Arteriovenous Fistula Failure in Hemodialysis: Mechanisms, Risk Factors, and Management Strategies

Authors

  • Abhijeet Arvind Raut
  • Rashmi Uddanwadikar
  • Pramod Padole
  • S V. Upadhye
  • G. A. Fiske
  • B. K. Bhadane

DOI:

https://doi.org/10.52783/jns.v14.1961

Keywords:

Arteriovenous fistula, Hemodialysis, Vascular access failure, hyperplasia, Endothelial dysfunction, Stenosis, Thrombosis

Abstract

Arteriovenous fistula (AVF) is the most used vascular access for hemodialysis treatment due to its great long-term patency, lower infection rates, and cost-effectiveness compared to arteriovenous grafts and central venous catheters. However, Arteriovenous fistula failure remains a critical clinical issue, contributing in increasing morbidity, healthcare costs, and suboptimal dialysis outcomes. AVF failure is broadly categorized into early failure, resulting from inadequate maturation, and late failure, often due to stenosis, thrombosis, or excessive neointimal hyperplasia.

This review explores the pathophysiology, risk factors, and mechanisms underlying AVF failure, including endothelial dysfunction, hemodynamic stress, inflammation, and vascular remodeling. Additionally, we examine current strategies to enhance AVF maturation and long-term functionality, such as preoperative vascular mapping, pharmacological interventions, surgical techniques, and endovascular treatments. Furthermore, emerging therapies including gene therapy, stem cell applications, and computational modeling hold promise for reducing AVF failure rates and improving patient outcomes. A multidisciplinary approach combining clinical expertise, biomedical innovations, and patient-specific treatment strategies is essential for optimizing AVF patency and ensuring effective hemodialysis access.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Lawson, J. H., Niklason, L. E., & Roy-Chaudhury, P. (2020). Challenges and novel therapies for vascular access in haemodialysis. Nature Reviews Nephrology. DOI: 10.1038/s41581-020-0333-2

NKF-K/DOQI clinical practice guidelines for vascular ac- cess: Update 2000. Am J Kidney Dis 37[Suppl 1]: S137–S181, 2001

Palder SB, Kirkman RL, Whittemore AD, Hakim RM, Laza- rus JM, Tilney NL: Vascular access for hemodialysis. Pa- tency rates and results of revision. Ann Surg 202: 235–239, 1985

Miller PE, Tolwani A, Luscy CP, Deierhoi MH, Bailey R, Redden DT, Allon M: Predictors of adequacy of arterio- venous fistulas in hemodialysis patients. Kidney Int 56: 275–280, 1999

Allon M, Lockhart ME, Lilly RZ, Gallichio MH, Young CJ, Barker J, Deierhoi MH, Robbin ML: Effect of preoperative sonographic mapping on vascular access outcomes in he- modialysis patients. Kidney Int 60: 2013–2020, 2001

Asif A, Cherla G, Merrill D, Cipleu CD, Briones P, Pennell P: Conversion of tunneled hemodialysis catheter consigned patients to arteriovenous fistula. Kidney Int 67: 2399–2407, 2005

Won T, Jang JW, Lee S, Han JJ, Park YS, Ahn JH: Effects of intraoperative blood flow on the early patency of radiocephalic fistulas. Ann Vasc Surg 14: 468–472, 2000

Ravani P, Palmer SC, Oliver MJ, et al. Associations between hemodialysis access type and clinical outcomes: a systematic review. J Am Soc Nephrol 2013; 24(3): 465– 473.

Lok CE and Foley R. Vascular access morbidity and mortality: trends of the last decade. Clin J Am Soc Nephrol 2013; 8(7): 1213–1219.

Brescia, M. J., Cimino, J. E., Appel, K. & Hurwich, B. J. Chronic hemodialysis using venipuncture and a surgically created arteriovenous fistula. N. Engl. J. Med. 275, 1089–1092 (1966).

Enzler, M. A., Rajmon, T., Lachat, M. & Largiader, F. Long-term function of vascular access for hemodialysis. Clin. Transplant. 10, 511–515 (1996).

Lu DY, Chen EY, Wong DJ, et al. Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res 2014; 188(1): 162–173.

Rothuizen TC, Wong C, Quax PHA, et al. Arteriovenous access failure: more than just intimal hyperplasia. Nephrol Dial Transplant 2013; 28(5): 1085–1092.

Beathard GA. An algorithm for the physical examination of early fistula failure. Semin Dial 2005; 18(4): 331–335.

Robbin ML, Chamberlain NE, Lockhart ME, et al. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology 2002; 225: 59–64.

Vascular Access 2006 Work Group. Clinical practice guidelines for vascular access. Am J Kidney Dis 2006; 48(Suppl. 1): S176–S247.

C. Hahn and M. A. Schwartz, “Mechanotransduction in vas- cular physiology and atherogenesis,” Nature Reviews Molecular Cell Biology,vol.10, no.1,pp. 53–62, 2009.

J. M. Corpataux, E. Haesler, P. Silacci, H. B. Ris, and D. Hayoz, “Low-pressure environment and remodelling of the forearm vein in Brescia-Cimino haemodialysis access,” Nephrology Dial- ysis Transplantation,vol.17, no.6,pp. 1057–1062, 2002.

C. Hahn and M. A. Schwartz, “Mechanotransduction in vas- cular physiology and atherogenesis,” Nature Reviews Molecular Cell Biology,vol.10, no.1,pp. 53–62, 2009.

G. E. Smith, R. Gohil, and I. C. Chetter, “Factors affecting the patency of arteriovenous fistulas for dialysis access,” Journal of Vascular Surgery,vol.55, no.3,pp. 849–855,2012.

L. Jia, L.Wang, F.Wei et al., “Effects ofwall shear stress in venous neointimal hyperplasia of arteriovenous fistulae,” Nephrology, vol. 20, no. 5, pp. 335–342, 2015.

Asif, A., Roy-Chaudhury, P., & Beathard, G. A. (2006). Early arteriovenous fistula failure: A logical proposal for when and how to intervene. Clinical Journal of the American Society of Nephrology, 1(2), 332–339. DOI: 10.2215/CJN.00850805

Gameiro, J., & Ibeas, J. (2020). Factors affecting arteriovenous fistula dysfunction: A narrative reviernal of Vascular Access. DOI: 10.1177/1129729819845562

Lawson, J. H., Niklason, L. E., & Roy-Chaudhury, P. (2020). Challenges and novel therapies for vascularhaemodialysis. Nature Reviews Nephrology. DOI: 10.1038/s41581-020-0333-2

Zhang, Y., et al. (2022). "Risk factors for arteriovenous fistula dysfunction in hemodialysis patients: A retrospective cohort study." Scientific Reports. DOI: 10.1038/s41598-023-48691-4.

Lee, T., et al. (2020). Endothelial dysfunction in arteriovenous fistula failure: Role of oxidative stress and inflammation. Journal of Vascular Surgery, 71(3), 789-797

Misra, S., et al. (2019). Mechanisms of neointimal hyperplasia in arteriovenous fistulas. Kidney International, 95(4), 782-790.

Ene-Iordache, B., et al. (2018). Hemodynamic changes and vascular remodeling in arteriovenous fistulas: A computational fluid dynamics study. Journal of Biomechanics, 67, 1-8.

Al-Jaishi, A., et al. (2017). Risk factors for arteriovenous fistula failure: A systematic review and meta-analysis. American Journal of Kidney Diseases, 69(4), 497-506.

Lok, C. E., et al. (2019). Diabetes and arteriovenous fistula outcomes: A multicenter cohort study. Clinical Journal of the American Society of Nephrology, 14(5), 704-711.

Allon, M., et al. (2018). Preoperative vascular mapping and arteriovenous fistula outcomes. Journal of the American Society of Nephrology, 29(3), 987-995.

Huber, T. S., et al. (2020). Surgical techniques and arteriovenous fistula patency: A comparative study. Annals of Vascular Surgery, 62, 45-52.

Downloads

Published

2025-03-06

How to Cite

1.
Arvind Raut A, Uddanwadikar R, Padole P, Upadhye SV, Fiske GA, Bhadane BK. Arteriovenous Fistula Failure in Hemodialysis: Mechanisms, Risk Factors, and Management Strategies. J Neonatal Surg [Internet]. 2025Mar.6 [cited 2025Mar.20];14(5S):3-8. Available from: https://jneonatalsurg.com/index.php/jns/article/view/1961