

Role Of Healthy Diet In Wound Healing

Priya Ranjan¹, Deepali Sundari Verma²

¹PG Scholar, Dept. of Shalya Tantra, G.A.C.H., Patna

²Professor & Head, Dept. of Shalya Tantra, G.A.C.H., Patna

CORRESPONDING AUTHOR

Dr. Priya Ranjan

PG Scholar Department of Shalya Tantra Government Ayurvedic College & Hospital (G.A.C.H.) Patna, Bihar, India

Email ID : drranjanpriya28@gmail.com

Cite this paper as: Priya Ranjan, Deepali Sundari Verma (2025) Role Of Healthy Diet In Wound Healing. *Journal of Neonatal Surgery*, 14, (9s) 1157-1161

ACCEPTANCE DATE 23/03/25

PUBLICATION DATE 30/03/2025

ABSTRACT

Good nutritional status is fundamental for effective wound healing, as the process of tissue repair is metabolically demanding and highly dependent on the availability of essential nutrients. Malnutrition adversely affects cellular function, immune response, and collagen synthesis, thereby compromising the body's ability to heal wounds efficiently and prolonging the various stages of wound healing. Adequate energy intake is crucial, with glucose serving as the primary fuel source for cellular activities such as fibroblast proliferation, angiogenesis, and deposition of new connective tissue. Insufficient energy supply may result in catabolism of body proteins, further impairing tissue regeneration. Dietary fats, particularly essential fatty acids, play an important role in maintaining cell membrane integrity and modulating the inflammatory response necessary for wound repair. An appropriate balance of fatty acids supports normal inflammatory processes while preventing excessive or prolonged inflammation that may delay healing. Protein is one of the most critical nutrients in wound healing, as it provides amino acids required for collagen synthesis, immune cell activity, and formation of granulation tissue. Protein deficiency is strongly associated with delayed wound healing, reduced wound tensile strength, poor collagen deposition, and increased risk of wound dehiscence. In patients with highly exudative wounds, substantial protein loss may occur, sometimes reaching significant levels per day, which further increases the need for a high-protein diet. Micronutrients also play a vital role in wound healing. Vitamin C is essential for collagen maturation and acts as an antioxidant, while vitamin A supports epithelialization and immune function. Zinc is involved in DNA synthesis, cell proliferation, and immune defense, whereas iron is necessary for oxygen transport and cellular metabolism. Vitamin K contributes to blood coagulation during the initial stages of wound healing. Therefore, early nutritional assessment, identification of deficiencies, and timely dietary intervention are essential components of holistic wound management and significantly improve healing outcomes.

Keywords: *Wound, wound healing, diet, nutrition, macronutrients, micronutrients, vitamins, minerals*

INTRODUCTION

Wound healing is a highly coordinated and complex physiological process that restores the integrity of damaged tissue through a sequence of overlapping phases, namely hemostasis, inflammation, proliferation, and remodeling. Each of these stages is dependent on adequate nutritional support to ensure optimal cellular activity and tissue regeneration [1]. Any disruption in nutritional balance can adversely affect one or more phases of wound healing, leading to delayed recovery and increased risk of complications.

Nutritional deficiencies are frequently observed in patients suffering from acute and chronic wounds, particularly in the elderly, post-surgical patients, and individuals with chronic illnesses. Such deficiencies are recognized as major contributing factors to impaired wound healing, reduced immune competence, and increased susceptibility to local and systemic infections [2]. Malnutrition negatively influences fibroblast proliferation, angiogenesis, collagen synthesis, and epithelialization, thereby compromising the structural and functional integrity of the healing tissue.

A balanced and adequate diet plays a pivotal role in supporting the metabolic demands of wound healing. Carbohydrates provide the primary source of energy required for cellular metabolism, while proteins supply essential amino acids necessary for collagen formation, immune cell function, and granulation tissue development. Dietary fats, especially essential fatty

acids, contribute to cell membrane stability and regulation of inflammatory responses. In addition, micronutrients such as vitamins and minerals act as cofactors in enzymatic reactions involved in tissue repair and immune defense [3]. Therefore, nutritional assessment and appropriate dietary intervention should be considered integral components of comprehensive wound management. Addressing nutritional needs at an early stage can significantly enhance healing outcomes, reduce wound-related complications, and improve overall patient recovery.

ROLE OF MACRONUTRIENTS IN WOUND HEALING

Carbohydrates

Carbohydrates play a fundamental role in wound healing by supplying glucose, the primary energy source required for cellular metabolism during tissue repair. Glucose is essential for fibroblast proliferation, leukocyte function, and angiogenesis, all of which are critical for the formation of granulation tissue and new blood vessels at the wound site [4]. Adequate carbohydrate intake ensures that energy demands are met without resorting to the breakdown of body proteins. In contrast, inadequate carbohydrate availability forces the body to utilize protein for energy, leading to negative nitrogen balance. This protein catabolism adversely affects collagen synthesis, reduces wound tensile strength, and delays overall healing [5]. Therefore, sufficient intake of complex carbohydrates is vital for maintaining metabolic efficiency and supporting the healing cascade.

Proteins

Proteins are the most crucial macronutrients involved in wound healing, as they provide the amino acids necessary for collagen synthesis, angiogenesis, immune cell activity, and epithelialization [6]. Collagen, the primary structural protein in healing tissue, determines wound strength and integrity. Protein deficiency leads to delayed wound closure, reduced collagen deposition, impaired granulation tissue formation, and increased risk of wound dehiscence [7]. Additionally, patients with heavily exudative wounds may lose substantial amounts of protein daily through wound fluid, further increasing protein requirements. In such cases, increased dietary protein intake is essential to compensate for these losses and to promote effective tissue regeneration [8].

Fats

Dietary fats play an important supportive role in wound healing by contributing to cell membrane structure and serving as precursors for prostaglandins involved in inflammation and immune regulation. Essential fatty acids are particularly important in maintaining membrane fluidity and cellular signaling. Omega-3 fatty acids help modulate the inflammatory response, preventing excessive inflammation that may delay healing, while omega-6 fatty acids support immune function and tissue repair processes [9]. A balanced intake of dietary fats is therefore necessary to support optimal wound healing.

ROLE OF MICRONUTRIENTS IN WOUND HEALING

Micronutrients play a crucial role in regulating enzymatic reactions, immune responses, and cellular activities essential for effective wound healing. Although required in small quantities, deficiencies in these nutrients can significantly impair the wound healing process and increase the risk of complications.

Vitamin C

Vitamin C is essential for collagen synthesis, as it is required for the hydroxylation of proline and lysine residues during the formation of stable collagen fibers. Adequate collagen production is necessary for maintaining wound strength and structural integrity. Vitamin C also functions as a potent antioxidant, protecting wound tissues from oxidative damage and supporting immune defense. Deficiency of vitamin C leads to fragile granulation tissue, impaired angiogenesis, delayed epithelialization, and poor wound tensile strength [10].

Vitamin A

Vitamin A plays an important role in epithelial cell differentiation, collagen synthesis, and modulation of immune responses during wound healing. It enhances macrophage function and promotes epithelialization, thereby accelerating wound closure. Vitamin A is also known to counteract the inhibitory effects of corticosteroids on wound healing, making it particularly

beneficial in patients receiving steroid therapy [11].

Zinc

Zinc is a vital trace element involved in DNA synthesis, protein synthesis, cell proliferation, and immune modulation. It supports fibroblast activity and epithelial cell migration, which are critical for wound repair. Zinc deficiency results in delayed epithelialization, impaired immune response, reduced collagen formation, and increased susceptibility to wound infections [12].

Iron

Iron is essential for oxygen transport through hemoglobin and plays a key role in cellular respiration and energy production. Adequate tissue oxygenation is necessary for collagen synthesis and fibroblast function. Iron deficiency anemia reduces oxygen delivery to tissues, thereby delaying wound healing and increasing the risk of infection [13].

Vitamin K

Vitamin K is required for the synthesis of clotting factors and plays a significant role in the initial hemostatic phase of wound healing. Proper coagulation is essential to prevent excessive blood loss and to initiate the wound healing cascade [14].

Table1: Role of Micronutrients in Wound Healing

Micronutrient	Physiological Role in Wound Healing	Effect of Deficiency
Vitamin C	Essential for hydroxylation of proline and lysine during collagen synthesis; acts as an antioxidant; supports angiogenesis and immune defense	Fragile granulation tissue, delayed epithelialization, reduced wound tensile strength
Vitamin A	Enhances epithelial cell differentiation, collagen synthesis, and immune response; counteracts inhibitory effects of corticosteroids	Delayed epithelialization, impaired immune response, delayed wound closure
Zinc	Involved in DNA synthesis, protein synthesis, cell proliferation, and immune modulation	Delayed epithelialization, reduced collagen formation, increased susceptibility to infection
Iron	Required for oxygen transport, cellular respiration, and collagen synthesis	Reduced tissue oxygenation, delayed wound healing, increased risk of infection
Vitamin K	Essential for synthesis of clotting factors; supports hemostasis in early wound healing phase	Impaired coagulation, prolonged bleeding, delayed initiation of wound healing

The role of Ahara in wound healing is summarized in **Table No. 2**, highlighting Ayurvedic dietary principles that promote Vrana Ropana.

Table2: Role of Healthy Diet (Ahara) in Wound Healing – Ayurvedic Perspective

Ayurvedic Principle	Dietary Components (Ahara)	Rasa / Guna / Karma	Role in Wound Healing (Vrana Ropana)
Agni Deepana & Pachana	Shunthi (dry ginger), Jeeraka (cumin), Peya, Vilepi	Katu Rasa, Laghu, Ushna	Improves digestion, enhances nutrient absorption, supports early healing
Rakta Shodhana & Prasadana	Patola, Neem, Spinach, Dadima (pomegranate)	Tikta–Kashaya Rasa	Purifies blood, reduces infection, promotes healthy granulation
Dhatu Poshana	Ksheera (milk), Ghrita (ghee), Mudga Yusha	Madhura Rasa, Snigdha	Nourishes tissues, aids regeneration of skin and muscle
Ojas Vardhana	Khajura (dates), Draksha (grapes), Almonds	Madhura Rasa, Balya	Enhances immunity, prevents delayed healing

Ayurvedic Principle	Dietary Components (Ahara)	Rasa / Guna / Karma	Role in Wound Healing (Vrana Ropana)
Vata–Pitta Shamana	Shali rice, Yavagu, Bottle gourd	Sheeta, Snigdha	Reduces pain, inflammation, and dryness at wound site
Ropana Karma	Ghrita, Madhu (honey – internal use)	Yogavahi, Lekhana	Accelerates wound contraction and epithelialization
Pathya Ahara	Fresh, warm, light food	Laghu, Supachya	Maintains systemic balance, supports continuous healing
Apathya Ahara	Alcohol, spicy, sour, fried food	Ruksha, Tikshna	Aggravates Doshas, delays healing, causes Dushta Vrana

Hydration and Wound Healing

Adequate hydration supports nutrient transport, waste elimination, and maintenance of skin elasticity. Dehydration leads to dry, fragile skin and delays epithelial migration and wound closure [15].

NUTRITIONAL ASSESSMENT AND WOUND OUTCOMES

Nutritional status is a critical determinant of wound healing outcomes and should be routinely assessed in patients with acute and chronic wounds. Several clinical indicators, including serum albumin levels, body mass index (BMI), and standardized risk assessment tools such as the Waterlow score, are widely used to evaluate nutritional risk. Low serum albumin reflects poor protein reserves and is strongly associated with impaired collagen synthesis, delayed granulation tissue formation, and reduced wound tensile strength. Reduced BMI indicates inadequate energy and nutrient stores, which further compromises the body's ability to meet the increased metabolic demands of wound healing.

High Waterlow scores, when combined with hypoalbuminemia and low BMI, are significantly associated with an increased risk of pressure ulcer development and delayed wound healing [16]. These parameters serve as valuable predictors of poor wound outcomes and help identify patients who require early nutritional intervention. Failure to recognize and address malnutrition may lead to prolonged hospital stay, increased risk of infection, wound dehiscence, and higher healthcare costs.

Early nutritional screening allows timely identification of patients at risk of malnutrition and facilitates prompt dietary modification or supplementation. Appropriate nutritional intervention, including adequate caloric intake, increased protein consumption, and correction of micronutrient deficiencies, has been shown to improve wound healing rates, enhance immune function, and reduce wound-related complications [17]. Therefore, nutritional assessment should be considered an integral component of comprehensive wound care, and interdisciplinary collaboration between clinicians, dietitians, and nursing staff is essential to optimize healing outcomes.

DISCUSSION

Wound healing is a biologically complex process that requires the coordinated interaction of cellular, biochemical, and molecular mechanisms. Adequate nutrition is a fundamental determinant of successful wound repair, as each phase of healing is dependent on sufficient availability of energy, macronutrients, and micronutrients. The findings discussed in this review highlight the critical role of nutritional status in influencing wound healing outcomes and reinforce the need for its inclusion in comprehensive wound management strategies.

Macronutrients play a central role in meeting the increased metabolic demands of tissue repair. Carbohydrates provide glucose, the primary energy source required for cellular proliferation and angiogenesis, while proteins supply essential amino acids necessary for collagen synthesis, immune cell activity, and granulation tissue formation. Protein deficiency, particularly in patients with chronic or heavily exudative wounds, leads to impaired collagen deposition, reduced wound tensile strength, and increased risk of wound dehiscence. Dietary fats, especially essential fatty acids, support cell membrane integrity and modulate inflammatory responses, thereby preventing prolonged inflammation that may delay healing.

Micronutrients such as vitamins C and A, zinc, iron, and vitamin K are equally vital, as they act as cofactors in enzymatic reactions essential for collagen maturation, epithelialization, immune modulation, and hemostasis. Deficiencies in these nutrients have been consistently associated with delayed wound healing and increased susceptibility to infection. Clinical

indicators such as low serum albumin, reduced body mass index, and high Waterlow scores serve as reliable predictors of poor wound outcomes.

Overall, the discussion emphasizes that early nutritional assessment and timely dietary intervention significantly enhance wound healing, reduce complications, and improve patient recovery. Integrating nutritional management into routine wound care protocols is essential for achieving optimal clinical outcomes.

CONCLUSION

A healthy and balanced diet plays a pivotal role in the wound healing process by fulfilling increased metabolic demands and supporting essential physiological functions such as immune defense, collagen synthesis, angiogenesis, and tissue regeneration. Adequate intake of macronutrients provides the energy and structural components required for cellular proliferation and repair, while micronutrients act as crucial cofactors in enzymatic reactions involved in tissue remodeling and immune modulation. Nutritional deficiencies, if unrecognized, can significantly delay wound healing and increase the risk of infection, wound dehiscence, and other complications. Therefore, routine nutritional assessment using clinical and biochemical parameters is essential for identifying patients at risk of malnutrition. Timely dietary intervention, including appropriate caloric intake, increased protein consumption, and correction of micronutrient deficiencies, should be considered an integral part of comprehensive wound management. Incorporating nutritional support into standard wound care protocols can significantly improve healing outcomes, reduce morbidity, and enhance overall patient recovery ..

REFERENCES

- [1] Hunt TK, Hopf H, Hussain Z. Physiology of wound healing. *Adv Skin Wound Care*. 2000;13(2 Suppl):6-11.
- [2] Williams JZ, Barbul A. Nutrition and wound healing. *Surg Clin North Am*. 2003;83(3):571-596.
- [3] Arnold M, Barbul A. Nutrition and wound healing. *Plast Reconstr Surg*. 2006;117(7 Suppl):42S-58S.
- [4] Demling RH. Nutrition, anabolism, and the wound healing process. *Annu Rev Nutr*. 2009;29:343-359.
- [5] Guo S, DiPietro LA. Factors affecting wound healing. *J Dent Res*. 2010;89(3):219-229.
- [6] Stechmiller JK. Understanding the role of nutrition and wound healing. *Nutr Clin Pract*. 2010;25(1):61-68.
- [7] Collins N. Nutrition and wound healing. *J Wound Care*. 2001;10(3):83-87.
- [8] Gray M, Cooper P. Nutrition and wound healing: what is the link? *J Wound Ostomy Continence Nurs*. 2001;28(4):189-196.
- [9] Calder PC. Omega-3 fatty acids and inflammatory processes. *Nutrients*. 2010;2(3):355-374.
- [10] Bishop A. Role of vitamin C in wound healing. *Br J Community Nurs*. 2006;11(Suppl):S6-S11.
- [11] Hunt TK. Vitamin A and wound healing. *J Am Acad Dermatol*. 1986;15(4 Pt 2):817-821.
- [12] Lansdown ABG. Zinc in wound repair. *Int J Mol Med*. 2002;9(1):45-55.
- [13] Pierce GF, Mustoe TA. Role of oxygen in wound healing. *Am J Surg*. 1995;170(2):25S-30S.
- [14] Shearer MJ. Vitamin K and wound healing. *J Nutr*. 1992;122(3 Suppl):542-547.
- [15] Popkin BM, D'Anci KE, Rosenberg IH. Water, hydration, and health. *Nutr Rev*. 2010;68(8):439-458.
- [16] Langer G, Fink A. Nutritional interventions for preventing and treating pressure ulcers. *Cochrane Database Syst Rev*. 2014;6:CD003216.
- [17] Stratton RJ, Green CJ, Elia M. Disease-related malnutrition: an evidence-based approach to treatment. *Clin Nutr*. 2003;22(1):1-5..