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ABSTRACT  

 To boost system efficiency, reduce operating costs, and enhance reliability, modern energy management systems (EMS) 

must efficiently control power demand. This work use the Taguchi design of experiments approach to systematically optimize 

electricity demand. Three control parameters, each at three levels, were investigated in order to optimize system efficiency 

while reducing power consumption and mean squared deviation (MSD). Response tables, analysis of variance (ANOVA), 

and signal-to-noise (S/N) ratio analysis were used to identify the most critical parameters and their optimal values. 

The results demonstrate that factor B has the most impact on power demand and MSD, accounting for more than 90% of the 

total fluctuation, whereas factor C is mainly in charge of boosting system efficiency. The optimal parameter combination for 

lowering power consumption and MSD was found to be A₁B₁C₂.₃, even though maximum efficiency was reached at A₃B₂C. 

The produced models show excellent prediction accuracy with R2 values exceeding 96%.... 

Keywords: Energy Management System; Electricity Demand Optimization; Taguchi Method; Signal-to-Noise Ratio; 
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1. INTRODUCTION 

The rapid increase in power consumption brought on by urbanization, industrial expansion, and the adoption of cutting-edge 

electrical technology has raised the need for efficient energy management systems (EMS). Modern EMS aims to maximize 

system efficiency and preserve operational stability under a variety of operating conditions in addition to reducing power 

usage. Inadequate demand management raises energy costs, increases peak loads, and reduces system dependability, all of 

which lead to major economic and environmental issues. Improving EMS performance requires optimization measures. 

Conventional optimization strategies sometimes need large datasets, complex mathematical formulae, and significant 

computer effort, which limits their application in real-world energy systems. EMS performance is also impacted by a number 

of interacting control factors, therefore a robust optimization technique that can identify optimal operating conditions with 

few tests is essential. The Taguchi method, a statistically based design of experiments (DOE) methodology, is an effective 

tool for robust design and system optimization. Using orthogonal arrays and signal-to-noise (S/N) ratios, the Taguchi 

methodology enables the methodical evaluation of several aspects while accounting for unanticipated parameter variation.  

This approach has been widely employed in engineering systems to cut experimental costs while improving quality and 

reducing performance variance. In the context of energy management, the Taguchi technique offers significant advantages 

for optimizing power usage. By simultaneously analyzing many performance goals, such as reducing power demand and 

mean squared deviation (MSD) while optimizing efficiency, it provides valuable insights into the relative importance of 

system elements. Additionally, analysis of variance (ANOVA) facilitates the discovery of statistically important factors 

impacting EMS performance. 

This paper focuses on the Taguchi approach for optimizing power demand in an EMS. Three control factors were examined 

at three levels using a L9 orthogonal array to evaluate their effects on power demand, efficiency, and system stability. The 

optimal parameter was determined using ANOVA and signal-to-noise ratio analysis. 

2. LITERATURE REVIEW 

Participate in multi-objective EMS optimization and demonstrate how demand and efficiency are dominated by certain 

control factors. Three main contributions are made by this work: (i) it systematically optimizes electricity demand in an EMS 

using the Taguchi approach; (ii) it identifies key factors influencing demand, variability, and efficiency; and (iii) it establishes 

optimal operating conditions that enhance system robustness and performance. The findings of this study provide valuable 

suggestions for the creation and management of energy-efficient EMS and serve as a foundation for future multi-objective . 
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and real-time energy optimization research. 

Energy Management Systems (EMS), which offer real-time monitoring, optimal management, and intelligent decision-

making to reduce energy consumption, boost dependability, and support sustainability goals, are essential to the efficient 

running of modern power systems. Microgrids, renewable energy integration, building automation, and industrial processes 

are just a few of the many applications covered by current EMS research. 

2.1 Foundations of EMS Research 

EMS has evolved significantly over the last few decades, going from simple monitoring tools to complex control systems 

with optimization and decision-support algorithms. Early EMS research showed that effective energy usage analysis and 

targeting strategies might result in significant cost and energy savings. It focused on basic load monitoring and energy 

conservation in commercial and industrial environments.  

Jiayi Zhang emphasizes that EMS is more than simply a technical instrument; it is a strategic framework for integrating 

conventional and renewable energy sources to achieve sustainability and reduce costs and emissions. 

2.2 Optimization in EMS 

Optimization is one of the primary goals of modern EMS. Traditional model-based techniques including mixed-integer linear 

programming (MILP), predictive control, and stochastic programming have been thoroughly researched for cost and demand 

minimization, particularly in microgrid situations where the presence of distributed energy resources (DERs) adds 

complexity.  

Cognitive and hybrid EMS solutions that integrate fuzzy logic with complex optimization algorithms (such PSO, GA, and 

Firefly Algorithm) further illustrate the trend toward multi-objective and adaptive EMS that may balance economic, 

environmental, and reliability objectives. 

2.3 Data-Driven and AI-Based EMS 

The increasing availability of real-time data and advancements in artificial intelligence (AI) have sped up research on data-

driven EMS. Frameworks for machine learning, reinforcement learning, and meta-learning are being merged to improve 

decision-making in dynamic situations. Deep learning, for instance, has been utilized in EMS and distribution management 

systems (DMS) to enable faster, nearly real-time optimization in complex power systems. A meta reinforcement learning-

based EMS framework (MetaEMS) demonstrates enhanced adaptability and performance in building energy management 

by solving problems with dynamic load and renewable penetration. 

2.4 Microgrid and Networked EMS 

As distributed generation and distributed energy resources (DERs) have gained prominence, EMS research has focused more 

on microgrids and networked systems. Among the objectives of microgrid EMS are optimal power distribution, frequency 

and voltage regulation, and seamless transitions between grid-connected and islanded modes. Recent evaluations have 

concentrated on architectural classifications and control mechanisms for networked microgrids, reflecting the growing 

complexity as EMS must manage many DERs, storage systems, and loads while maintaining stability and resilience. 

2.5 Demand Side Management and EMS 

An essential component of EMS research is demand side management (DSM), which focuses on load scheduling, peak 

shaving, and load shifting. According to studies, demand side optimization can significantly reduce peak demand and overall 

operating costs in smart grids and hybrid renewable energy systems. Integrating demand response systems with EMS enables 

more intelligent load shaping strategies, particularly when dealing with time-varying tariffs and fluctuating renewable 

energy. 

2.6 Gaps and Emerging Trends 

Despite improvements, there are still several research gaps in the EMS literature: 

Integration Challenges: Multi-objective frameworks that balance sustainability, stability, and efficiency are still in the early 

phases of development, whereas many EMS solutions focus on particular optimization challenges (such demand or cost). 

Data and Forecasting: Accurate load and renewable generation forecasting, which is still important but challenging, affects 

real-time optimization efficiency. 

Scalability: When EMS approaches from small-scale or residential systems are applied to large industrial or utility contexts, 

scalability and complexity issues occur. 

Standardization: The lack of uniform guidelines for EMS interfaces and performance evaluation hinders broader 

implementation. 

Systematic reviews also highlight the need for more study on industrial EMS, particularly in relation to data analytics 
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integration and decision-making processes, when compared to residential applications. 

3. MATERIALS AND METHODS 

3.1 Energy Management System Description 

The Energy Management System (EMS) considered in this paper is designed to monitor, control, and optimize power usage 

under diverse operational conditions. Efficiency, operating stability, and power consumption are all impacted by the system's 

many adjustable components. The EMS performance was evaluated using three primary responses: power demand, mean 

squared deviation (MSD), and system efficiency. These performance indicators show how much energy the system uses, 

how resilient it is to changes, and how well it operates. 

 

3.2 Selection of Control Factors and Levels 

Based on preliminary system analysis and operational considerations, three control parameters (identified as A, B, and C) 

were selected for optimization. Each factor was examined at three different levels in order to capture nonlinear effects while 

maintaining experimental viability. The components and the corresponding levels are listed in Table 1. 

Table 1 

Control Factors and Levels 

Factor Level 1 Level 2 Level 3 

A A₁ A₂ A₃ 

B B₁ B₂ B₃ 

C C₁ C₂ C₃ 

3.3 Experimental Design Using Taguchi Method 

Using the Taguchi design of experiments (DOE) technique, the effects of the selected control parameters on EMS 

performance were carefully investigated. The use of a L9 orthogonal array (3³) allows for the evaluation of three parameters 

at three levels with just nine experimental runs. This significantly reduced the experimental effort as compared to a complete 

factorial design.  

Each experimental run's response values, which correspond to a unique combination of factor levels, were recorded using 

the EMS. The experimental arrangement is shown in Table 2. 

 

3.4 Performance Metrics 

Three response characteristics were analyzed: 

Electricity Demand (Y): Shows how much power the EMS uses. Reducing the demand for electricity is the goal. 

Mean Squared Deviation (MSD): Indicates how variable system performance is. Improved robustness and stability are 

indicated by a lower MSD. 

Efficiency (Effi): Shows how well the EMS uses energy. It is good to have higher efficiency values. 

3.5 Signal-to-Noise (S/N) Ratio Analysis 

To evaluate system robustness and performance consistency, signal-to-noise (S/N) ratios were computed for each response 

using Taguchi quality characteristics: 

 

Smaller-is-Better (Electricity Demand, MSD): 

S/N = −10log⁡10 (
1

𝑛
∑𝑦𝑖

2

𝑛

𝑖=1

) 

 

Larger-is-Better (Efficiency): 
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where 𝑦𝑖is the observed response and 𝑛is the number of observations. 

3.6 Statistical Analysis 

Analysis of Variance (ANOVA) was performed to quantify the contribution of each control element and determine its 

statistical significance on the EMS performance responses. Factors with p-values less than 0.05 were considered statistically 

significant at a 95% confidence level.  

Regression models were developed using estimated model coefficients to explain the relationship between control factors 

and S/N ratios. The model's suitability was assessed using the coefficient of determination (R2), modified R2, and standard 

error (S). 

 

3.7 Optimization Procedure 

The optimization process consisted of the following steps: 

Conduct experiments according to the Taguchi L9 orthogonal array. 

Calculate S/N ratios for each response. 

Develop response tables and main effect plots. 

Identify optimal factor levels based on S/N ratio maximization or minimization criteria. 

Validate the results through ANOVA and regression analysis. 

3.8 Software Tools 

All statistical analyses, including Taguchi design, S/N ratio computation, regression modeling, and ANOVA, were conducted 

using Minitab statistical software. Data visualization and result comprehension were made easier by integrated analytical 

tools. 

4. EXPERIMENTAL SETUP AND PROCEDURE 

4.1 Experimental Setup 

The trials focused on an Energy Management System (EMS) designed to evaluate electricity demand, system stability, and 

operational efficiency under different operating conditions. Adjustable parameters in the EMS reflect important operational 

settings that impact power consumption and energy utilization. These parameters were adjusted in compliance with the 

Taguchi experimental methodology in order to assess their individual and combined effects on system performance. 

The experimental examination was carried out under closely controlled conditions to ensure accuracy and repeatability. The 

system was permitted to achieve steady-state operation prior to data collection, and the EMS was configured with preset 

parameter settings for every experimental run. All measurements were made using comparable sample intervals to minimize 

measurement uncertainty. 

4.2 Experimental Design 

A Taguchi L9 orthogonal array (3³) was used in the design of the tests. This method allows for the evaluation of three control 

factors (A, B, and C) at three levels each with fewer experimental runs. The experimental matrix is shown in Table 3. 

 

Table 3 

Taguchi L9 Experimental Matrix 

Experiment No. A B C 

1 1 1 1 

2 1 2 2 

3 1 3 3 
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Experiment No. A B C 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 

4.3 Experimental Procedure 

The experimental procedure followed the steps outlined below: 

The EMS control factors were set according to the L9 orthogonal array for each experimental run. 

The system was operated until steady-state conditions were achieved. 

Electricity demand, mean squared deviation (MSD), and efficiency were measured for each run. 

Measurements were repeated where necessary to reduce random errors. 

The collected data were tabulated for further statistical analysis. 

4.4 Measurement of Performance Parameters 

Electricity Demand (Y):Measured as the average power consumption of the EMS during steady-state operation. 

Mean Squared Deviation (MSD):Calculated to quantify performance variability and robustness of the EMS under different 

operating conditions. 

Efficiency (Effi):Defined as the ratio of useful energy output to total energy input, expressed as a percentage. 

4.5 Experimental Data Collection 

The measured electrical demand, MSD, and efficiency values for each experimental run were meticulously recorded. These 

experimental results served as the basis for the computation of signal-to-noise (S/N) ratios and subsequent statistical analysis. 

Care was taken to provide uniform experimental conditions throughout all runs in order to prevent bias in the results collected. 

4.6 Reliability and Repeatability 

To ensure experimental reliability, the studies were conducted under consistent working conditions and with calibrated 

measuring equipment. Repeatability was verified by maintaining the same factor values and observing minimal variation in 

the recorded responses. The Taguchi signal-to-noise ratio analysis further enhanced resilience by accounting for the 

variability in the experimental data. 

5. RESULTS AND DISCUSSION 

This section presents and discusses the experimental results from the Taguchi-based optimization of the Energy Management 

System (EMS). The study focuses on electricity demand, mean squared deviation (MSD), and system efficiency using signal-

to-noise (S/N) ratios, regression modeling, and analysis of variance (ANOVA). 

 

5.1 Experimental Results 

The experimental results for the L9 orthogonal array demonstrate a noticeable variation in EMS performance across different 

combinations of control factors. MSD values ranged from 28.04 to 112.28, electricity demand ranged from 5.30 to 10.68, 

and system efficiency ranged from 14.30% to 20.20%. These variations show that the selected control parameters have a 

significant impact on EMS performance, supporting the need for systematic tuning. 

 

A B C Y  

1 1 1 5.30  



Mohan T Patel, Dr. Nikhil J. Rathod,  

pg. 2047 
 
 

Journal of Neonatal Surgery | Year: 2024 | Volume: 13 

1 2 2 7.78  

1 3 3 9.16  

2 1 2 5.38  

2 2 3 8.66  

2 3 1 10.68  

3 1 3 5.48  

3 2 1 9.40  

3 3 2 9.44  

A B C MSD 

1 2 2 60.600 

1 3 3 92.212 

2 1 2 28.346 

2 2 3 69.768 

2 3 1 112.283 

3 1 3 28.040 

3 2 1 82.162 

3 3 2 98.030 

5.2 Signal-to-Noise Ratio Analysis 

5.2.1 Electricity Demand 

For electricity demand, the "smaller-is-better" S/N ratio was applied. The S/N ratio answer table shows that factor B has the 

highest Delta value (5.14) and the highest influence, followed by factors C and A. The highest S/N ratios were seen at A₁, 

B₁, and C₂, indicating lower electricity use and improved robustness in these circumstances. 

 

5.2.2 Mean Squared Deviation (MSD) 

MSD was also examined using the "smaller-is-better" criterion. The S/N ratio response shows a considerable effect of factor 

B with a Delta value of 10.85, which is much higher than that of factors A and C. Again, the most effective combination for 

lowering MSD was discovered to be A₁B₁C₂, indicating the stability and consistency of the EMS under these circumstances. 

Level A B C 

1 60.98 28.84 74.86 

2 70.13 70.84 62.33 

3 69.41 100.84 63.34 

Delta 9.15 72.01 12.53 

Rank 3 1 2 
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5.2.3 Efficiency 

Efficiency was evaluated using the "larger-is-better" S/N ratio. In contrast to demand and MSD, factor C was shown to be 

the most significant characteristic, followed by factors A and B. The highest S/N ratios were recorded at A₃, B₂, and C₃, when 

maximum EMS efficiency was attained. 

 

Level A B C 

1 7.413 5.387 8.460 

2 8.240 8.613 7.533 

3 8.107 9.760 7.767 

Delta 0.827 4.373 0.927 

Rank 3 1 2 
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5.3 Analysis of Variance (ANOVA) 

To ascertain each control factor's statistical significance and contribution, an ANOVA was used. 

Factor B was found to be extremely significant (p = 0.001), accounting for the majority of the variation in electricity demand. 

Factors A and C were also significant at the 95% confidence level. 

With an F-value more than 1000, Factor B once again dominated the system response in the MSD analysis, highlighting its 

critical role in lowering variability. 

None of the factors were significantly significant for efficiency at the 95% confidence level; nevertheless, factor C had the 

biggest influence, indicating its importance in enhancing EMS performance.  

The high R2 values (greater than 96% in all cases) attest to the exceptional model adequacy and trustworthy representation 

of the experimental data by the built regression models. 

Source DF Seq SS Adj SS Adj MS F P 

A 2 1.1766 1.1766 0.5883 19.41 0.049 

B 2 44.0714 44.0714 22.0357 726.85 0.001 

C 2 1.1612 1.1612 0.5806 19.15 0.050 

Residual 

Error 

2 0.0606 0.0606 0.0303     

Total 8 46.4698         

 

Source DF Seq SS Adj SS Adj MS F P 

A 2 1.371 1.371 0.6854 7.57 0.117 

B 2 187.313 187.313 93.6567 1033.83 0.001 

C 2 3.707 3.707 1.8535 20.46 0.047 

Residual 

Error 

2 0.181 0.181 0.0906     

Total 8 192.572         

 

5.4 Optimal Parameter Settings 

Based on the S/N ratio and ANOVA analyses: 

Minimum electricity demand: A₁B₁C₂ 

Minimum MSD: A₁B₁C₂ 

Maximum efficiency: A₃B₂C₃ 

The same optimal settings for MSD and electricity demand show that the EMS may simultaneously reduce energy 

consumption and improve stability. However, the optimal design for efficiency varies, highlighting a trade-off between 

demand minimization and efficiency maximization. 

 

5.5 Discussion 

The results demonstrate that, due to its critical role in controlling power demand and system variability, factor B is the most 

significant parameter for EMS optimization. This suggests that robustness and energy savings can be significantly increased 

by factor B-focused operational solutions. However, factor C primarily controls system efficiency, indicating that operating 

conditions for efficiency increases may be different from those for demand minimization.  

The need for multi-objective optimization techniques in EMS design is highlighted by the apparent trade-off between 

efficiency and demand minimization. Even so, the Taguchi method effectively determines trustworthy parameter values for 

particular objectives. 
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6. Conclusion 

In this paper, an Energy Management System (EMS) was optimized for electricity demand using the Taguchi technique. 

Using a L9 orthogonal array, the effects of three significant control factors—A, B, and C—on power demand, mean squared 

deviation (MSD), and system efficiency were evaluated at three levels. To identify optimal parameters and gauge factor 

relevance, regression modeling, ANOVA, and signal-to-noise (S/N) ratio analysis were employed. 

The following are the primary conclusions: 

1. Dominant Factors: It was found that factor B was the most significant factor influencing power demand and MSD, while 

factor C primarily influenced system efficiency. Factor A had moderate effects on every response. 

2. Optimal Settings: The EMS's attainment of maximum efficiency at A₃B₂C₃ and low electricity demand and MSD at A₁B₁C₂ 

demonstrated a trade-off between efficiency optimization and demand reduction. 

3. Method Effectiveness: The Taguchi method successfully reduced the number of experimental runs while yielding 

trustworthy and statistically meaningful insights into factor effects. Regression models demonstrated excellent prediction 

accuracy (R² > 96%), confirming the reliability of the experimental data.  

4. Practical Implications: The study provides specific suggestions for adjusting EMS parameters in order to lower energy 

usage and improve system stability. The results further emphasize the need for multi-objective optimization to reconcile 

conflicting goals such as efficiency and demand reduction. 

In conclusion, our research demonstrates that Taguchi-based optimization is a practical and effective way to enhance EMS 

performance. Future research may build on this work by utilizing multi-objective optimization approaches, real-time adaptive 

control, or renewable energy sources to achieve comprehensive and sustainable energy management systems. 

REFERENCES 

[1] Al Zubaidi, S., & Tomsovic, K. (2021). Energy Management System Architectures and Functionalities: A 

Comprehensive Review. Electric Power Systems Research, 198, 107329. 

[2] Amin, S., Khan, M. J., & Qu, Q. (2019). Optimization Techniques for Demand Side Management in Smart Grid Systems: 

A Review. Renewable and Sustainable Energy Reviews, 112, 97–128. 

[3] Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. (2018). Application of Taguchi and Response Surface Methodology for 

Optimization of Energy Consumption. Journal of Cleaner Production, 180, 720–732. 

[4] Goyal, R., Singh, M., & Gupta, A. (2022). Taguchi–Grey Relational Analysis for Multi Objective Optimization of 

Distribution Networks. International Journal of Electrical Power & Energy Systems, 135, 107469. 

[5] Han, Y., Zeng, P., & Wang, X. (2023). A Review of Energy Management System (EMS) Design and Implementation 

for Smart Grids. IEEE Access, 11, 14521–14542. 

[6] Hocaoglu, F. O., & Karabiber, A. (2019). Pareto Based Multi Objective Optimization Techniques in Microgrid Energy 

Management. Applied Energy, 250, 710–725. 

[7] Lee, J., & Park, Y. (2021). Taguchi Optimization of Control Parameters in Power Electronics for Improved Efficiency 

and Power Quality. IEEE Transactions on Industrial Electronics, 68(4), 3221–3230. 

[8] Liu, H., & Wang, S. (2019). Particle Swarm Optimization Based Residential Load Scheduling for Smart Grids Under 

Time of Use Pricing. Energy, 188, 116040. 

[9] Minitab, LLC. (2024). Minitab Statistical Software: Release 21. Minitab, LLC. 

[10] Singh, R. K., & Sharma, P. (2021). Performance Optimization of Wind Turbines Using Taguchi DOE Under Variable 

Wind Conditions. Renewable Energy, 163, 1466–1478. 

[11] Zhang, S., Li, Y., & Wu, L. (2018). Hybrid Genetic Algorithm for Demand Side Management in Smart Grids. Energy, 

165, 757–768. 

[12] Zheng, X., & Li, J. (2020). Energy Management Systems: Structure, Models and Optimization Framework. Energy 

Reports, 6, 239–252. 

[13] Nur E Alam, M., Abedin, T., Samsudin, N. A., et al. (2025). Optimization of energy management in Malaysian 

microgrids using fuzzy logic based EMS scheduling controller. Scientific Reports, 15, 995. doi:10.1038/s41598 024 

82360 4 — A fuzzy logic EMS improves microgrid scheduling and performance.  

[14] Khan, A. M., Hekmati, A., & Bagheri, M. (2025). Enhancing cost effectiveness in residential microgrids: optimization 

for EMS with proactive EV charging. Frontiers in Energy Research.  

[15] Qamar, H. M., Guo, X., Seif Ghith, E., et al. (2025). Assessment of energy management and power quality improvement 

of hydrogen based microgrid system through PSO MWWO technique. Scientific Reports, 15, 863. doi:10.1038/s41598 

024 78153 4 — Investigates EMS optimization for power quality in hydrogen microgrids.  

[16] Optimal energy management system for grid connected hybrid power plant and battery integrated into multilevel 

configuration. (2024). Energy, 294, 130765 — Presents an EMS for hybrid renewable power systems with experimental 

HIL results.  



Mohan T Patel, Dr. Nikhil J. Rathod,  

pg. 2051 
 
 

Journal of Neonatal Surgery | Year: 2024 | Volume: 13 

[17] Zhang, H., Shi, X., Lu, H., et al. (2025). Energy management method of integrated energy system based on energy and 

carbon pricing strategy and reinforcement learning. Frontiers in Energy Research.  

[18] Etghani, M. M., & Boodaghi, H. (2025). Artificial Neural Networks and Taguchi Methods for Energy Systems 

Optimization: A Comprehensive Review. Energy Engineering, 122(11), 4385–4474 — Reviews ANN and Taguchi 

applications in energy system optimization.  

[19] Energy management system in networked microgrids: an overview. (2024). Energy Systems. Springer — A recent 

survey on EMS architectures and optimization in connected microgrids.  

[20] Zarma, T. A., Ali, E. A., Galadima, A. A., et al. (2025). Energy demand forecasting for hybrid microgrid systems using 

machine learning models. Proceedings of Engineering and Technology Innovation, 29, 68–83 — Focuses on ML based 

demand forecasting in EMS.  

[21] Rathod, N.J., Chopra, M.K., Chaurasiya, P.K. et al. Optimization on the Turning Process Parameters of SS 304 Using 

Taguchi and TOPSIS. Ann. Data. Sci. 10, 1405–1419 (2023). https://doi.org/10.1007/s40745-021-00369-2 22.  

[22] Rathod, N.J., Chopra, M.K., Shelke, S.N. et al. Investigations on hard turning using SS304 sheet metal component grey 

based Taguchi and regression methodology. Int J Interact Des Manuf 18, 2653–2664 (2024). 

https://doi.org/10.1007/s12008-023-01244-5 23.  

[23] N.J. Rathod, M.K. Chopra, U.S. Vidhate, N.B. Gurule, U.V. Saindane, Investigation on the turning process parameters 

for tool life and production time using Taguchi analysis, Materials Today: Proceedings, Volume 47, Part 17, 2021, Pages 

5830-5835, https://doi.org/10.1016/j.matpr.2021.04.199. 24.  

[24] Rathod, N.J., Chopra, M.K., Chaurasiya, P.K. et al. Design and optimization of process parameters for hard turning of 

AISI 304 stainless steel using Taguchi-GRA-PCA. Int J Interact Des Manuf 17, 2403– 2414 (2023). 

https://doi.org/10.1007/s12008-022-01021-w 25.  

[25] Rathod, N.J., Chopra, M.K., Chaurasiya, P.K. et al. Optimization of Tool Life, Surface Roughness and Production Time 

in CNC Turning Process Using Taguchi Method and ANOVA. Ann. Data. Sci. 10, 1179–1197 (2023). 

https://doi.org/10.1007/s40745-022-00423-7 26.  

[26] N.J. Rathod, M.K. Chopra, U.S. Vidhate, U.V. Saindane, Multi objective optimization in turning operation of SS304 

sheet metal component, Materials Today: Proceedings, Volume 47, Part 17, 2021, Pages 5806-5811, 

https://doi.org/10.1016/j.matpr.2021.04.143 27. 

[27]  P. K. Chaurasiya, N. J. Rathod, P. K. Jain, V. Pandey, Shashikant and K. Lala, "Material Selection for Optimal Design 

Using Multi-Criteria Decision Making," 2023 3rd International Conference on Advancement in Electronics & 

Communication Engineering (AECE), GHAZIABAD, India, 2023, pp. 206-210, doi: 

10.1109/AECE59614.2023.10428303. 28. 

[28]  Mahesh T. Dhande, et al. 2023. HMCMA: Design of an Efficient Model with Hybrid Machine Learning in Cyber 

security for Enhanced Detection of Malicious Activities. International Journal on Recent and Innovation Trends in 

Computing and Communication. 11, 11s (Oct. 2023), 721–734. DOI:https://doi.org/10.17762/ijritcc.v11i11s.9729. 

[29] T. Dhande M, Tiwari S, Rathod N. Design of an efficient Malware Prediction Model using Auto Encoded & Attention-

based Recurrent Graph Relationship Analysis. Int. Res. J. multidiscip. Technovation [Internet]. 2025 Jan. 22 [cited 2025 

Dec. 13];7(1):71-87. Available from: https://asianrepo.org/index.php/irjmt/article/view/103 30. 

[30] Kalangi, C., Rathod, N.J., Madhuri, K.S. et al. Performance optimization of ethanol blends in diesel model using Taguchi 

and grey relational approach. Sci Rep 15, 36048 (2025). 31.  

[31] Rathod, N.J., Bonde, P. & Nehete, H.R. Parametric optimization of WEDM of SS 304 stainless steel for material removal 

rate and surface roughness using Taguchi and Response Surface Methodology. Interactions 246, 60 (2025). 

https://doi.org/10.1007/s10751-025-02273-0 32.  

[32] Nikhil Janardan Rathod , Praveen B. M. , Mayur Gitay, Sidhhant N. Patil, Mohan T. Patel, (2025) Optimization Of 

Multiple Objectives in The Machining Process of SS304 Sheet Metal Components.. Journal of Neonatal Surgery, 14 

(14s), 801-809 33. 

[33]  Rathod, N.J. et al. (2026). Wire Electrical Discharge Machining Process Parameter Optimization via the Taguchi 

Method. In: Al-Ramahi, N., Musleh Al-Sartawi, A.M.A., Kanan, M. (eds) Artificial Intelligence in the Digital Era. 

Studies in Systems, Decision and Control, vol 594. Springer, Cham. 34.  

[34] Rathod, N.J. et al. (2026). Aluminum Machining Process Parameter Optimization in WEDM with the GRA Approach. 

In: Al-Ramahi, N., Musleh Al-Sartawi, A.M.A., Kanan, M. (eds) Artificial Intelligence in the Digital Era. Studies in 

Systems, Decision and Control, vol 594. Springer, Cham. 35. 

[35]  Rathod, N.J. et al. (2026). Optimizing Wire Electric Discharge Machining Process Parameters for AISI 304 Stainless 

Steel via Taguchi Design of Experiments. In: Al-Ramahi, N., Musleh Al-Sartawi, A.M.A., Kanan, M. (eds) Artificial 

Intelligence in the Digital Era. Studies in Systems, Decision and Control, vol 594. Springer, Cham. 

https://doi.org/10.1007/978-3-031-89771-9_8 36.  

[36] Rathod, N.J. et al. (2026). SS304 CNC Turning Process Mathematical Modeling and Machining Parameter Optimization 

Utilizing the Taguchi Technique. In: Al-Ramahi, N., Musleh Al-Sartawi, A.M.A., Kanan, M. (eds) Artificial Intelligence 

in the Digital Era. Studies in Systems, Decision and Control, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-



Mohan T Patel, Dr. Nikhil J. Rathod,  

pg. 2052 
 
 

Journal of Neonatal Surgery | Year: 2024 | Volume: 13 

031-89771-9_2 37.  

[37] Nikhil Janardan Rathod, Praveen B. M., Mayur Gitay, Sidhhant N. Patil, Mohan T. Patel, (2025) Implementation of 

Machine Learning Approaches for the Modeling and Predictive Turning Maintenance Operations Incorporating 

Lubrication and Cooling in Systems of Manufacturing. Journal of Neonatal Surgery, 14 (15s), 1741-1748 38. 

[38]  Nikhil J. Rathod, Nilesh Ingale, Mahesh T. Dhande, Santhosh H Pawar, A REVIEW ON AI ENABLED MULTI 

MODEL CARDIOVASCULAR MONITORING SYSTEM FOR PREDICTION OF PHYSIOLOGICAL STRESS, 

Department of Computer Science and Technology, 2025, 180724/IJORAR-1019, 39. 

[39]  Mayur Jayant Gitay, Dr. Nilesh Diwakar, Dr. M. K. Chopra, Dr. Nikhil J. Rathod, Analysis of the performance of a CI 

engine operating in dual fuel mode with biogas and biodiesel, Eur. Chem. Bull. 2023,12(3) 4462-4472 40. 

[40]  Prashant S. Raut, Dr. Nilesh Diwakar, Sumit Raut, Dr. Nikhil J. Rathod, Performance Evaluation and Emission 

Characteristic of Biodiesel (Methyl Ester) CI Engine, Eur. Chem. Bull. 2023, 12 (S3), 2240 – 2245 41. Sumit R. Raut, 

Dr. Nilesh Diwaka, Prashant S. Raut,  

[41] Dr. N. J. Rathod, Additives Characterization for Enhanced Biodiesel Performance in a CI Engine, Eur. Chem. Bull. 

2023, 12 (S3), 2234 – 2239 42.  

[42] Sumit R. Raut, Dr. Nilesh Diwakar, Prashant S. Raut, Dr. N. J. Rathod, The Technique Performance Evaluation and 

Emission Characteristics of diesel, cerium oxide, and ethanol, Eur. Chem. Bull. 2023, 12 (S3), 3172 – 3184. 43.  

[43] Prashant S. Raut, Dr. Nilesh Diwakar, Sumit Raut, Dr. Nikhil J. Rathod, The Technique Performance Evaluation and 

Emission Characteristics of Biodiesel, Eur. Chem. Bull. 2023, 12 (S3), 3147 – 3155 

[44] Dr. Mayur Jayant Gitay, Dr. Nikhil J. Rathod , Mr. Rohit K. Dhende, Mr. Sagar S. Sasan. “PERFORMANCE 

ANALYSIS OF NATURAL FIBER REINFORCED COMPOSITES FOR SUSTAINABLE ENGINEERING 

APPLICATIONS”, Multidisciplinary Journal of Academic Publications ISSN (Online): 3107-538X Vol. 02, Issue 01, 

January – February 2026, MJAP/05/0402. 

[45] Dr. Mayur Jayant Gitay, Dr. Nikhil J. Rathod , Mr. Rohit K. Dhende, Mr. Sagar S. Sasan, “IMPACT AND 

CRASHWORTHINESS PERFORMANCE OF COMPOSITE STRUCTURES IN AUTOMOTIVE APPLICATIONS”, 

Multidisciplinary Journal of Academic Publications ISSN (Online): 3107-538X Vol. 02, Issue 01, January – February 

2026, 2026/MJAP/09/0403. 

[46] Dr. Mayur Jayant Gitay, Dr. Nikhil J. Rathod , Mr. Rohit K. Dhende, Mr. Sagar S. Sasan, “IMPACT AND 

CRASHWORTHINESS PERFORMANCE OF COMPOSITE STRUCTURES IN AUTOMOTIVE APPLICATIONS”, 

Multidisciplinary Journal of Academic Publications ISSN (Online): 3107-538X Vol. 02, Issue 01, January – February 

2026, 2026/MJAP/09/0403. 

[47] Dr. Mayur Jayant Gitay, Dr. Nikhil J. Rathod , Mr. Rohit K. Dhende, Mr. Sagar S. Sasan, “THERMO-MECHANICAL 

PERFORMANCE OF POLYMER MATRIX COMPOSITES: A CRITICAL REVIEW”, Multidisciplinary Journal of 

Academic Publications ISSN (Online): 3107-538X Vol. 02, Issue 01, January – February 2026, 2026/MJAP/09/0405. 

 


