Formulation Optimization and Evaluation of Nanoemulsion Loaded with Plant Extract of Crinum latifolium for Antiarthritic Potential
DOI:
https://doi.org/10.52783/jns.v14.2059Keywords:
Optimization, Phase Diagrams, Nanoemulsion, Oral delivery, Rheumatoid arthritisAbstract
Crinum Latifolium (CL), a plant from the Amaryllidaceae family, exhibits antioxidant, anti-inflammatory, and anti-arthritic properties. This study developed and optimized a nanoemulsion (NE-MCL) formulation of methanolic extract of C. latifolium (MCL) for rheumatoid arthritis (RA) treatment, aiming to reduce systemic side effects. MCL was extracted via maceration, and the nanoemulsion was optimized using phase diagrams to determine surfactant and co-surfactant concentrations. Process parameters—oil:Smix ratio, stirring speed, and time—were refined to achieve an optimized NE-MCL with a particle size of 225 nm, polydispersity index of 0.128, zeta potential of -3.198 mV, and drug content of 98.33 ± 0.69%. In vitro studies showed 80% sustained drug release over 24 hours, confirmed by diffusion-controlled kinetics (R² = 0.912, Higuchi model). TEM imaging revealed spherical nanoparticles, and NE-MCL demonstrated enhanced release properties compared to the plain drug solution, underscoring its potential to improve RA therapy while minimizing adverse effects
Downloads
Metrics
References
Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview. Cells. 2021;10(11):2857.
Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. The Lancet. 2017;389(10086):2338-48.
Jan I, Dogra A, Haq SA, Kotra T, Akram T, Ahmed Z, et al. Anti-arthritic Potential of Aqueous and Ethanolic Extracts of Euphorbia helioscopia on Adjuvant-induced Arthritis in Rats. Pharmacognosy Research. 2022;14(3):304-9.
Mukherjee A, Hariprasad MG, Redhwan MAM, Guha S. Evaluation of Anti-arthritic Activity of Hydro-alcoholic Root Extract of Moringa concanensis in Complete Freund’s Adjuvant-induced Arthritic Rats. Research Journal of Pharmacy and Technology. 2024;17(8):3885-1. doi: 10.52711/0974-360X.2024.00603.
Renuka R, Sudha Rameshwari K, Suguna R, Gloria Jemmi Christobel R, Salini R, Latha Pandiammal P. Anti-arthritic effect of Pisonia grandis R. Br. leaves on formaldehyde-induced arthritis in rats. Research Journal of Pharmacy and Technology. 2023;16(5):2445-0. doi: 10.52711/0974-360X.2023.00403.
Park J, Ernst E. Ayurvedic medicine for rheumatoid arthritis: a systematic review. Seminars in Arthritis and Rheumatism. 2005 Apr;34(5):705-13.
Yadav SK, Sharma YK. A review: plant profile, phytochemistry and pharmacology of Crinum latifolium. World Journal of Pharmaceutical Research. 2020;9(6):2493-501.
Gasca-Silva CA, Gomes JVD, Gomes-Copel KKP, Fonseca-Bazzo YM, Fagg CW, Silveira D. Recent updates on Crinum latifolium L. (Amaryllidaceae): A review of ethnobotanical, phytochemical, and biological properties. South African Journal of Botany. 2021;146:162-73.
Gharat S, Basudkar V, Momin M. In-vitro and in-vivo evaluation of the developed curcumin-cyclosporine-loaded nanoemulgel for the management of rheumatoid arthritis. Immunology and Investigations. 2024;53(3):490-522. doi:10.1080/08820139.2024.2301997.
Chando A, Basudkar V, Gharat S, Momin M, Khan T. Development and preclinical assessment of nanoemulgel loaded with phytoconstituents for the management of rheumatoid arthritis. Drug Delivery and Translational Research. 2024;14(2):524-41. doi:10.1007/s13346-023-01416-6.
Alghaith MH, Nasrallah GK, Antunes F, Haris PI. Potential of nanoemulsions in enhancing drug solubility and therapeutic delivery for chronic conditions. Pharmaceuticals. 2023;16(8):1108.
Bharathi D, Swetha P, Rajasekhar D. Transformative nanoemulsion-based systems: Addressing challenges of poor water-soluble drugs. Current Pharmaceutical Analysis. 2023;19(7):729-51.
Alruwaili NK, Shakeel F, Alanazi FK. Formulation and evaluation of ginger extract-loaded nanoemulgel for topical application in rheumatoid arthritis. Saudi Pharmaceutical Journal. 2023;31(7):101727.
Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: A review. Prevention Nutrition and Food Science. 2024;24(3):225-34.
Gawin-Mikoljewicz A, Nawrot U, Malec KH, Krajewska K, Nartowski KP, Karolewicz BL. The effect of high-pressure homogenization conditions on the physicochemical properties and stability of designed fluconazole-loaded ocular nanoemulsions. Pharmaceutics. 2024;16(1):11. doi:10.3390/pharmaceutics16010011.
Kalam KA, Niranjan SK. Preformulation study of propranolol hydrochloride: a foundation for formulation development. Research Journal of Medicine and Pharmacy. 2023;2(2):1-7.
Berkman M, Gulec K. Pseudo ternary phase diagrams: a practical approach for the area and centroid calculation of stable microemulsion regions. Istanbul Journal of Pharmacy. 2021;51:42-9. doi:10.26650/IstanbulJPharm.2020.0090.
Rohilla S, Bhatt DC, Ahalwat S. Fabrication of potential gastroretentive microspheres of itraconazole for stomach-specific delivery: statistical optimization and in vitro evaluation. Journal of Applied Pharmaceutical Science. 2020;10(3):119-27.
Ahalwat S, Bhatt DC, Rohilla S. Fabrication of lipid combination for bioavailability enhancement of isoniazid. Research Journal of Pharmacy and Technology. 2022;15(12):5589-96.
Rani S, Gupta M, Bhatt DC, Ahalwat S. Quality by Design (QbD) based formulation optimization of artemether-loaded mucoadhesive nanoemulsion for intranasal delivery. Research Journal of Pharmacy and Technology. 2024;17(5):2139-45. doi:10.52711/0974-360X.2024.00338.
Deore SK, Surawase RK, Maru A. Formulation and evaluation of o/w nanoemulsion of ketoconazole. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019;11(4):269-74.
Vijaya KR, Rajan S, Bhupathyraaj M, Priya RK, Halligudi N, Al-Ghazali MA, Pol PD. The effect of polymers on drug release kinetics in nanoemulsion in situ gel formulation. Polymers. 2022;14(3):427.
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in nanoemulsion technology: enhancing drug delivery for oral, parenteral, and ophthalmic applications. Pharmaceutics. 2024;16(10):1333. doi:10.3390/pharmaceutics16101333.
Ahalwat S, Bhatt DC, Rohilla S, Jogpal V, Sharma K, Virmani T, Almoiliqy M. Mannose-functionalized isoniazid-loaded nanostructured lipid carriers for pulmonary delivery: in vitro prospects and in vivo therapeutic efficacy assessment. Pharmaceuticals. 2023;16(8):1108.
Miastkowska M, Kulawik-Pióro A, Szczurek M. Nanoemulsion gel formulation optimization for burn wounds: analysis of rheological and sensory properties. Processes. 2020;8(11):1416.
Kaplan ABU, Cetin M, Orgul D, Taghizadehghalehjoughi A, Hacımuftuoglu A, Hekimoglu S. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. Journal of Drug Delivery Science and Technology. 2019;52:189-203.
Farahmand D, Mehrabi MR, Eidi A. Enhancing drug delivery of glatiramer acetate through in vitro development of controlled-release nanoliposomes: investigating drug release kinetics and cytotoxic effects. Jundishapur Journal of Natural Pharmaceutical Products. 2024;19(4):e145855. doi:10.5812/jjnpp-145855.
Gupta SK. Formulation and evaluation of nanoemulsion-based nanoemulsion of aceclofenac. Journal of Pharmaceutical Sciences and Research. 2020;12(4):524-32.
Hoeppener S. Characterization of drug delivery systems by transmission electron microscopy. Handbook of Experimental Pharmacology. 2024;284:191-209. doi:10.1007/164_2023_699. PMID:37973626.
Ahalwat S, Bhatt DC, Rohilla S. Quality by Design (QbD) based formulation optimization of isoniazid-loaded novel nanostructured lipid carriers for controlled release effect. Journal of Pharmaceutical Innovation. 2023;1-16.
Yamada K, Adachi Y, Ohshita J. Controlling the thermodynamic stability of conformational isomers of bistricyclic aromatic enes by introducing boron and silicon atoms. Royal Society of Chemistry. 2024;15:18985-91. doi:10.1039/d4sc06150k.
Jun K, Wei G, Ceder G. Thermodynamic stability and diffusion mechanism of LiMXCl4 superionic conductors. ChemRxiv. 2024. doi:10.26434/chemrxiv-2024.
Ahalwat S, Bhatt DC. Development of novel lipid matrix for improved sustained release effect of a hydrophilic drug via response surface methodology. Journal of Drug Delivery Science and Technology. 2022;67:102993.
Sagiraju SR, Sharma P, Sharma J. Innovative approaches in mirtazapine delivery: pharmacokinetic simulations, immediate release to controlled release tablets, formulation optimization via D-optimal mixture design. Fabad Journal of Pharmaceutical Sciences. 2024. doi:10.55262/fabadeczacilik.1498118.
Rani V, Rajan KR, Bhupathyraaj S, Priya M, Halligudi RK, Al-Ghazali A, et al. The effect of polymers on drug release kinetics in nanoemulsion in situ gel formulation. Polymers. 2022;14(3):427.
Fardous J, Omoso Y, Joshi A, Yoshida K, Patwary MK, Ono F, et al. Development and characterization of gel-in-water nanoemulsion as a novel drug delivery system. Materials Science and Engineering. 2021;124:112076.
Joon P, Sharma K, Nagpa L, Ahalwat S, Sanduja M, Jogpal V. Synthesis of substituted aromatic carboxylic acid derivatives and their biological evaluation. European Chemical Bulletin. 2023;12(5):6438-46.
Wulansari A, Jufri M, Budianti AGKY. Studies on the formulation, physical stability, and in vitro antibacterial activity of tea tree oil (Melaleuca alternifolia) nanoemulsion gel. International Journal of Applied Pharmaceutics. 2017;9(1):135-9.
Rohilla A, Bhatt S, Ahalwat S. Effect of processing variables on the characteristics of itraconazole hollow microspheres. International Journal of Applied Pharmaceutics. 2019;11(6):108-15.
Kumar G, Virmani T, Pathak K, Kamaly OA, Saleh A. Central Composite Design Implemented Azilsartan Medoxomil Loaded Nanoemulsion to Improve Its Aqueous Solubility and Intestinal Permeability: In Vitro and Ex Vivo Evaluation. Pharmaceuticals. 2022;15(11):1343. doi: 10.3390/ph15111343
Javed S, Kohli K, Ahsan W. Bioavailability augmentation of silymarin using natural bioenhancers: An in vivo pharmacokinetic study. Braz J Pharm Sci. 2022;58:e20160. doi:10.1590/s2175-97902022e20160.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.