retrieved from https://www.veterinaria.org/index.php/REDVET/article/view/605
Dubey A, Samra, Sahu VK, and Mishra A: In Vitro Assessment of Antioxidants and Hepatoprotective Activity of Opilia Celtidifolia. Afr.J.Bio.Sc. 6(7):2705-2724.
Dwivedi S., Bais N., Chhabra G., Joshi D., Jadhav5 S.A., Dubey A., Chhajed M. (2024). Investigation of Antiulcer Activity of Leonotis nepetaefolia (L.) R.Br. in Pylorus ligation induced and Ethanol induced Gastric ulcer in rats. Afr.J.Bio.Sc. 6(4):446-451. doi.org/10.33472/AFJBS.6.4.2024.231-240
Kumari M., Mishra G., Shukla D., Dwivedi M., Ghosh N., Tripathi A.K., Dubey A. (2024). A Novel scientific Approach: Zebrafish as an Informative in-vivo testing platform in Physiological Investigation. Afr.J.Bio.Sc. 6(4) (2024) 231-240. doi.org/10.33472/AFJBS.6.4.2024.231-240
Anubhav Dubey, Shilpi arora, Swikriti Sharma, Gurpreet Kaur, Vaishali Goel, Meenakshi Ghildiyal, & Mamta Kumari. (2024). A Systemic Education Of Therapeutic Approaches Using Native Herbs To Treat Rheumatoid Joint Dysfunction. Educational Administration: Theory and Practice, 30(5), 67–83. https://doi.org/10.53555/kuey.v30i4.2774
Roopesh, M., Davis, D., Jyothi, M. S., Vandana, M., Thippeswamy, B. S., Hegde, G., Vinod, T. P., & Keri, R. S. (2023). Wound healing efficacy of curcumin-loaded sandalwood bark-derived carbon nanosphere/PVA nanofiber matrix. RSC Advances, 13(35), 24320–24330. https://doi.org/10.1039/d3ra04181f
Das, A., Shetty, S., N, C. K., Shetty, R., & Salins, S. S. (2024). Electrospun nanofibers: transformative innovations in biomedical applications and Future prospects in healthcare advancement. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2433147
Jiang, X., Zeng, Y. E., Li, C., Wang, K., & Yu, D. G. (2024). Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Frontiers in bioengineering and biotechnology, 12, 1354286. https://doi.org/10.3389/fbioe.2024.1354286
Du, X., Lin, Z., Wang, X., Zhang, K., Hu, H., & Dai, S. (2023). Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors. Molecules (Basel, Switzerland), 28(17), 6432. https://doi.org/10.3390/molecules28176432
Kim, A., Dash, J. K., & Patel, R. (2023). Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. Membranes, 13(2), 183. https://doi.org/10.3390/membranes13020183
Zhou, J., Dai, Y., Fu, J., Yan, C., Yu, D. G., & Yi, T. (2023). Dual-Step Controlled Release of Berberine Hydrochloride from the Trans-Scale Hybrids of Nanofibers and Microparticles. Biomolecules, 13(6), 1011. https://doi.org/10.3390/biom13061011
Armengol, E. S., Hock, N., Saribal, S., To, D., Summonte, S., Veider, F., Kali, G., Bernkop-Schnürch, A., & Laffleur, F. (2024b). Unveiling the potential of biomaterials and their synergistic fusion in tissue engineering. European Journal of Pharmaceutical Sciences, 196, 106761. https://doi.org/10.1016/j.ejps.2024.106761
Gautam, M. K., Panda, P. K., Dubey, A., Kumari, M., & Ghosh, N. S. (2024). Zebrafish as a Fascinating Animal Model: A Robust Platform for in vivo Screening for Biomedical Research. International Journal of Pharmaceutical Investigation, 14(3), 696–701. https://doi.org/10.5530/ijpi.14.3.80
Anubhav Dubey, Shilpi arora, Swikriti Sharma, Gurpreet Kaur, Vaishali Goel, Meenakshi Ghildiyal, & Mamta Kumari. (2024). A Systemic Education of Therapeutic Approaches Using Native Herbs to Treat Rheumatoid Joint Dysfunction. Educational Administration: Theory and Practice, 30(5), 67–83. https://doi.org/10.53555/kuey.v30i4.2774
Kumari, M., Dubey, A., Agarwal, S., Kushwaha, S., & Sachan, A. K. (2023). Recent Technology and Software for GDP in the Pharmaceutical Industry. International Journal of Pharmaceutical Sciences and Nanotechnology,16(5),7004–7007. https://doi.org/10.37285/ijpsn.2023.16.5.9
Dubey A, Dash SL, Kumari M, Patel S, Singh S, Agarwal S, A, (2023). Comprehensive Review on Recent Progress in In vivo and In-vitro Models for Hyperlipidaemia Studies. Pakistan Heart Journal,56(01),286-297.http://www.pkheartjournal.com
Dubey A, Pandey M, Yadav S, Tripathi D, Kumari M, Purohit D, Hypolipidemic and haematological effects of ethanolic extract of Tecoma stans linn (Bignoniaceae) seeds in alloxan-induced diabetic albino rats. Korean Journal of Physiology and Pharmacology, 7(1),85-90. http://doi.org/10.25463/kjpp.27.1.2023.8
Dubey, A., Kumari M., Sahu, V. K., Mishra, A Dash, S. L., &. (2024). Zebrafish as a fascinating animal model: a robust platform for in vivo screening for biomedical researches. International Journal of Agricultural Sciences and Veterinary Medicine, 12(1), 173–187. https://doi.org/10.25303/1201ijasvm034039
Dubey, A., Kumari M., Pandey M., (2024). Homeopathic Medicinal Products and Importance in Diabetes International Journal of Homeopathy & Natural Medicines. 10(1), 17–26. https://doi.org/10.11648/j.ijhnm.20241001.12
Kodolova Chukhontseva, V. V., Dresvyanina, E. N., Nashchekina, Y. A., Dobrovol'skaya, I. P., Bystrov, S. G., Ivan'kova, E. M., Yudin, V. E., & Morganti, P. (2022). Application of the Composite Fibers Based on Chitosan and Chitin Nanofibrils in Cosmetology. Journal of functional biomaterials, 13(4), 198. https://doi.org/10.3390/jfb13040198
Zhong, Q., Xiao, X., Qiu, Y., Xu, Z., Chen, C., Chong, B., Zhao, X., Hai, S., Li, S., An, Z., & Dai, L. (2023). Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm, 4(3), e261. https://doi.org/10.1002/mco2.261
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Miron, A., Giurcaneanu, C., Mihai, M. M., Beiu, C., Voiculescu, V. M., Popescu, M. N., Soare, E., & Popa, L. G. (2023). Antimicrobial Biomaterials for Chronic Wound Care. Pharmaceutics, 15(6), 1606. https://doi.org/10.3390/pharmaceutics15061606
Mata, G. C. D., Morais, M. S., Oliveira, W. P., & Aguiar, M. L. (2022). Composition Effects on the Morphology of PVA/Chitosan Electrospun Nanofibers. Polymers, 14(22), 4856. https://doi.org/10.3390/polym14224856
Zhang, S., Yang, W., Gong, W., Lu, Y., Yu, D. G., & Liu, P. (2024). Recent progress of electrospun nanofibers as burning dressings. RSC advances, 14(20), 14374–14391. https://doi.org/10.1039/d4ra01514b
Lee C. H. (2019). Reversal of Epithelial-Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids. Cancers, 11(12), 1841. https://doi.org/10.3390/cancers11121841
Du, M., Liu, S., Lan, N., Liang, R., Liang, S., Lan, M., Feng, D., Zheng, L., Wei, Q., & Ma, K. (2024). Electrospun PCL/gelatin/arbutin nanofiber membranes as potent reactive oxygen species scavengers to accelerate cutaneous wound healing. Regenerative biomaterials, 11, rbad114. https://doi.org/10.1093/rb/rbad114
Ji, W., Sun, Y., Yang, F., van den Beucken, J. J., Fan, M., Chen, Z., & Jansen, J. A. (2011). Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical research, 28(6), 1259–1272. https://doi.org/10.1007/s11095-010-0320-6
Abid S, Hussain T, Nazir A, Zahir A, Ramakrishna S, Hameed M, Khenoussi N. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int J Biol Macromol. 2019 Aug 15;135:1222-1236. doi: 10.1016/j.ijbiomac.2019.06.022. Epub 2019 Jun 5. PMID: 31173830.
Li, A., Li, L., Zhao, B., Li, X., Liang, W., Lang, M., Cheng, B., & Li, J. (2022). Antibacterial, antioxidant and anti-inflammatory PLCL/gelatin nanofiber membranes to promote wound healing. International journal of biological macromolecules, 194, 914–923. https://doi.org/10.1016/j.ijbiomac.2021.11.146
Yang, P., Lu, Y., Gou, W., Qin, Y., Tan, J., Luo, G., & Zhang, Q. (2024). Glycosaminoglycans' Ability to Promote Wound Healing: From Native Living Macromolecules to Artificial Biomaterials. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 11(9), e2305918. https://doi.org/10.1002/advs.202305918
Xie, Z., Yu, W., Zheng, G., Li, J., Cen, S., Ye, G., Li, Z., Liu, W., Li, M., Lin, J., Su, Z., Che, Y., Ye, F., Wang, P., Wu, Y., & Shen, H. (2021). TNF-α-mediated m6A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nature communications, 12(1), 5373. https://doi.org/10.1038/s41467-021-25710-4
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.