A Review On Perspectives Of Electrochemical Sensors In Next-Generation Healthcare
Keywords:
Electrochemical sensors, nano/MOFsensors, microfluidics, immunoassay, biomarkers for diseasesAbstract
Impacts of sensors have increasing demand in various fields such asagriculture,environment,healthcare,medicine and pharmacology. Electrochemical approaches as a sole platform or integrated with metal organic frameworks/nanomaterials provide promising technologies due to their simplicity, high sensitivity and specificity. Electrochemical sensors have paved the way for emerging novel technologies in early stage diagnosis of diseases through its related biomarkers and biochemicals.Hence our primary focus is to review novel technologies for the early-stage detection and diagnosis of diseases (cancer,cardiovascular and diabetes ) related biomarkers such as alpha-fetoprotein, hemin, glucose, uric acid,hydrogen peroxide and nicotine. Our review aims to provide insights of integrated electrochemical sensors with metal organic frameworks (MOF), nanomaterials and microfluidics. The new era of digital health depends on various bioanalytical techniques through swift processes that produce reliable results.Hence this paper outlines and summarize the advancements in electrochemical approach that are applicable in healthcare and medicine...
Downloads
References
1. Stradiotto NR, Yamanaka H, Zanoni MV. (2003).Electrochemical sensors: a powerful tool in analytical chemistry. Journal of the Brazilian Chemical Society. Apr;14(2):159-73.
2. Rimmy Singh, Ruchi Gupta, Deepak Bansal, Rachna Bhateria, Mona Sharma. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS Omega 2024, 9 (7) 7336-7356
3. Rivet, C.; Lee, H.; Hirsch, A.; Hamilton, S.; Lu, H. (2011)Microfluidics for medical diagnostics and biosensors. Chem. Eng. Sci. 66, 1490–1507.
4. Jalalvand, A. R. (2019) Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor for detection of biomarker prostate specific antigen. Int. J. Biol. Macromol. 126, 1065–1073 .
5. Arivazhagan, M., Prabu, S., Elancheziyan, M. (2025). Recent advances and future perspectives in electrochemical sensing of biomarkers by using MOF- based electrode materials. emergent mater. 8, 1067–1085 https://doi.org/10.1007/s42247-024-00941-5
6. Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. (2017) Multiplexed Electrochemical Immunosensors for Clinical Biomarkers. Sensors 17, 965. https://doi.org/10.3390/s17050965
7. Zhang, C. Du, X. (2020).Electrochemical Sensors Based on Carbon Nanomaterial Used in Diagnosing Metabolic Disease, Front Chem. 8 .https://doi.org/10.3389/ fchem.2020.00651.
8. Chu, Mengge, Zhang, Yawen,Ji, Cailing, Zhang, YunAU - Yuan, QuanAU - Tan, Jie.(2024). DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis.ACS Nano,18,DOI. 10.1021/acsnano.4c11857
9. Sun, G; Zhang, L; Zhang, Y; Yang, H; Ma, C; Ge, S; Yan, M; Yu, J; Song, X.( 2015, ) Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Biosens. Bioelectron. 71, 30–36.
10. Hanoğlu SB, Harmancı D, Evran S, Timur S.( 2024) Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry. 160:108784
11. Ma,J., Bai, W., Liu, X., and Zheng, J. (2021). Electrochemical dopamine sensor based on bi-metallic Co/Zn porphyrin metal-organic framework. Microchim. Acta 189 (1), 20. doi:10.1007/s00604-021-05122-3
12. Yang L, Bashir R. (2018) Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology advances. 1;26(2):135-50.
13. Farzadfard, A., Shayeh, J. S., Habibi-Rezaei, M. & Omidi, M. (2020). Modification of reduced graphene/Au-aptamer to develop an electrochemical based aptasensor for measurement of glycated albumin. Talanta 211, 120722
14. Bahadır, E.B.; Sezgintürk, M.K.( 2016). A review on impedimetric biosensors. Artif. Cells Nanomed. Biotechnol. , 44, 248–262.
15. Fusco, G.; Gallo, F.; Tortolini, C.; Bollella, P.; Ietto, F.; De Mico, A.; D’annibale, A.; Antiochia, R.; Favero, G.; Mazzei, F.(2017). AuNPs-functionalized PANABA-MWCNTs nanocomposite-based impedimetric immunosensor for 2,4-dichlorophenoxy acetic acid detection. Biosens. Bioelectron. 93, 52–56.
16. Lee J, Morita M, Takemura K, Park E Y (2023). A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosensors & Bioelectronics, 102: 425–431
17. Ruan C, Yang L, Li Y. Immunobiosensor chips for detection of Escherichia coli O157: H7 using electrochemical impedance spectroscopy. Analytical Chemistry. 2002 15;74(18):4814-20.
18. Guan JG, Miao YQ, Zhang QJ. Impedimetric biosensors. Journal of bioscience and bioengineering. 2004 Jan 1;97(4):219-26.
19. Wang X, Zhao Z, Wang Y, Lin J. A Portable Impedance Detector of Interdigitated Array Microelectrode for Rapid Detection of Avian Influenza Virus. In International Conference on Computer and Computing Technologies in Agriculture 2014 16 (pp. 247-256). Springer, Cham.
20. Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 2008, 24, 339–348.
21. Ruimin Li, Weiwei Guo, Zhijun Zhu, Yanling Zhai, Guanwen Wang, Zheng Liu, Lei Jiao, Chengzhou Zhu, Xiaoquan Lu. Single-Atom Indium Boosts Electrochemical Dopamine Sensing. Analytical Chemistry 2023, 95 (18) , 7195-7201. https://doi.org/10.1021/acs.analchem.2c05679
22. Anil K, Jason G, Carlos M, Ali B. Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor. Analytical Chemistry 2020, 92 (11) , 7762-7769. https://doi.org/10.1021/acs.analchem.0c00890
23. Guanglei L, Jia H, Wenli Li Fangyuan M, Tuotuo M, Wei G, Yiting Y, Dan W. Integrating Highly Porous and Flexible Au Hydrogels with Soft-MEMS Technologies for High-Performance Wearable Biosensing. Analytical Chemistry 2021, 93 (42) , 14068-14075. https://doi.org/10.1021/acs.analchem.1c01581
24. Krejcova, L.; Richtera, L.; Hynek, D.; Labuda, J.; Adam, V. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens. Bioelectron. 2017, 97, 384–399.
25. Mehennaoui, S.; Poorahong, S.; Jimenez, G.C.; Siaj, M. Selection of high affinity aptamer-ligand for dexamethasone and its electrochemical biosensor. Sci. Rep. 2019, 9, 6600.
26. Cho, H.; Shim, S.; Cho, W.W.; Cho, S.; Baek, H.; Lee, S.-M.; Shin, D.-S. Electrochemical Impedance-Based Biosensors for the Label-Free Detection of the Nucleocapsid Protein from SARS-CoV-2. ACS Sens. 2022, 7, 1676–1684.
27. Liang H, Jiang S, Yuan Q, Li G, Wang F, Zhang Z, Liu J (2016) Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detec tion. Nanoscale 8:6071–6078
28. Zhang C, Wang X, Hou M, Li X, Wu X, Ge J (2017) Immobilization on metal organic framework engenders high sensitivity for enzymatic electro chemical detection. ACS Appl Mater Interfaces 9(16):13831–13836. doi:10.1021/acsami.7b02803
29. Zhou, Z, Mukherjee, S. Hou S, Li, W, Elsner,M, Fischer, R.A. 2021.Porphyrinic MOF film for multifaceted electrochemical sensing. Angewandte Chemie - Int. Ed. 60, 20551–20557 . h t t p s : / / d o i . o r g / 1 0 . 1 0 0 2 / a n i e . 2 0 2 1 0 7 8 6 0
30. Upan, J., Youngvises, N., Tuantranont, A. Karuwan, C, Banet P, Aubert P. A simple label-free electrochemical sensor for sensitive detection of alpha-fetoprotein based on specific aptamer immobilized platinum nanoparticles/carboxylated-graphene oxide. Sci Rep 11, 13969 (2021). https://doi.org/10.1038/s41598-021-93399-y
31. Falsafi, M., Saljooghi, A. S., Abnous, K., Taghdisi, S. M., Ramezani, M., and Alibolandi, M. (2021). Smart metal organic frameworks: Focus on cancer treatment. Biomaterials Sci. 9 (5), 1503–1529. doi:10.1039/D0BM01839B
32. Jiang, L, Zhu, J, Li, G,Rao, Z. Wang,Z,Liu.H.2023.Destruction of a Copper Metal–Organic Framework to Induce CuPt Growth as a Heterojunction Catalyst for Hydrogen Peroxide Sensing. Chem. Eur. J. 29. https:/ /doi.or g/10.10 02/ch em.202203644
33. Qian, J., Ren, C. C., Wang, C. Q., An, K. Q., Cui, H. N., Hao, N., & Wang, K. (2020). Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1. Biosensors and Bioelectronics, 166, 112443.
34. Song, C., Li, X. J., Hu, L. H., Shi, T. F., Wu, D., Ma, H. M., Zhang, Y., Fan, D. W., Wei, Q., & Ju, H. X. (2020). Quench-type electrochemiluminescence immunosensor based on resonance energy transfer from carbon nanotubes and Au-nanoparticles-enhanced g-C3N4 to CuO@polydopamine for procalcitonin detection. ACS Applied Material & Interfaces, 12(7), 8006–8015.
35. Yeniterzi, D. Cevher, S. C, Kandur . S., Baglicakoglu, A. D. Ucar, M. B. Durukan, T. Haciefendioglu, E. Yildirim, A. Cirpan, H. Unalan, E. ,Soylemez. S.Two-Dimensional TiS2 Nanosheet- and Conjugated Polymer Nanoparticle-Based Composites for Sensing Applications. Langmuir 2024, 40 (43) , 22960-22972.
36. Shi, L., Zhu, X., Liu, T., Zhao, H., and Lan, M. (2016). Encapsulating Cu nanoparticles into metal-organic frameworks for non enzymatic glucose sensing. Sensors Actuators B Chem. 227, 583–590. doi:10.1016/j.snb.2015.12.092.
37. Lee, P., Ward, K., Tschulik, K., Chapman, G., & Compton, R. (2014). Electrochemical Detection of Glutathione Using a Poly(caffeic acid) Nanocarbon Composite Modified Electrode. Electroanalysis, 26(2), 366–373.
38. Reuillard B, Le Goff A, Cosnier S. 2014. Polypyrrolic bipyridine bis(phenantrolinequinone) Ru(II) complex/carbon nanotube composites for NAD-dependent enzyme immobilization and wiring. Anal Chem. 6;86(9):4409-15. doi: 10.1021/ac500272v.
39. Xu, T.; Liu, N.; Yuan, J.; Ma, Z. Triple tumor markers assay based on carbon–gold nanocomposite. Biosens. Bioelectron. 2015, 70, 161–166
40. Currin, S.D.; Gondwe, M.S.; Mayindi, N.B.; Chipungu, S.; Khoza, B.L.; Tollman, S.; Fabian, J.; George, J.A. Diagnostic accuracy of semiquantitative point of care urine albumin to creatinine ratio and urine dipstick analysis in a primary care resource limited setting in South Africa. BMC Nephrol. 2021, 22, 103.
41. Moreno-Bondi M C, Taitt C R, Shriver-Lake L C, Ligler F S (2006). Multiplexed measurement of serum antibodies using an array biosensor. Biosensors & Bioelectronics, 21(10): 1880–1886.
42. Juan F. Hernández-Rodríguez, Daniel Rojas, Alberto Escarpa. 2021. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. AnalyticalChemistry , 93 (1)167-183. https://doi.org/10.1021/acs.analchem.0c04378.
43. Rama, E.C.; Costa-García, A. Screen-printed electrochemical immunosensors for the detection of cancer and cardiovascular biomarkers. Electroanalysis 2011, 28, 1700–1715.
44. Varghees S, Kiss K, Frans G, et al. Cloning and porin activity of the major outer membrane protein P1 from Coxiella burnetii. Infect Immun. 2002;70(12):6741–6750. doi: 10.1128/IAI.70.12.6741-6750.2002.
45. Koo B, Jin CE, Bae M, et al. Detection of Coxiella burnetii using silicon micro-ring resonator in patient blood plasma. Micromachines (Basel). 2019;10(7):427. doi: 10.3390/ mi10070427.
46. Mathioudaki E, Alifragis y, Fouskaki M, et al. Electrochemical antigenic sensor for the diagnosis of chronic Q fever. Curr Res Biotechnol. 2022;4:537–543. doi: 10.1016/j.crbiot.2022.10.006.
47. Gangwar, R., Rao, K.T., Khatun, S., Sahu, P.K., Subrahmanyam, C., Rengan, A.K., & Vanjari, S.R. (2023). Toll-Like Receptor-4 immobilized carboxylic terminated carbon interfaces towards a cost-effective and label-free detection of gram -ve bacteria. 2023 IEEE BioSensors Conference (BioSensors), 1-4.
48. Bhardwaj N, Bhardwaj S K, Mehta J, Kim K H, Deep A (2017). MOF-bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus. ACS Applied Materials & Interfaces, 9(39): 33589–33598
49. Chang P H, Weng C C, Li B R, Li Y K (2020). An antifouling peptide-based biosensor for determination of Streptococcus pneumonia markers in human serum. Biosensors & Bioelectronics, 151: 111969
50. Dong S, Zhao R, Zhu J, Lu X, Li Y, Qiu S, Jia L, Jiao X, Song S, Fan C, Hao R, Song H (2015). Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Applied Materials & Interfaces, 7(16): 8834–8842
51. Mavrikou S, Moschopoulou G, Tsekouras V, Kintzios S (2020). Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors, 20(11): 3121
52. Kant, K.; Shahbazi, M.A.; Dave, V.P.; Ngo, T.A.; Chidambara, V.A.; Than, L.Q.; Bang, D.D.; Wolff, A. 2018. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol. Adv. 36, 1003–1024.
53. Kulkarni, M.B.; Goel, S. Recent advancements in integrated micro thermofluidic systems for biochemical and biomedical applications—A review. Sens. Actuators A Phys. 2022, 341, 113590.
54. Paramasivam, S.S, Mariappan, S.A, Sethy, N.K, Manickam, P.Enzyme mimetic electrochemical sensor for salivary nitrite detection using copper chlorophyllin and carbon nanotubes-functionalized screen printed electrodes. Mater. Adv. 4, 6223–6232 (2023). https:/ /doi.or g/10.10 39/d3 ma00634d
55. Bojórquez, D.I.S.; Janicijevic, Z.; Palestina Romero, B.; Oliveros Mata, E.S.; Laube, M.; Feldmann, A.; Kegler, A.; Drewitz, L.; Fowley, C.; Pietzsch, J.; et al. Impedimetric nanobiosensor for the detection of SARS-CoV-2 antigens and antibodies. ACS Sens. 2023, 8, 576–586/.
56. Mengge, C, Yawen Z, Cailing J, Yun Z,Quan Y, JieT.2024. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis.ACS Nano,18,DOI. 10.1021/acsnano.4c11857
57. Khoshroo A, Mavaei M, Rostami M, Valinezhad-Saghezi B, Fattahi A.Recent advances in electrochemical strategies for bacteria detection . BioImpacts, 2022, 12(6), 567-588 doi: 10.34172/bi.2022.23616
58. Arrigan, D.W. (2004). Nanoelectrodes, nanoelectrode arrays and their applications. The Analyst, 129 12, 1157-65 .
59. Manjushree, S.G. ,Adarakatti, P.S. 2023.Recent advances in disposable electrochemical sensors. ACS Symp. Ser. 1437, 1–21 . https:/ /doi.or g/10.10 21/bk -2023-1437.ch001 15. J.
60. Walcarius, A., Minteer, S.D., Wang, J., Lin, Y., & Merkoçi, A. (2013). Nanomaterials for bio-functionalized electrodes: recent trends. Journal of materials chemistry. B, 1 38, 4878-4908 .
61. Feng , D.; Li, L.; Zhao, J.; Zhang, Y. Simultaneous electrochemical detection of multiple biomarkers using gold nanoparticles decorated multiwall carbon nanotubes as signal enhancers. Anal. Biochem. 2015, 482, 48–54.
62. Ishikawa F N, Chang H K, Curreli M, Liao H I, Olson C A, Chen P C, Zhang R, Roberts R W, Sun R, Cote R J, Thompson M E, Zhou C (2009). Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano, 3(5): 1219–1224
63. Chen Chen, Dengke Xiong, Minli Gu, Chunxiao Lu, Fei-Yan Yi, Xinghua Ma. MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum. ACS Applied Materials & Interfaces 2020, 12 (31) , 35365-35374. https://doi.org/10.1021/acsami.0c09689
64. Zhang, Q.; Wu, Y.; Xu, Q.; Ma, F.; Zhang, C.Y. 2021.Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens. Bioelectron. 171, 112712
65. Astha Singh, Siddhima Singh, Neelottma Singh, Jay Singh. Electrochemical Immunosensor for C-Reactive Protein Detection Using an Optimized Bioinspired Ni-Doped Copper Ferrite Nanocomposite Interface for Cardiovascular Disease Management. ACS Applied Bio Materials 2025, 8 (6) , 5078-5089. https://doi.org/10.1021/acsabm.5c00406
66. Wu, J. J., Wang, Z. Z., Jin, X., Zhang, S., Li, T., Zhang, Y. H., Xing, H., Yu, Y., Zhang, H. G., Gao, X. F., & Wei, H. (2021). Hammett relationship in oxidase-mimicking metal-organic frameworks revealed through a protein-engineering-inspired strategy. Advanced Materials, 33(3), 2005024.
67. Wang, D.; Gan, N.; Zhou, J.; Xiong, P.; Cao, Y.; Li, T.; Pan, D.; Jiang, S. Signal amplification for multianalyte electrochemical immunoassay with bidirectional stripping voltammetry using metal-enriched polymer nanolabels. Sens. Actuators B Chem. 2014, 197, 244–253.
68. Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip 2017, 17, 1206–1249.
69. Radke S.M and Alocilja. E. C. 2004.“Design and fabrication of a microimpedance biosensor for bacterial detection,” IEEE Sensors Jour nal,vol.4,no.4,pp.434–440.
70. Dastider, S.G., Barizuddin, S., Yuksek, N.S., Dweik, M., & Almasri, M.F. (2015). Efficient and Rapid Detection of Salmonella Using Microfluidic Impedance Based Sensing. J. Sensors, 2015, 293461:1-293461:8.
71. Wang, Y., Chen, J., Zhang, Y., Yang, Z., Zhang, K., Zhang, D., & Zheng, L. (2024). Advancing Microfluidic Immunity Testing Systems: New Trends for Microbial Pathogen Detection. Molecules, 29(14), 3322. https://doi.org/10.3390
72. Annabestani, M.; Shaegh, A.M.; Esmaeili-Dokht, P.; Fardmanesh, M. An Intelligent Machine Learning-Based Sheath-free Microfluidic Impedance Flow cytometer. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 2020; pp. 284–288.
73. Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 5821–5826.
74. Jung S, Kim Y, Kim S, Kwon TH, Huh S, Park S (2011) Bio-functionalization of metal-organic frameworks by covalent protein conjugation. Chem Com mun (Camb) 47:2904–2906. doi:10.1039/c0cc03288c
75. Rongping Huang , Zhikun Zhang , Lu Gan , Dianfa Fan , Zhangbo Qian , Xinjun Sun , Yong Huang. Electrochemical Sensor Based on Nanomaterials and Its Application in the Detection of Alpha Fetoprotein. Discovery Medicine. 2023, 35(175): 95-103 https://doi.org/10.24976/Discov.Med.202335175.10.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.