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ABSTRACT 

Accurate and early detection of plant diseases is critical for sustainable agriculture and crop yield optimization. This study 

presents a unified deep learning framework for soybean disease classification, anomaly detection, and spatial localization 

using high-resolution UAV-based imagery. We adopt an attention-based Multi-Instance Learning (MIL) approach for image- 

level disease classification, enabling the model to focus on disease-relevant regions within heterogeneous field scenes using 

only image-level supervision. To detect both known and previously unseen disease patterns, we integrate a memory-based 

patch level anomaly detection mechanism that models healthy soybean appearance in feature space and identifies deviations 

via nearest-neighbor distances. Additionally, we employ a self-supervised contrastive segmentation pipeline to generate 

pixel-wise disease localization maps without requiring manual annotations. The proposed framework addresses key 

challenges in real-world agricultural monitoring, including label scarcity, mixed health states, and complex backgrounds. 

Extensive experiments demonstrate that the integration of MIL-based classification, memory-based anomaly detection, and 

self-supervised segmentation enables robust, scalable, and interpretable disease monitoring from UAV imagery, making the 

framework suitable for precision agriculture applications. 
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1. INTRODUCTION 

 

Plant diseases pose a persistent and significant threat to global food security, with estimated yield losses reaching up to 40% 

in major crops if not managed in a timely manner [1, 2]. Conventional disease monitoring practices rely on manual field 

scouting and expert visual inspection, which are labor-intensive, subjective, and impractical for large-scale agricultural 

systems. The growing demand for sustainable and precision agriculture has therefore motivated the adoption of automated 

disease detection systems based on computer vision and deep learning. 

 

Early deep learning approaches for plant disease identification primarily focused on image-level classification using 

convolutional neural networks (CNNs), achieving high accuracy on benchmark datasets composed of isolated leaf images 

captured under controlled conditions [3, 4]. Subsequent studies introduced deeper architectures and attention mechanisms to 

improve robustness and generalization [5, 6]. Despite these advances, most existing methods implicitly assume that disease 

symptoms are uniformly distributed across an image. This assumption rarely holds in real-world agricultural settings, where 

disease symptoms often appear sparsely and coexist with healthy vegetation, soil, shadows, and weeds. As a result, global 

image classifiers may overlook subtle disease cues or generate overconfident predictions driven by background artifacts. 

 

Unmanned Aerial Vehicles (UAVs) have emerged as a powerful tool for large scale crop monitoring by enabling rapid, non- 

invasive, and high-resolution imaging of agricultural fields [7, 8]. UAV-based imagery captures rich spatial context and 

disease spread patterns that are unavailable in single-leaf datasets, making it well suited for early disease detection and 

precision intervention. However, UAV imagery introduces additional challenges, including mixed healthy and diseased 
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regions within a single image, variable illumination, scale variation, occlusion, and complex backgrounds [9, 10]. These 

factors significantly limit the effectiveness of conventional Image level classification models. 

 

In parallel, anomaly detection has been explored as an alternative paradigm for plant disease identification, particularly for 

detecting rare or previously unseen disease patterns. Reconstruction-based methods such as auto encoders and variational 

models learn representations of healthy plants and flag deviations as anomalies [11]. While effective in controlled 

environments, these approaches often produce blurred reconstructions and exhibit weak localization performance in complex 

agricultural scenes. More recently, memory-based and distance-based anomaly detection methods have demonstrated superior 

localization accuracy by operating directly in feature space rather than pixel space [12]. Nevertheless, their application to 

UAV-based crop disease monitoring remains relatively underexplored. 

 

To address these challenges, we propose a unified deep learning framework that integrates image-level classification, 

unsupervised anomaly detection, and pixel-wise disease localization within a single pipeline. For classification, we adopt an 

attention based Multi-Instance Learning (MIL) formulation that treats each UAV image as a bag of local patches and learns 

to focus on disease-relevant regions using only image-level labels. This formulation explicitly models the heterogeneous 

nature of field imagery and provides inherent interpretability through learned attention weights. For anomaly detection, we 

employ a patch-level memory-based feature embedding approach that models healthy soybean appearance in feature space 

and detects deviations using nearest-neighbor distances, enabling robust detection of both known and unknown disease 

manifestations without requiring diseased annotations. Finally, a self-supervised contrastive segmentation module is used to 

localize disease-affected regions at the pixel level, guided by the fused outputs of classification and anomaly detection. 

We validate the proposed framework on UAV-acquired soybean imagery, a crop of major global importance that is highly 

susceptible to visually similar foliar diseases and pest damage [13, 14]. The main contributions of this work are summarized 

as follows: 

 

• We introduce an attention-based Multi-Instance Learning framework for UAV-based soybean disease classification 

that effectively handles sparse and heterogeneous disease patterns using only image-level supervision. 

• We integrate a memory-based patch-level anomaly detection mechanism capable of identifying both known and 

previously unseen disease patterns without requiring pixel-level or disease-specific annotations. 

• We combine classification confidence and anomaly evidence through a unified fusion strategy to guide self-supervised 

segmentation, resulting in interpretable and spatially precise disease localization under real-world field conditions. 

 
 

2. Related Works 

 

2.1 Plant Disease Classification 

 

Automated plant disease classification has been extensively studied using deep learning, particularly with convolutional neural 

networks (CNNs) that learn hierarchical feature representations from raw images. Early works demonstrated strong 

performance using architectures such as AlexNet, VGG, and ResNet on datasets containing isolated leaf images captured 

under controlled laboratory conditions [3, 4]. Subsequent studies incorporated deeper networks, transfer learning, and attention 

mechanisms to improve robustness and accuracy [5, 15]. However, these approaches often struggle to generalize to real-world 

agricultural environments characterized by complex backgrounds, occlusions, and variable illumination. 

 

Transformer-based architecture has recently been introduced to capture long range spatial dependencies and global contextual 

information [16]. While such models improve resilience to spatial variability, they continue to treat each image as a single 

homogeneous entity. This design limits their effectiveness for UAV imagery, where disease symptoms may occupy only a 

small fraction of the image and coexist with healthy vegetation. To address this limitation, weakly supervised learning 

paradigms such as Multi-Instance Learning (MIL) have gained increasing attention. MIL formulations model each image as a 

collection of instances and infer image-level labels by selectively attending to discriminative regions. Attention-based MIL 

has shown strong performance in medical imaging and remote sensing tasks, where localized abnormalities are embedded 

within large images, but its application to UAV-based plant disease detection remains limited. 

 

2.2 Anomaly Detection for Plant Health Monitoring 

 

Anomaly detection offers a complementary approach to disease identification by modeling normal plant appearance and 

detecting deviations indicative of stress or infection. Autoencoder-based methods and variational approaches reconstruct 

healthy samples and use reconstruction error as an anomaly score [11]. Although effective in controlled settings, these methods 

often produce blurred reconstructions and suffer from limited localization accuracy when applied to complex agricultural 

scenes with high background variability. 
Memory-based and distance-based anomaly detection methods have recently emerged as strong alternatives. These approaches 
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store representative feature embeddings of normal samples and compute anomaly scores using nearest-neighbor distances in 

feature space [12]. Patch-level memory methods, in particular, provide sharp localization of anomalous regions and are well 

suited for high-resolution imagery where disease symptoms are spatially localized. Despite their success in industrial 

inspection and medical anomaly detection, their adoption in UAV-based crop disease monitoring has been relatively sparse. 

 

2.3 Segmentation without Dense Annotations 

 

Pixel-wise localization of plant diseases is typically addressed using fully supervised segmentation networks such as U-Net 

and DeepLab, which require dense, pixel-level annotations [17]. The high cost and subjectivity of annotation limit their 

scalability in large agricultural datasets. To reduce annotation requirements, recent research has explored weakly supervised 

and self-supervised segmentation methods based on contrastive learning and clustering [18–20]. These methods learn 

semantically meaningful feature representations without explicit labels and generate segmentation maps via clustering in 

embedding space. However, their effectiveness often depends on strong upstream signals to associate clusters with disease 

semantics. 

Our work bridges these research directions by integrating attention-based Multi- Instance Learning for classification, memory- 

based patch-level anomaly detection, and self-supervised segmentation within a unified framework. This integration enables 

robust disease identification, detection of unknown anomalies, and interpretable spatial localization under realistic UAV 

imaging conditions. 

 

2.3 Segmentation without Dense Annotations 

 

Pixel-wise localization of plant diseases is typically addressed using fully supervised segmentation networks such as U-Net 

and DeepLab, which require dense, pixel-level annotations [17]. The high cost and subjectivity of annotation limit their 

scalability in large agricultural datasets. To reduce annotation requirements, recent research has explored weakly supervised 

and self-supervised segmentation methods based on contrastive learning and clustering [18–20]. These methods learn 

semantically meaningful feature representations without explicit labels and generate segmentation maps via clustering in 

embedding space. However, their effectiveness often depends on strong upstream signals to associate clusters with disease 

semantics. 

Our work bridges these research directions by integrating attention-based Multi- Instance Learning for classification, memory- 

based patch-level anomaly detection, and self-supervised segmentation within a unified framework. This integration enables 

robust disease identification, detection of unknown anomalies, and interpretable spatial localization under realistic UAV 

imaging conditions. 

 
 

3 Methodology 

 

3.1 Overview of the Proposed Framework 

We propose a unified deep learning framework for robust soybean disease detection using high-resolution UAV-acquired 

RGB imagery. The framework integrates three complementary components: an attention-based Multi-Instance Learning (MIL) 

classifier for image-level disease recognition, a memory-based patch-level anomaly detection module for identifying abnormal 

regions, and a self-supervised segmentation module for fine-grained pixel-wise disease localization, as illustrated in Figure 1. 

 

In the classification stage, each UAV image is decomposed into local patches and treated as a bag of instances. An attention- 

based MIL model aggregates patch-level features to produce image-level disease predictions while highlighting disease- 

relevant regions. In parallel, the anomaly detection module models healthy soybean appearance in feature space using a patch- 

level memory bank and identifies deviations via nearest neighbor distances, enabling detection of both known and unknown 

disease patterns without requiring diseased annotations. 
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Fig. 1 Overview of the proposed framework integrating attention-based Multi-Instance Learning 

for classification, memory-based patch-level anomaly detection, and self-supervised segmentation. 

 

The outputs of the MIL classifier and anomaly detector are fused into a unified confidence score that reflects both semantic 

class evidence and visual abnormality. This score serves as a gating signal for the subsequent self-supervised segmentation 

module, which leverages contrastive representation learning and clustering to generate pixel wise disease localization maps. 

The overall framework achieves robust classification, effective anomaly detection, and interpretable spatial localization 

under realistic UAV imaging conditions. 

 

3.2 Problem Formulation 

 

Let 𝐼 = {𝐼1, 𝐼2, … … . , 𝐼𝑁} denote a dataset of N UAV-acquired RGB images of soybean fields, each image 𝐼𝑖 ∈ ℝ𝐻×𝑊×3 
representing a high-resolution aerial view. Our objective is to develop a robust framework that jointly performs (i) disease 
classification at the image level, (ii) anomaly detection to flag unknown or novel disease phenotypes, and (iii) pixel-wise 
localization of symptomatic regions. Formally, the goal is to learn a mapping: 

𝐹 ∶ 𝐼 → (ŷ, â, Ŝ) 
where: 

 

• ŷ ∈ 𝐶 is the predicted disease class from a predefined set ∁ (including healthy), 

• â ∈ [0,1] is an anomaly score estimating deviation from healthy patterns, 

• Ŝ ∈ {0,1}H×W is a segmentation mask highlighting disease-affected pixels. 

 

This composite prediction enables both coarse-grained (classification) and fine grained (localization) disease monitoring from 

UAV data without relying entirely on pixel-level annotations. Unlike purely supervised approaches, our framework integrates 

supervised, unsupervised, and self-supervised learning paradigms to address field-level variability, dataset limitations, and 

annotation costs, in line with prior works on hybrid plant disease detection [16, 18, 21]. 

 

3.3 Image-Level Classification via Attention-Based Multi-Instance Learning 

 

Unlike conventional image classification models that assume disease symptoms are uniformly distributed across the image, 

UAV-acquired agricultural imagery often contains heterogeneous regions where diseased and healthy plants coexist. To 

address this challenge, we formulate disease classification as a Multi-Instance Learning (MIL) problem, where each UAV 

image is treated as a bag of instances rather than a single holistic sample. 

Given an input image 𝐼𝑖 ∈ ℝ𝐻×𝑊×3 , we divide it into a set of K overlapping patches {𝑥1, 𝑥2, … … . , 𝑥𝐾} using a sliding window 
strategy. Each patch represents an instance within a bag corresponding to the full image. A convolutional backbone network 

𝑓𝜃(. ) (EfficientNet-B0 in our implementation) extracts a feature embedding ℎ𝑘 = 𝑓𝜃(𝑥𝑘) for each patch. 
To aggregate instance-level features into an image-level prediction, we employ an attention-based pooling mechanism. The 

attention weight 𝛼𝑘 for each instance is computed as: 
 

𝛼   = 
exp (𝑤𝑇tanh (𝑉ℎ𝑘)) 

 

(1) 
𝑘 𝐾 

𝑗=1 exp (𝑤𝑇tanh (𝑉ℎ𝑗) 
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where V and w are learnable parameters. The final bag-level representation is obtained as: 
𝐾 
𝑘=1 𝛼𝑘ℎ𝑘 (2) 

 

The aggregated feature z is passed through a fully connected layer to produce class probabilities ŷ ∈ ℝ|𝑐|.This attention 

mechanism enables the model to focus on disease-relevant regions while suppressing background noise such as soil, weeds, 

or shadows 

The MIL-based classifier is trained using standard cross-entropy loss with image-level labels only, making it particularly 

suitable for UAV-based disease monitoring where pixel-level annotations are unavailable. Moreover, the learned attention 

weights provide inherent interpretability by highlighting patches that contribute most strongly to the disease prediction. 

 

3.4 Patch-Level Anomaly Detection via Memory-Based Feature Embedding 

 

To enable robust detection of known and unknown disease patterns without requiring labeled anomalous samples, we adopt a 

memory-based anomaly detection approach inspired by Patch Core. Instead of reconstructing images as in autoencoder-based 

methods, this technique models the distribution of healthy plant appearances directly in feature space. 

During training, only healthy soybean images are used. Each image is divided into local patches, and deep feature embeddings 

are extracted using a pretrained convolutional backbone (ResNet-50). Let 𝑓𝑖,𝑗 ∈ ℝ𝑑 denote the feature embedding 

corresponding to the patch at spatial location (i, j). All embeddings extracted from healthy images are stored in a memory 

bank Ϻ after dimensionality reduction using random projection to reduce redundancy. 

At inference time, given a test image I, patch-level features 𝑓𝑖,𝑗 are extracted and compared against the memory bank using 

nearest-neighbor search. The anomaly score at each spatial location is defined as: 
 

𝐴𝑖𝑗  =  min ||𝑓𝑖,𝑗 − 𝑚||2 (3) 
𝑚∈Ϻ 

 

High anomaly scores indicate patches whose visual patterns deviate significantly from healthy soybean foliage, corresponding 

to potential disease symptoms or pest damage. A global image-level anomaly score â is obtained by aggregating the top 

percentile of patch-level anomaly scores: 

 
â =   

1
 

|Ω| 
∑(𝑖,𝑗)∈ Ω 𝐴 

 

𝑖,𝑗 (4) 

 

𝑧 = ∑ 
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𝜃 

where Ω denotes the set of patches with anomaly scores above the 95th percentile. 

This memory-based approach offers several advantages over reconstruction-based auto encoders: it avoids blurry 

reconstructions, provides sharper localization of anomalies, and remains robust under background clutter and varying 

illumination— conditions commonly encountered in UAV imagery. Importantly, it enables detection of previously unseen 

disease patterns without requiring any retraining or labeled anomalous data. 

 

3.5 Fusion Strategy and Confidence Aggregation 

 

To robustly estimate disease presence and severity under heterogeneous field conditions, we design a confidence-aware fusion 

strategy that integrates the complementary outputs of the attention-based Multi-Instance Learning (MIL) classifier and the 

patch level memory-based anomaly detector. While the MIL classifier provides high-level semantic predictions using image- 

level supervision, the anomaly detector captures fine grained visual irregularities indicative of known and unknown disease 

manifestations. Their fusion enables reliable inference in both in-distribution and out-of-distribution scenarios. 

Let ŷ ∈ ℝ|𝑐| denote the softmax-normalized class probability vector produced by the MIL classifier and let â ∈ [0, 1]represent 

the normalized global anomaly score derived from patch-level nearest-neighbor distances. We compute a unified confidence 

score ĉ ∈ ℝ|𝑐| as a weighted combination of these two signals: 

 

ĉ =  𝛼 . ŷ + (1 −  𝛼) . â  , (5) 

 

where 𝛼 ∈ [0,1] is a tunable fusion coefficient controlling the relative influence of semantic classification and anomaly 

evidence. In this formulation, the anomaly score ˆa is broadcast across the class dimension, acting as a disease presence prior 

that modulates the classifier confidence. Higher anomaly values amplify the likelihood of disease-related classes, while 

suppressing overconfident predictions on visually ambiguous or previously unseen patterns. 

 

The fused confidence score ˆc serves three key purposes within the proposed framework. First, it enables robust decision- 

making by mitigating failure cases where the classifier exhibits high confidence despite abnormal visual cues. Second, it 

facilitates threshold-based rejection of uncertain predictions, allowing samples with low confidence to be flagged for manual 

inspection or deferred diagnosis. Third, it acts as a gating signal for the subsequent segmentation module, ensuring that 

computationally intensive pixel-wise localization is activated only when there is sufficient evidence of disease presence. 

This fusion mechanism effectively bridges discriminative and distance-based reasoning, combining global semantic 

understanding with local deviation awareness. As a result, the proposed framework achieves improved reliability, 

interpretability, and generalization under real-world UAV imaging conditions characterized by background clutter, mixed 

health states, and distributional shifts. 

 

3.6 Pixel-wise Segmentation via Self-Supervised Contrastive Learning 

 

Following disease detection by the fused classification-anomaly scoring module, we activate a segmentation stage to spatially 
localize disease symptoms at the pixel level within UAV-captured RGB images. This segmentation module is conditionally 
invoked only when the aggregated confidence score ĉ surpasses a predefined threshold, thereby reducing unnecessary 
computation on healthy samples and improving scalability. We adopt a contrastive self-supervised learning approach to pretrain 

a ResNet-50 encoder 𝑓𝜃 using the SimCLR framework [22], and alternatively evaluate MoCo [23] and BYOL [24] for 

robustness. Each UAV image is augmented into two distinct views through random cropping, color jittering, Gaussian blur, and 
horizontal flipping. The encoder learns to maximize agreement between augmented views using the normalized temperature- 
scaled cross entropy (NT-Xent) loss: 

 
 

(6) 

 

 
 

where sim(·,·) denotes cosine similarity, τ is the temperature parameter, and 𝑥𝑖 and 𝑥𝑗 are positive pairs derived from the same 

image. This learning enforces semantic consistency in visual representations without requiring any labels. Once the encoder is 

pretrained, we extract the spatial feature map 𝑍 = 𝑓 (𝐼) ∈ ℝ𝐻
′×𝑤′×𝑑 for each image. To derive a pixel-wise segmentation, we 

perform K-means clustering over the H′ × W′ pixel embeddings, with K = 3 representing healthy crops, diseased regions, and 

background.  Cluster  assignments  are then projected back to  the  image grid,   forming  a  coarse  segmentation  mask   𝑀  ∈ 

{0,1,2}𝐻
′×𝑊′

. 

 

To assign semantic meaning to each cluster, we correlate cluster centroids with the anomaly heatmap A∈ ℝ𝐻
′×𝑤′ 

generated by 

the patch-level memory-based anomaly detection module. The cluster with the highest average anomaly score is labeled as the 
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diseased region, while others are mapped to healthy vegetation and background, respectively. The initial segmentation mask is 

further refined using Dense Conditional Random Fields (CRFs) with Gaussian bilateral potentials for appearance and position 

to preserve edge alignment and semantic coherence. Additionally, morphological operations such as opening and closing are 

applied to remove noise and smooth the boundaries of the diseased regions. The final disease mask Mdisease captures fine-grained 

lesion boundaries, suitable for downstream spatial diagnostics and precision intervention. This segmentation module is 

modularly integrated as the final step in our detection framework. It operates only when ĉ indicates confident disease presence, 

leveraging prior classification output ŷ and anomaly score â as gating mechanisms. This design ensures both high-resolution 

localization and computational efficiency, all while maintaining label efficiency by circumventing the need for pixel-wise 

supervision. 

 

4 Dataset Preparation 

 

The dataset utilized in this study is sourced from a publicly available repository on Mendeley Data [25], specifically curated 

for research in plant pathology and precision agriculture. It comprises high-resolution RGB images of soybean leaves captured 

under diverse natural lighting and environmental conditions, reflecting real-world field variability. Each image is labeled based 

on the visible presence of biotic stressors such as fungal infections or pest-induced physical damage. As shown in Figure 2, 

soybean leaves exhibit a variety of diseases, and it is particularly challenging to differentiate between rust and mosaic due to 

their visually similar symptoms. Moreover, traces of pest attacks are difficult to detect in UAV imagery, as the resulting holes 

appear very small from aerial views. Despite these adverse conditions, our proposed technique demonstrates strong performance 

and reliably identifies the affected regions. 
 

 
Fig. 2 Representative UAV-captured soybean leaf samples illustrating various foliar diseases and stress symptoms, 

including rust, mosaic, and pest-induced damage. The visual similarity between certain diseases (e.g., rust vs. 

mosaic) and the subtle appearance of pest traces highlight the challenges of accurate diagnosis from aerial imagery. 
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4.1 Categories and Distribution 

 

The dataset is organized into four categorical folders, each corresponding to a distinct visual phenotype of soybean foliage: 

 

• Healthy Soybean: Images showing healthy leaves with uniform texture and color, free of lesions or discoloration (326 MB). 

• Soybean Mosaic: Infected with mosaic virus, exhibiting characteristic mottling, chlorosis, and color disruption (1.01 GB). 

• Soybean Rust: Marked by rust pustules, typically reddish-brown lesions concentrated on the leaf underside (1.7 GB). 

• Pest Attack (Semilooper and Caterpillar): Includes leaf damage such as holes, bites, and deformation caused by chewing 

insects 

The image resolutions vary between 1024 × 768 and 3000 × 2000 pixels, with heterogeneous backgrounds including 

soil, sky, weeds, and other field artifacts, posing realistic challenges for vision models. 

 

4.2 Cleaning and Label Assignment 

 

To ensure dataset integrity and minimize redundancy, a two-stage cleaning process was applied. First, corrupted or unreadable 

files were identified and removed. Next, duplicate images were eliminated using perceptual hashing (pHash) followed by cosine 

similarity thresholding. Labels were assigned according to directory structure: 0 for Healthy, 1 for Mosaic, 2 for Rust, and 3 for 

Pest Attack, enabling direct use in supervised classification tasks. 

 

4.3 Resizing and Normalization 

 

All images were resized to a uniform resolution of 224 × 224 pixels using bicubic interpolation, preserving aspect ratio and 

detail fidelity. For normalization, standard ImageNet mean and standard deviation statistics were employed: 

𝐼𝑛𝑜𝑟𝑚 
= 

𝐼−𝜇
, 𝜇 = [0.485, 0.456, 0.406], 𝜎 = [0.229, 0.224, 0.225] 

𝜎 

This step ensures compatibility with pretrained backbone models used in both classification and segmentation modules. 

 

4.4 Data Augmentation 

 

To enhance model generalization to variable UAV capture conditions, extensive on the-fly data augmentation was applied 

during training. This includes: 

• Random horizontal and vertical flips 

• Rotation within a 30° range 

• Brightness and contrast jittering 

• Random zooming up to 20% 

• Gaussian noise injection 

 

These augmentations simulate UAV-based variations such as angular distortions, lighting shifts, and minor occlusions. 

 

4.5 Dataset Splits 

 

The complete dataset was partitioned into training, validation, and testing subsets in a stratified manner to preserve class 

proportions: 

• Training set (70%): Used for supervised and self-supervised model training. 

• Validation set (15%): Used for hyperparameter tuning and early stopping. 

• Test set (15%): Held out for final model evaluation and benchmarking. 

 

This split enables a rigorous assessment of model performance under realistic, unseen conditions. 

 

4.6 Task-Specific Preprocessing 

 

To align with the multi-task pipeline architecture, the dataset was tailored differently for each subtask: 

• Classification: All categories were included, and labels were converted to one-hot encoding for cross-entropy training. 

• Anomaly Detection: Only healthy soybean images were used to construct a reference memory bank of patch-level feature 

embeddings for memory-based anomaly detection. No diseased samples were required during this stage. 
• Unsupervised Segmentation: Raw RGB images were used without labels. These were fed into the contrastive learning 

framework (SimCLR, MoCo, BYOL) to learn dense per-pixel representations for clustering-based segmentation. 

This modular preprocessing allows seamless integration into the respective classification, anomaly detection, and segmentation 

branches of the pipeline. 
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5 Training and Implementation Details 

 

This section outlines the training configurations and loss formulations for each component of our proposed pipeline. We provide 

mathematical expressions for the loss functions used in the classifier, anomaly detector, and segmentation modules. All models 

were implemented in PyTorch 2.0 and trained on a workstation equipped with an NVIDIA RTX A6000 GPU (48 GB VRAM), 

128 GB RAM, and an AMD Threadripper 3970X CPU. 

 

5.1 Training of the MIL-Based Classification Module 

 

The attention-based Multi-Instance Learning (MIL) classifier is trained using only image-level disease labels. Each UAV image 

is decomposed into a set of overlapping patches of size 224 × 224 pixels with a stride of 112 pixels, resulting in a variable 

number of instances per image. An EfficientNet-B0 backbone pretrained on ImageNet is used to extract instance-level feature 

embeddings. 

The attention pooling module and the backbone are jointly optimized using crossentropy loss. Given a batch of images and their 

corresponding labels, the model predicts image-level class probabilities by aggregating instance features via learned attention 

weights. The optimization objective is defined as: 

 

  (7) 

where C is the number of disease classes and 𝑝𝑖
(𝑐) denotes the predicted probability for class c. 

Training is performed using the AdamW optimizer with an initial learning rate of 2 × 10−4 and a batch size of 16 images 

(bags). The model is trained for up to 80 epochs with early stopping based on validation F1-score. Standard data augmentation 

techniques, including random flipping, color jittering, and rotation, are applied to improve generalization under varying UAV 

capture conditions. 

 
 

5.2 Training of the Patch-Level Anomaly Detection Module 

 

The anomaly detection component is based on a memory-based patch embedding strategy and does not require explicit 

supervised training. Only healthy soybean images from the training set are used to construct the reference feature memory. 

Each image is divided into local patches, and deep feature embeddings are extracted using a ResNet-50 backbone pretrained on 

ImageNet and kept frozen during this process. 

To reduce redundancy and memory footprint, a coreset sampling strategy is applied to select a representative subset of patch 

embeddings. The resulting memory bank stores prototypical healthy feature representations in a low-dimensional embedding 

space. During inference, patch-level features extracted from test images are compared against the memory bank using Euclidean 

distance, and anomaly scores are computed based on nearest-neighbor distances. 

For computational efficiency, approximate nearest neighbor search is implemented using FAISS. The anomaly detector is fully 

unsupervised and does not require any parameter tuning beyond the selection of the coreset size and aggregation percentile. 

This design enables robust detection of both known and previously unseen disease patterns under real-world UAV imaging 

conditions. 

 

5.3 Contrastive Segmentation Module 

 

For unsupervised segmentation, we pretrain a ResNet-50 encoder via contrastive learning using SimCLR. Given two augmented 

views 𝑥𝑖 and 𝑥𝑗 of the same image, the goal is to bring their representations 𝑧𝑖 and 𝑧𝑗 closer, while pushing apart different 

samples. The InfoNCE loss is: 

 
 

(8) 

 

 
We use a two-layer projection head and K-means clustering on the learned pixel embeddings to obtain segmentation masks. 
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5.4 Fusion Strategy 

 

The final disease prediction score Sfused is computed by linearly fusing the classifier score Scls with the normalized anomaly 

residual score Sanom : 

𝑆𝑓𝑢𝑠𝑒𝑑  =  𝛼. 𝑆𝑐𝑙𝑠  + (1 − 𝛼). 𝑆𝑎𝑛𝑜𝑚 (9) 

Where 𝛼 ∈ [0,1] is a tunable fusion weight. We set α = 0.6 based on validation set performance. A threshold τ = 0.65 is applied 

to Sfused for binary decision-making (disease vs. no-disease). 

 

5.5 Post-Processing 

 

Segmentation masks obtained via clustering are refined using a DenseCRF with Gaussian pairwise potentials: 

• Spatial standard deviation: σspatial = 3 

• Color standard deviation: σcolor = 10 

• Compatibility weight: w = 5 

 

This is followed by morphological operations (opening + closing) with a 3 × 3 structuring element to remove noise and fill 

holes. 

 

6 Experiments and Results 

 

6.1 Evaluation Metrics 

 

To comprehensively evaluate the performance of the proposed framework across the three primary tasks—disease classification, 

anomaly localization, and unsupervised segmentation—we employ a set of standard and task-specific evaluation metrics. 

1) Classification Metrics: For multi-class disease classification, we report accuracy, precision, recall, and F1-score. In addition, 

we compute the Area Under the Receiver Operating Characteristic Curve (ROC-AUC) to assess class separability under 

imbalanced conditions. 

2) Anomaly Detection Metrics: We evaluate the performance of the memory based patch-level anomaly detector using: 

• AUROC: Measures the ability to distinguish between normal and anomalous regions. 

• Pixel-wise F1-score: Computed from thresholded anomaly heatmaps. 

• Mean Intersection over Union (mIoU): Quantifies overlap between predicted anomaly regions and ground-truth masks. 

 

3) Segmentation Metrics: For unsupervised segmentation, we report: 

•mIoU: Averaged across all predicted segments aligned with ground-truth regions. 

•Adjusted Rand Index (ARI): Measures clustering consistency between predicted segmentation and annotated masks. 

All metrics are averaged over the test set and reported per class where applicable. 

6.2 Baselines and Comparison Models 

 

To validate the effectiveness of our approach, we compare it against strong baselines tailored to each task. 

 

1) Classification Baselines: 

• ResNet-50 [26]: A widely used CNN trained using cross-entropy loss. 

• EfficientNet-B0 [27]: A parameter-efficient CNN architecture. 

 

2) Anomaly Detection Baselines: 

• Vanilla Autoencoder (AE): Reconstruction-error–based anomaly detection. 

• f-AnoGAN [28]: GAN-based anomaly detection using feature-space distance. 

• PatchCore [12]: Patch-level memory-based anomaly detection using nearestneighbor distances. 

 

3) Segmentation Baselines (Unsupervised): 

• PiCIE [19] : Contrastive clustering-based unsupervised segmentation. 

• STEGO [20] : Self-supervised semantic grouping using feature consistency. 

 

All baselines are trained using identical data splits and computational budgets for fairness. 

 

6.3 Quantitative Results 

 

We first report the overall performance of the proposed fusion framework, which integrates attention-based MIL classification, 
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memory-based anomaly detection, and selfsupervised segmentation. The complete pipeline achieves a fusion accuracy of 

94.8%, demonstrating its effectiveness in identifying disease-affected UAV images. Furthermore, the segmentation module 

produces spatially coherent disease maps, as reflected by strong mIoU and ARI scores (Table 3), indicating improved 

interpretability and localization accuracy. 
 

1) Disease Classification: Table 1 summarizes classification performance. The proposed attention-based MIL classifier 

outperforms CNN baselines by effectively focusing on disease-relevant patches within heterogeneous UAV imagery. 

 
Table 1 Classification performance across models. 

 
Model Accuracy F1-score Recall ROC-AUC 

ResNet-50 85.6 84.3 83.7 0.887 

EfficientNet-B0 88.1 87.6 86.9 0.903 

MIL (ours) 92.4 91.9 91.2 0.941 

 

2) Anomaly Detection: Table 2 compares anomaly detection performance. The proposed memory-based patch-level 

anomaly detector achieves the highest AUROC and pixel-level F1-score, benefiting from direct feature-space distance modeling 

rather than image reconstruction. 

 

Table 2 Anomaly detection performance on test set. 

 
Model AUROC mIoU Pixel-F1 

AE 0.781 0.342 0.501 

f-AnoGAN 0.805 0.391 0.527 

PatchCore 0.861 0.403 0.573 

Ours (Memory-based) 0.918 0.457 0.624 

 

3) Segmentation: Table 3 reports segmentation accuracy. The proposed fusionguided segmentation consistently 

outperforms unsupervised baselines, capturing finegrained disease boundaries more accurately. 

 

Table 3 Segmentation performance (unsupervised methods). 

 

 

Model mIoU ARI 

PiCIE 0.512 0.402 

STEGO 0.538 0.425 

Ours (MIL + Memory + CRF) 0.577 0.463 
 

6.5 Ablation Studies 

To analyze the contribution of each module, we conduct systematic ablation experiments as summarized in Table 4. Removing 

the memory-based anomaly detection module leads to a noticeable drop in anomaly localization performance, highlighting the 

importance of patch-level feature distance modeling for detecting unseen disease patterns. Excluding the attention-based MIL 

pooling degrades classification accuracy, confirming its role in focusing on disease-relevant regions within heterogeneous UAV 

imagery. 

We further evaluate the impact of the DenseCRF post-processing step. Without CRF refinement, segmentation outputs exhibit 

noisier boundaries and fragmented regions, whereas CRF improves spatial coherence and boundary alignment. 

Finally, we vary the fusion weight α in Equation 9 and observe segmentation performance. Results indicate that α = 0.6 yields 

the best balance between semantic classification confidence and anomaly evidence. 
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Fig. 3 Qualitative comparison of model outputs across tasks. 

 

Table 4 Ablation study showing the effect of each component. 

 

Configuration Classification Anomaly AUROC) Fusion Acc 

MIL only 92.4 - - 

MIL + Anomaly (no CRF) 92.4 0.918 93.6 

MIL + Anomaly + CRF (full) 93.1 0.918 94.8 

 

 

6.6 Discussion 

 

Our results demonstrate that integrating attention-based Multi-Instance Learning with memory-based patch-level anomaly 

detection significantly enhances robustness and generalization under real-world UAV imaging conditions. The MIL classifier 

effectively captures high-level semantic cues by selectively attending to disease-relevant regions, while the anomaly detector 

complements this with fine-grained localization based on feature-space deviations from healthy plant appearance. 

Unlike reconstruction-based methods, the proposed memory-based anomaly detector operates directly in feature space, enabling 

sharper anomaly localization and improved stability under background clutter and illumination variations. The fusion of 

semantic classification confidence with anomaly evidence allows the segmentation module to produce spatially coherent and 

interpretable disease masks. 

One limitation of the framework is the reliance on representative healthy samples for constructing the anomaly memory bank. 

Additionally, DenseCRF introduces computational overhead during inference. Future work will explore lightweight learned 

refinement modules and adaptive memory updates to further improve efficiency and scalability. 
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7 Conclusion 

 

In this work, we presented a unified framework that integrates classification, anomaly detection, and unsupervised segmentation 

for the task of crop disease diagnosis using multimodal self-supervised learning. By leveraging the complementary strengths of 

attention-based Multi-Instance Learning and memory-based patch-level anomaly detection, we demonstrate a scalable and 

interpretable approach to disease localization and segmentation with minimal annotation overhead. Our architecture 

successfully tackles three core challenges in plant phenotyping: (1) accurate disease classification under visual variability, (2) 

robust anomaly detection in the absence of pixel-level supervision, and (3) interpretable segmentation of affected regions using 

a hybrid attention-anomaly fusion strategy. Extensive experiments conducted on a curated multi-crop disease dataset validate 

the superiority of our method over both traditional CNN-based classifiers and existing unsupervised segmentation techniques. 

Quantitative evaluations across multiple metrics including AUROC, mIoU, F1-score, and ARI highlight the benefit of each 

architectural component, particularly the role of attention-based MIL in classification, memory-based anomaly detection in 

identifying unseen disease patterns, and DenseCRF post-processing in refining boundary precision. Qualitative analysis further 

supports the interpretability and spatial coherence of the model outputs. This work establishes a strong foundation for deploying 

hybrid weakly supervised vision frameworks in data-scarce agricultural environments. 
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