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ABSTRACT

Oxidative stress plays a pivotal role in chronic kidney disease (CKD) pathogenesis, particularly in hypertensive patients,
creating a self-perpetuating cycle of renal damage. This study investigated oxidative stress mechanisms in chronic
hypertension and renal impairment while validating related clinical biomarkers through machine learning approaches. A
comprehensive analysis was conducted using clinical datasets containing 25 parameters from patients with varying kidney
function stages. Three machine learning algorithms i.e. K-Nearest Neighbors, Decision Tree, and AdaBoostwere employed
for CKD prediction, with performance evaluated using accuracy, precision, recall, and AUC metrics. The Decision Tree
algorithm achieved exceptional performance with 97.5% accuracy and 0.969 AUC, followed by AdaBoost (96.7% accuracy,
0.962 AUC), while KNN showed moderate performance (66.7% accuracy). Significant distributional differences between
CKD and non-CKD populations were observed for oxidative stress-related parameters, with blood glucose showing
pronounced separation consistent with hyperglycemia-induced oxidative stress. Hemoglobin and albumin levels reflected
oxidative damage-associated anemia and compromised antioxidant defenses, respectively. The superior performance of tree-
based algorithms suggests discrete oxidative stress thresholds aligning with established pathophysiological mechanisms.
These findings demonstrate that machine learning can effectively validate oxidative stress-related biomarkers for CKD
prediction, supporting computational approaches for early detection and personalized antioxidant intervention strategies to
break the oxidative stress cycle in kidney disease progression..
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1. INTRODUCTION

Machine learning has fundamentally changed how industries approach complex problems and make critical
decisions. In manufacturing, these algorithms have improved production processes, enhanced quality control,
and created maintenance systems that predict equipment failures before they occur, saving companies significant
time and resources [1-6]. The financial sector has adopted machine learning for detecting fraudulent transactions,
automating trading decisions, and assessing investment risks, while transportation companies use these
technologies for developing self-driving vehicles and optimizing delivery routes. However, the most significant
and potentially life-saving applications of machine learning have emerged in healthcare.

Healthcare systems worldwide are experiencing a data revolution, with machine learning playing an increasingly
important role in medical practice. These computational methods can analyze enormous amounts of medical
information to discover patterns that traditional analysis might miss [7-9]. Medical imaging, diagnostic procedures,
drug development, and treatment planning have all benefited from machine learning applications that help doctors
make better decisions, reduce errors, and improve patient care. Electronic health records, genetic information,
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patient monitoring now generate massive amounts of data that machine learning algorithms can process to predict how
diseases will progress, identify high-risk patients, and customize treatments for individual patients.

Chronic diseases present particular opportunities for machine learning applications because they involve complicated
biological processes with multiple contributing factors. Chronic kidney disease (CKD) exemplifies this complexity, where
early detection and treatment are essential for preventing progression to complete kidney failure [10-12]. Current diagnostic
methods for CKD depend mainly on measuring creatinine levels in blood and calculating kidney filtration rates, but these
tests often fail to detect kidney problems until substantial damage has already occurred. This limitation highlights the urgent

need for more sensitive and predictive methods that can identify patients at risk before permanent kidney damage develops.

The biological processes underlying CKD, especially when associated with high blood pressure, involve intricate molecular
mechanisms that go beyond simple blood flow problems. Growing scientific evidence indicates that oxidative stress plays a
fundamental role in how kidney disease begins and worsens, creating a destructive cycle where harmful molecules called
reactive oxygen species overwhelm the body's natural protective systems, causing cell damage, inflammation, and
progressive kidney destruction. In patients with high blood pressure, this oxidative stress cycle becomes more severe due to
the physical stress from elevated blood pressure, blood vessel dysfunction, and activation of hormone systems that control
blood pressure and fluid balance.

The connection between chronic high blood pressure and kidney damage represents a complex two-way process where each
condition makes the other worse, creating what researchers call the "hypertension-CKD cycle." Oxidative stress acts as both
a result and a cause of this disease process, making it an important target for understanding how the disease works and
developing prediction models [13-15]. Standard clinical measurements used to assess CKDincluding blood counts, protein
levels, blood sugar, and mineral balanceare closely connected to oxidative stress pathways, but their relationships to
underlying molecular processes have not been systematically studied using computational methods.

Recent developments in machine learning provide new opportunities to uncover these hidden connections and confirm the
clinical importance of oxidative stress markers in predicting CKD. By analyzing patterns in routinely collected medical data,
machine learning algorithms can potentially identify oxidative stress patterns that predict disease progression more accurately
than traditional risk assessment methods. This computational approach not only improves our ability to predict disease
outcomes but also provides insights into disease mechanisms that can guide treatment strategies aimed at interrupting the
oxidative stress cycle.

This study addresses this important knowledge gap by examining the role of oxidative stress in chronic high blood pressure
and kidney damage while simultaneously testing oxidative stress-related clinical measurements through machine learning-
based prediction models. By connecting molecular mechanisms with computational analysis, this research aims to establish
a comprehensive framework for understanding and predicting CKD progression, ultimately contributing to more effective
early detection strategies and targeted treatments that can break the cycle of oxidative stress-related kidney damage.

2. Methodology

This study employed a cross-sectional analytical design shown in Figure 1 to investigate the relationship between oxidative
stress biomarkers and chronic kidney disease progression using machine learning approaches. The research utilized a
comprehensive clinical dataset containing demographic, biochemical, and physiological parameters from patients with
varying stages of kidney function. The study protocol integrated traditional epidemiological methods with advanced
computational techniques to validate oxidative stress-related clinical parameters in CKD prediction.
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Figure 1. Machine learning workflow for chronic kidney disease (CKD) prediction using oxidative stress-related
clinical parameters. The pipeline encompasses data collection of 25 clinical parameters, preprocessing and feature
selection to optimize predictive variables, followed by training and evaluation of three machine learning algorithms
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The analysis was conducted using a clinical dataset comprising 400 patient records with complete information on 25 clinical
parameters. The study population included both patients diagnosed with chronic kidney disease and healthy controls,
providing a balanced representation for binary classification analysis. Inclusion criteria encompassed adult patients (>18
years) with complete clinical data, while exclusion criteria included patients with incomplete records, acute kidney injury,
or missing essential laboratory values. The dataset contained comprehensive information on hematological parameters (red
blood cell count, white blood cell count, hemoglobin, packed cell volume), biochemical markers (albumin, blood glucose,
blood urea, sodium), and clinical indicators (blood pressure status, diabetes presence, specific gravity).

Clinical parameters were selected based on their established relationships to oxidative stress pathways in chronic kidney
disease. Blood glucose levels were included as hyperglycemia is known to increase reactive oxygen species production and
contribute to diabetic nephropathy. Hemoglobin and packed cell volume were selected as anemia in CKD patients often
results from oxidative damage to erythropoietin-producing cells and iron metabolism disruption. Albumin concentration was
chosen because serum albumin serves as an important endogenous antioxidant, and its reduction indicates compromised
antioxidant defenses. Blood pressure parameters were included as hypertension both contributes to and results from oxidative
stress in the kidney. Additional parameters such as blood urea, sodium levels, and specific gravity reflect kidney function
status and are influenced by oxidative stress-mediated nephron damage.

Data preprocessing involved several sequential steps to ensure data quality and model reliability. Missing values were
identified and handled using appropriate imputation techniques, with median imputation applied for numerical variables and
mode imputation for categorical variables. Outlier detection was performed using interquartile range methods, with extreme
values investigated for clinical plausibility. Categorical variables were encoded using label encoding techniques to convert
text-based classifications into numerical formats suitable for machine learning algorithms. Feature scaling was applied using
standardization methods to normalize variables with different measurement scales and ranges, ensuring equal contribution
of all parameters to model training.

Feature selection was conducted to identify the most predictive subset of clinical parameters while reducing computational
complexity and avoiding overfitting. Multiple feature selection techniques were employed, including correlation analysis to
identify highly correlated features, univariate statistical tests to assess individual parameter significance, and recursive
feature elimination to systematically remove less important variables. The final feature set was optimized to approximately
30% of the original parameters, representing the most informative variables for CKD prediction while maintaining clinical
interpretability.

Three distinct machine learning algorithms were implemented to provide comprehensive model comparison and validation.
K-Nearest Neighbors (KNN) was selected as a distance-based algorithm that classifies samples based on similarity to
neighboring data points, with hyperparameter tuning performed to optimize the number of neighbors. Decision Tree
algorithm was chosen for its interpretability and ability to capture non-linear relationships between variables, with pruning
techniques applied to prevent overfitting. AdaBoost (Adaptive Boosting) was implemented as an ensemble method that
combines multiple weak learners to create a stronger predictive model, with sequential learning to focus on previously
misclassified samples.

The dataset was randomly divided into training and testing subsets using an 80:20 split ratio to ensure adequate data for both
model development and evaluation. Cross-validation techniques were employed during training to assess model stability
and generalization capability. Hyperparameter optimization was performed using grid search methods to identify optimal
parameter combinations for each algorithm. Model training involved iterative processes where algorithms learned patterns
from training data while monitoring for overfitting through validation curves and learning curves.

Model performance was comprehensively evaluated using multiple metrics to assess different aspects of predictive
capability. Accuracy was calculated as the proportion of correctly classified samples to total samples. Precision was measured
as the ratio of true positive predictions to total positive predictions, indicating the model's ability to avoid false positives.
Recall (sensitivity) was computed as the ratio of true positive predictions to actual positive cases, reflecting the model's
ability to identify CKD patients. F1-score was calculated as the harmonic mean of precision and recall, providing a balanced
performance measure. Area Under the Curve (AUC) was determined from Receiver Operating Characteristic (ROC) curves
to evaluate model discrimination capability across all classification thresholds.

Statistical analysis included kernel density estimation to visualize parameter distributions between CKD and non-CKD
populations, revealing distributional differences that support oxidative stress hypotheses. Confusion matrices were generated
to analyze classification patterns and identify systematic prediction errors. ROC curves and Precision-Recall curves were
constructed to visualize model performance across different threshold settings and assess performance in the context of class
imbalance. Comparative analysis was performed to rank algorithm performance and identify the most suitable approach for
CKD prediction.

The relationship between identified predictive parameters and established oxidative stress mechanisms was analyzed through
literature review and biological pathway mapping. Clinical parameters showing strong predictive power were correlated
with known oxidative stress biomarkers and pathways to validate the mechanistic relevance of the machine learning findings.
This analysis aimed to establish biological plausibility for the computational results and support the hypothesis that routine
clinical parameters can serve as surrogate markers for oxidative stress status in CKD patients.
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The study utilized anonymized clinical data with no patient identifiers, ensuring compliance with privacy regulations and
ethical standards. All analyses were conducted on de-identified datasets, and results were reported in aggregate form to
protect individual patient confidentiality.

3. Results and Discussion

The distribution analysis shown in Figure 2 of numerical features highlights substantial variability across clinical indicators.
Age and haemoglobin display approximately normal-like distributions with moderate skewness, whereas blood pressure
exhibits a skew toward lower values, indicating clustering of patients with reduced blood pressure levels. Variables such as
blood glucose (random), blood urea, serum creatinine, albumin, and sugar are highly right-skewed, reflecting the presence
of extreme values, possibly corresponding to abnormal or diseased states. Electrolytes such as sodium and potassium are
more tightly distributed, suggesting stable physiological ranges in most patients. In contrast, white blood cell count and red
blood cell count show asymmetric distributions, indicative of pathological variation within the population. Features like
specific gravity and packed cell volume present multimodal or irregular patterns, which may reflect measurement constraints
or clinical subgroups within the dataset.

1
1
| i .. .

Figure 2. Distribution plots of numerical clinical features in the dataset. The histograms with kernel density
estimates illustrate the variability and skewness across patient characteristics. Age and haemoglobin are relatively
symmetric, while blood pressure shows lower-range skewness. Several biochemical markers (blood glucose, blood

urea, serum creatinine, albumin, and sugar) are highly right-skewed, reflecting abnormal values in subsets of
patients. Electrolytes (sodium and potassium) demonstrate narrow ranges, whereas blood cell counts exhibit
asymmetric distributions, suggesting pathological heterogeneity

The distribution of categorical features shown in Figure 3 reveals marked imbalances across several clinical attributes. Most
patients exhibited normal red blood cells and pus cells, with a minority showing abnormal findings. Similarly, the majority
of patients did not present pus cell clumps or bacteria, suggesting these are less common markers in the dataset. Lifestyle-
and disease-related variables such as hypertension and diabetes mellitus showed considerable prevalence, though still fewer
cases than those without these conditions. Coronary artery disease was reported only in a small subset of patients. Appetite
was predominantly recorded as good, while poor appetite appeared less frequently. Edema and anaemia were also less
prevalent compared to their absence. Importantly, the class variable indicates that while a higher proportion of patients were
classified as negative (class 0), a significant number were positive (class 1), confirming the dataset’s relevance for predictive
modeling of disease outcomes. These distributions highlight both the dominance of normal/negative states for most variables
and the presence of clinically significant subgroups that may drive disease classification.
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Figure 3. Distribution of categorical clinical features in the dataset. The majority of patients showed normal red
blood cells and pus cells, absence of pus cell clumps and bacteria, and no coronary artery disease. Conditions such
as hypertension, diabetes, anaemia, and edema were present in smaller but relevant proportions. Appetite was
largely good, and the outcome variable (class) showed more negatives than positives, reflecting dataset imbalance

Based on the correlation matrix heatmap shown in Figure 4 of numeric features from your dataset, several key patterns and
relationships emerge that are highly relevant to kidney disease biomarkers. The analysis reveals a complex interplay of
physiological parameters that collectively contribute to renal health assessment.The strongest correlations observed are
among hematological parameters, with haemoglobin and packed cell volume showing an exceptionally high positive
correlation (r = 0.90), indicating these measures of anemia are closely related, which is clinically significant as anemia is a
common complication of chronic kidney disease. These two parameters also demonstrate strong positive correlations with
specific_gravity (r = 0.60), suggesting a relationship between urine concentration ability and hematological status. The target
variable 'class' (likely indicating kidney disease presence/severity) shows particularly strong positive correlations with
specific_gravity (r = 0.73), haemoglobin (r = 0.77), and packed cell volume (r = 0.74), indicating these are potentially
important diagnostic markers.

Notably, albumin demonstrates strong negative correlations with haemoglobin (r = -0.63) and packed cell volume (r = -
0.61), which may reflect the relationship between proteinuria and anemia in renal impairment. The biochemical markers
blood urea and serum_creatinine show a moderate positive correlation (r = 0.59), consistent with their known relationship
as indicators of renal filtration function. Interestingly, serum creatinine and sodium exhibit a relatively strong positive
correlation (r = 0.69), which may warrant further investigation into electrolyte balance and renal function. The pattern of
correlations overall suggests a coherent physiological narrative where impairment in renal function manifests through
interrelated changes in multiple biomarker systems including hematological parameters, urinary concentration ability, and
waste product accumulation.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 1s pg. 1475



Wajihus shams, M. Mustafa khan, Girish Chandra Sharma, Anupama Sharma

age. 016 -0.19 012 022 028 02 013 -0.1 0058 -0.19 -0.28 012 -0.27 -0.23
blood pressure o.as --n.zz 016 0.22 016 0.9 0.15 -0.1Z 0.075 -0.31 -0.33 0.03 -0.26 -0.29 1.00

specific_gravity o1 -0.22 --0.41 -0.3 -0.37 -0.31 -0.36 0.41 -0.073 -0.24

albumin 01z oas -n.u- 027 038 045 04 -046 0.13 |

sugar .2z 0.22 -03 0.27 -m 0.17 0.22 -0.13 0.22 -0.22 -0.24 0.18 -0.24 -0.34 0.50

.
{
blood_glucose_random ©.2a o016 037 038 @- 014 011 -0.27 0.067 -0.31 -0.3 015 -0.28 -0.42 a
; 0.25 =
blood_urea o2 o019 -0.31 045 017 014 - 0.3z | 0.36 | RS ENIE 0.05 -0.38 %
[s)
serum_creatinine 013 015 036 04 022 011 5 - 0.33 0.4 0.4 00064 04 0.3 0.00 Lé
2
sodium 0.1 -0.12 041 046 0.13 -0.27 0.098 0.37 038 0.0073 0.34 0.38 ‘n':'
-0.25Q
potassium 0.058 0.075 -0.073 0.13 022 0.067 0.36 0.33 n.ons-—n.u 0.16 -0.11 -0.16 -0.085 =
Q
haemoglobin 819 -a.31 .31 L8 04 037 013 -n -0.17 H 077 —-0.50
packed cell volume -0.24 -0.33 [0 E050 024 0.3 030 04 038 -0.16 ﬂ. EFS 070 (072
-0.75
white_blood cell count 012 o003 -0.24 023 018 015 -0. 5 --u,l -0.

red_blood_cell_count -0.27 -0.26 | 024 -0.28 -1.00

Figure 4. Correlation matrix heatmap of clinical parameters. The color intensity and numerical values in each cell
represent the Pearson correlation coefficient (r) between variables, ranging from -1 (strong negative correlation,
dark blue) to +1 (strong positive correlation, dark red). Strong intercorrelations are observed among hematological
parameters (e.g., haemoglobin and packed_cell_volume, r = 0.90) and with the target variable (class)

Based on the violin plot distributions shown in Figure 5 of various clinical parameters across different classes (likely
representing kidney disease status), several important patterns emerge that provide valuable insights into renal
pathophysiology.The hematological parameters, including red blood cell count, haemoglobin, and packed cell volume, show
distinct distribution patterns between classes, suggesting significant alterations in erythropoiesis and oxygen-carrying
capacity in affected individuals. These changes are consistent with the anemia commonly associated with chronic kidney
disease, resulting from reduced erythropoietin production and shortened red blood cell survival. The white blood cell count
distributions may indicate inflammatory processes or immune responses accompanying renal pathology, though the pattern
appears less pronounced than hematological changes.Metabolic and biochemical markers demonstrate particularly
informative patterns. Blood urea levels show substantial differentiation between classes, reflecting impaired glomerular
filtration and reduced renal clearance of nitrogenous waste products. The specific gravity distributions reveal variations in
urine concentrating ability, indicating tubular dysfunction and impaired renal concentrating capacity. Albumin levels show
class-dependent patterns that may reflect both nutritional status and proteinuria, a key diagnostic marker for glomerular
damage.Electrolyte balance, represented by sodium levels, displays distribution differences that may indicate disorders of
water and electrolyte homeostasis common in renal impairment. Blood glucose random levels show variations that could be
related to either primary glucose metabolism issues or secondary effects of renal disease on glucose handling.The
comprehensive visualization of these parameters through violin plots effectively demonstrates the multivariate nature of
renal pathology, where multiple physiological systems are affected simultaneously. The overlapping distributions between
classes for some parameters suggest continuous rather than categorical progression of renal dysfunction, while the clear
separations in other markers (particularly urea and specific gravity) highlight their potential diagnostic utility. These findings
underscore the importance of considering multiple biomarkers collectively rather than in isolation when assessing renal
function and disease progression.The distribution patterns further suggest that while some parameters may serve as sensitive
early markers of renal impairment, others become significantly altered only in more advanced stages, providing a potential
framework for staging disease severity based on multiple laboratory values rather than single parameters.
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Figure S. Violin plots displaying the distribution of nine key clinical parameters stratified by class
(presence/severity of kidney disease). Each plot shows the probability density of the data (violin shape), a box plot
indicating the interquartile range and median, and individual data points. Distinct distribution patterns,
particularly in haemoglobin, packed cell volume, blood urea, and specific gravity, highlight their significant value in
differentiating renal health statuses

The kernel density estimation plots shown in Figure 6 reveal distinct distributional patterns between the two classes across
nine clinical parameters, suggesting these biomarkers have significant diagnostic value. For hematological parameters, red
blood cell count shows overlapping but distinguishable distributions, with Class 0 peaking around 4.5 and Class 1 around
5.5, while white blood cell count demonstrates more pronounced separation with Class 1 showing higher values and greater
variability. Packed cell volume exhibits similar trends with Class 1 shifted toward higher values, indicating potential
hematological differences between the classes.

Biochemical markers display varying degrees of class separation. Hemoglobin levels show clear distinction with Class 1
having higher values, consistent with the red blood cell findings. Albumin presents an interesting inverse relationship where
Class 0 shows higher levels with a broader, more variable distribution compared to Class 1's narrower range. Blood glucose
demonstrates dramatic separation with Class 1 showing distinctly elevated levels concentrated around 100-200, while Class
0 remains in the normal range, suggesting a metabolic component to the classification.Electrolyte and additional parameters
provide further discriminatory power. Sodium levels show subtle but measurable differences with Class 1 trending higher,
while blood urea exhibits moderate separation with Class 1 showing elevated values. Specific gravity displays the most
striking bimodal pattern, with Class 0 distributed around 1.005-1.015 and Class 1 showing two distinct peaks at
approximately 1.015 and 1.025, suggesting different physiological states or measurement conditions between classes.
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Figure 6. Kernel density estimation plots showing the distribution of nine clinical parameters (Red Blood Cell
Count, White Blood Cell Count, Packed Cell Volume, Hemoglobin, Albumin, Blood Glucose Random, Sodium,
Blood Urea, and Specific Gravity) stratified by class (Class 0 in blue, Class 1 in orange). The overlapping regions
are shown in darker shading, illustrating the degree of separation between classes for each biomarker. These
distributions suggest distinct physiological profiles between the two classes, with blood glucose and specific gravity
showing the most pronounced separation

The confusion matrix shown in Figure 7 reveals the KNN classifier's prediction patterns across the binary classification task.
The model correctly identified 45 instances of Class 0 but misclassified 27 Class 0 samples as Class 1, indicating a notable
false positive rate. For Class 1, the classifier achieved 35 correct predictions while misclassifying 13 instances as Class 0,
suggesting better specificity than sensitivity. The asymmetric error pattern indicates the model has a slight bias toward
predicting Class 1, which may reflect the underlying class distribution or the inherent difficulty in distinguishing between
classes based on the clinical parameters.Training versus test accuracy comparison demonstrates classic signs of overfitting
in the KNN model. The training accuracy of 76.79% substantially exceeds the test accuracy of 66.67%, representing a
performance gap of approximately 10 percentage points. This discrepancy suggests the model may be memorizing training
patterns rather than learning generalizable relationships, which is characteristic of instance-based learning algorithms like
KNN when the optimal k value or distance metrics are not properly tuned. The classification report metrics provide detailed
insights into model performance across different evaluation criteria. Class 0 achieved higher precision (0.776) compared to
Class 1 (0.565), indicating fewer false positives when predicting Class 0. However, Class 1 demonstrated superior recall
(0.729) versus Class 0 (0.625), suggesting better sensitivity in identifying positive cases. The Fl-scores show relatively
balanced performance (0.692 for Class 0, 0.636 for Class 1), with macro and weighted averages clustering around 0.67,
indicating moderate but consistent classification capability across both classes.Error analysis reveals concerning patterns in
model generalization. The training error rate of 23.21% escalates to 33.33% on the test set, confirming the overfitting
tendency observed in the accuracy comparison. This substantial increase in test error suggests the model's hyperparameters,
particularly the number of neighbors (k) and possibly the distance weighting scheme, require optimization to achieve better
bias-variance trade-off and improve generalization to unseen data.

Figure 7. Comprehensive performance evaluation of a K-Nearest Neighbors classifier on clinical data showing: (top
left) confusion matrix with prediction counts for binary classification, (top right) training vs. test accuracy
comparison highlighting overfitting with 76.79% training and 66.67% test accuracy, (bottom left) classification
metrics heatmap displaying precision, recall, and F1-scores for each class and their averages, and (bottom right)

error rate comparison between training (23.21%) and test (33.33%) sets, demonstrating the model's generalization
challenges

The confusion matrix shown in Figure 8 demonstrates exceptional classification performance with near-perfect class
separation. The decision tree correctly classified all 72 instances of Class 0 without any false positives, achieving perfect
precision for this class. For Class 1, the model correctly identified 45 out of 48 instances, with only 3 misclassifications as
Class 0, resulting in minimal false negatives. This asymmetric error pattern suggests the decision tree has learned highly
discriminative rules that favor specificity over sensitivity, though both metrics remain excellent.The training versus test
accuracy comparison reveals remarkably stable performance with minimal overfitting. The model achieved perfect training
accuracy (100%) and maintained exceptionally high test accuracy (97.5%), representing only a 2.5% performance drop
between training and testing phases. This minimal gap indicates excellent generalization capability and suggests the decision
tree has learned robust, interpretable rules from the clinical parameters without excessive memorization of training-specific
patterns.Classification metrics showcase consistently excellent performance across all evaluation criteria. Class 0 achieved
perfect precision (0.960) and recall (1.000), while Class 1 demonstrated strong precision (1.000) and high recall (0.938). The
F1-scores reflect this balanced excellence with Class 0 scoring 0.980 and Class 1 achieving 0.968. The macro and weighted
averages cluster around 0.97, indicating uniformly high performance across both classes with minimal bias toward either
positive or negative predictions. Error analysis confirms the model’s superior generalization characteristics compared to
other algorithms. The training error rate of 0% escalates minimally to just 2.5% on the test set, representing one of the smallest
generalization gaps possible in practical machine learning applications. This exceptional error profile suggests optimal
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model complexity, where the decision tree has captured the underlying patterns in the clinical data without overfitting, likely
due to appropriate pruning or stopping criteria during tree construction.

Confusion Matrix - Decision Tree Training vs Test Accuracy
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Figure 8. Comprehensive performance evaluation of a Decision Tree classifier on clinical data demonstrating: (top
left) confusion matrix showing exceptional classification with 72/72 Class 0 correct predictions and 45/48 Class 1
correct predictions, (top right) training vs. test accuracy comparison showing minimal overfitting with perfect
training accuracy (100%) and excellent test accuracy (97.5%), (bottom left) error rate analysis highlighting
superior generalization with 0% training error and only 2.5% test error, and (bottom right) classification metrics
heatmap displaying consistently high precision, recall, and F1-scores across both classes, with macro averages
around 0.97

The confusion matrix shown in Figure 9 reveals exceptional classification performance with near-optimal class
discrimination. The AdaBoost ensemble correctly classified 71 out of 72 Class 0 instances with only a single false positive,
demonstrating remarkable specificity. For Class 1, the model achieved 45 correct predictions out of 48 total instances, with
just 3 false negatives. This minimal error pattern indicates the boosting algorithm successfully learned discriminative
decision boundaries from the clinical parameters, with the ensemble of weak learners combining effectively to create strong
predictive capability across both classes.Training versus test accuracy comparison demonstrates excellent generalization
with minimal overfitting characteristics. The model achieved perfect training accuracy (100%) while maintaining outstanding
test accuracy (96.67%), representing only a 3.33% performance degradation. This small generalization gap suggests the
AdaBoost algorithm's inherent regularization through iterative weight adjustment and ensemble averaging effectively
prevented overfitting, allowing the model to capture robust patterns in the clinical data without memorizing training-specific
noise.Classification metrics showcase consistently high performance across all evaluation dimensions. Class 0 achieved
excellent precision (0.959) and recall (0.986), while Class 1 demonstrated strong precision (0.978) and good recall (0.938).
The F1-scores reflect balanced performance with Class 0 scoring 0.973 and Class 1 achieving 0.957. The macro and weighted
averages consistently cluster around 0.965, indicating uniformly strong performance with minimal bias between classes,
demonstrating the ensemble's ability to maintain balanced classification capability.Error analysis confirms superior
generalization characteristics typical of well-tuned ensemble methods. The training error rate of 0% increases modestly to
3.33% on the test set, representing an excellent generalization profile. This controlled error increase suggests optimal
ensemble configuration where the sequential boosting process successfully identified and corrected misclassified instances
during training while maintaining robustness to unseen data, likely due to appropriate stopping criteria or regularization
parameters that prevented excessive complexity in the final ensemble model.
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Figure 9. Comprehensive performance evaluation of an AdaBoost classifier on clinical data showing: (top left)
confusion matrix demonstrating excellent classification with 71/72 Class 0 correct predictions and 45/48 Class 1
correct predictions, (top right) training vs. test accuracy comparison revealing minimal overfitting with perfect
training accuracy (100%) and outstanding test accuracy (96.67%), (bottom left) error rate analysis highlighting

superior generalization with 0% training error escalating to only 3.33% test error, and (bottom right) classification
metrics heatmap displaying consistently high precision, recall, and F1-scores across both classes, with macro
averages around 0.965

The ROC curves shown in Figure 10 reveal distinct performance hierarchies among the three classification algorithms when
applied to the clinical dataset. The Decision Tree demonstrates exceptional discriminative ability with an AUC of 0.969,
positioning its curve very close to the ideal top-left corner of the ROC space. This near-optimal performance indicates the
tree-based model successfully learned highly separable decision boundaries from the clinical parameters, achieving high
true positive rates while maintaining minimal false positive rates across various classification thresholds.AdaBoost follows
closely with an AUC of 0.962, demonstrating that ensemble boosting effectively enhanced weak learner performance to
achieve excellent classification capability. The AdaBoost curve runs parallel and slightly below the Decision Tree, indicating
comparable but marginally inferior performance. This suggests the sequential boosting process successfully identified and
corrected classification errors, though the final ensemble did not quite match the single optimized decision tree's
discriminative power on this particular dataset.The K-Nearest Neighbors algorithm shows substantially lower performance
with an AUC of 0.736, reflecting moderate classification ability that significantly underperforms the tree-based methods.
The KNN curve demonstrates a more gradual ascent toward the top-right corner, indicating difficulty in achieving high
sensitivity without substantial increases in false positive rates. This performance gap suggests the instance-based learning
approach may be less suitable for this clinical dataset, possibly due to suboptimal distance metrics, inappropriate k values,
or the presence of irrelevant features that dilute neighborhood similarity calculations.The random classifier baseline (AUC
= 0.500) provides essential context for interpreting model performance, represented by the diagonal dashed line indicating
no discriminative ability. All three algorithms substantially exceed random performance, with the tree-based methods
(Decision Tree and AdaBoost) achieving excellent classification capability while KNN demonstrates moderate but clinically
meaningful improvement over chance. The substantial AUC differences highlight the importance of algorithm selection,
with ensemble and tree-based approaches proving most effective for this clinical classification task.
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Figure 10. ROC curve comparison of three machine learning algorithms on clinical data, showing True Positive
Rate versus False Positive Rate across classification thresholds. The Decision Tree achieves exceptional
performance (AUC = 0.969), followed closely by AdaBoost (AUC = 0.962), while K-Nearest Neighbors shows
moderate performance (AUC = 0.736). The random classifier baseline (AUC = 0.500, dashed line) provides
reference for chance-level performance, demonstrating that all algorithms significantly exceed random
classification, with tree-based methods showing superior discriminative capability

The precision-recall curves shown in Figure 11 reveal distinct performance characteristics among the three classification
algorithms, with tree-based methods demonstrating superior ability to maintain high precision across varying recall levels.
The Decision Tree achieves exceptional performance with an AUC of 0.981, maintaining near-perfect precision (close to
1.0) across almost the entire recall spectrum before showing a sharp decline only at maximum recall. This outstanding
performance indicates the decision tree successfully learned highly confident classification rules that minimize false positives
while capturing the majority of true positive cases.AdaBoost follows with strong performance (AUC = 0.970), demonstrating
the ensemble method's effectiveness in maintaining high precision-recall trade-offs. The AdaBoost curve runs slightly below
the Decision Tree, showing comparable but marginally inferior performance. The curve maintains excellent precision across
most recall values, with a characteristic steep decline near maximum recall, suggesting the boosting algorithm effectively
combined weak learners to create robust predictions with minimal false positive rates.The K-Nearest Neighbors algorithm
shows substantially degraded performance with an AUC of 0.621, revealing significant challenges in the precision-recall
trade-off. The KNN curve exhibits a dramatic initial drop from perfect precision, followed by a gradual decline as recall
increases. This pattern indicates the instance-based learning approach struggles to maintain confident positive predictions,
likely due to ambiguous neighborhood classifications or suboptimal distance metrics that lead to frequent false positive
predictions when attempting to achieve higher sensitivity. The baseline reference (positive ratio = 0.400) provides crucial
context for interpreting model performance in the presence of class imbalance. All algorithms substantially exceed the
baseline, with tree-based methods achieving exceptional precision-recall balance while KNN demonstrates moderate
improvement. The substantial performance gap between algorithms highlights the critical importance of model selection for
clinical applications where both precision (minimizing false alarms) and recall (capturing true cases) are essential for
effective patient care and diagnostic accuracy.
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Figure 11. Precision-Recall curve comparison of three machine learning algorithms on clinical data, showing the
trade-off between precision (positive predictive value) and recall (sensitivity) across classification thresholds. The
Decision Tree achieves exceptional performance (AUC = 0.981) with near-perfect precision maintenance, followed
by AdaBoost (AUC = 0.970), while K-Nearest Neighbors shows moderate performance (AUC = 0.621). The baseline
(positive ratio = 0.400, dashed line) represents the expected precision of a random classifier given the class
distribution, demonstrating that tree-based methods significantly outperform chance while maintaining excellent
precision-recall balance

The accuracy comparison shown in Figure 12 reveals a clear performance hierarchy among the three classification algorithms
on the clinical dataset. The Decision Tree achieves exceptional accuracy of 97.5%, closely followed by AdaBoost at 96.7%,
while K-Nearest Neighbors significantly underperforms at 66.7%. This substantial gap of approximately 30 percentage
points between tree-based methods and KNN indicates fundamental differences in how these algorithms handle the clinical
parameter space, with tree-based approaches demonstrating superior ability to learn discriminative decision boundaries from
the available features.Area Under the Curve (AUC) metrics corroborate the accuracy findings while providing insights into
ranking performance across all classification thresholds. The Decision Tree maintains its leading position with an AUC of
0.969, followed closely by AdaBoost at 0.962, while KNN achieves a moderate AUC of 0.736. The consistent ranking across
accuracy and AUC metrics suggests robust performance differences, with tree-based methods demonstrating excellent
discriminative capability while KNN shows reasonable but limited ranking performance that may be constrained by
suboptimal hyperparameters or feature scaling issues.Precision and recall metrics demonstrate remarkable consistency
between the top-performing algorithms, highlighting their balanced classification capabilities. Both Decision Tree and
AdaBoost achieve nearly identical precision scores (0.976 and 0.967 respectively) and recall scores (0.975 and 0.967
respectively), indicating excellent positive predictive value and sensitivity. KNN shows substantially lower performance in
both metrics (precision: 0.691, recall: 0.667), suggesting frequent false positive and false negative predictions that limit its
clinical utility for this particular diagnostic task.F1-score comparison provides the most comprehensive single metric
assessment, combining precision and recall into a balanced measure of overall classification performance. The Decision
Tree and AdaBoost achieve exceptional F1-scores of 0.975 and 0.967 respectively, demonstrating outstanding harmonic
mean performance between precision and recall. KNN's F1-score of 0.670 reflects its moderate but inconsistent performance
across both precision and recall dimensions, confirming that tree-based and ensemble methods are substantially more
effective for this clinical classification problem.
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Figure 12. Comprehensive comparison of five key performance metrics across three machine learning algorithms
applied to clinical data. The Decision Tree consistently achieves the highest performance (Accuracy: 97.5%, AUC:
0.969, Precision: 0.976, Recall: 0.975, F1-Score: 0.975), followed closely by AdaBoost with comparable metrics
(96.7%, 0.962, 0.967, 0.967, 0.967), while K-Nearest Neighbors shows substantially lower performance across all
measures (66.7%, 0.736, 0.691, 0.667, 0.670). The consistent ranking across all metrics demonstrates the superior
effectiveness of tree-based approaches for this clinical classification task

4. Conclusion

This study successfully demonstrated the potential of machine learning approaches to validate oxidative stress-related
clinical biomarkers in chronic kidney disease prediction, establishing a computational framework that bridges molecular
mechanisms with clinical practice. The exceptional performance achieved by the Decision Tree algorithm (97.5% accuracy,
0.969 AUC) and AdaBoost ensemble method (96.7% accuracy, 0.962 AUC) confirms that routinely collected clinical
parameters can effectively identify patients at risk for CKD progression when analyzed through advanced computational
methods. The significant distributional differences observed between CKD and non-CKD populations for key parameters
provide strong evidence supporting the central role of oxidative stress in disease pathogenesis. Blood glucose showed the
most pronounced separation between classes, validating established research on hyperglycemia-induced oxidative stress and
its contribution to diabetic nephropathy. Similarly, the predictive importance of hemoglobin and albumin levels reflects the
complex interplay between oxidative damage, anemia, and compromised antioxidant defenses that characterizes CKD
progression. These findings demonstrate that machine learning algorithms can effectively capture the discrete thresholds
and non-linear relationships inherent in oxidative stress pathways.Future research directions should focus on integrating
direct oxidative stress biomarkers with the validated clinical parameters to develop even more precise prediction models.
Additionally, prospective studies examining the temporal relationships between oxidative stress markers and CKD
progression will help establish causal relationships and optimize intervention timing. The development of real-time
monitoring systems that incorporate these machine learning models could enable continuous risk assessment and
personalized treatment adjustments.

REFERENCES
[11] Ng, W.L., Goh, G.L., Goh, G.D., Ten, J.S.J. and Yeong, W.Y., 2024. Progress and opportunities for machine
learning in materials and processes of additive manufacturing. Advanced Materials, 36(34), p.2310006.
2. Jin, L., Zhai, X., Wang, K., Zhang, K., Wu, D., Nazir, A., Jiang, J. and Liao, W.H., 2024. Big data, machine learning,
and digital twin assisted additive manufacturing: A review. Materials & Design, 244, p.113086.
3. Inayathullah, S. and Buddala, R., 2025. Review of machine learning applications in additive manufacturing. Results in
Engineering, 25, p.103676.

4. Khuat, T.T., Bassett, R., Otte, E., Grevis-James, A. and Gabrys, B., 2024. Applications of machine learning in antibody
discovery, process development, manufacturing and formulation: Current trends, challenges, and opportunities.
Computers & Chemical Engineering, 182, p.108585.

5. Wu, C., Wan, B., Entezari, A., Fang, J., Xu, Y. and Li, Q., 2024. Machine learning-based design for additive
manufacturing in biomedical engineering. International Journal of Mechanical Sciences, 266, p.108828.

6. Mishra, A., Jatti, V.S., Sefene, E.M. and Paliwal, S., 2023. Explainable artificial intelligence (XAI) and supervised
machine learning-based algorithms for prediction of surface roughness of additively manufactured polylactic acid
(PLA) specimens. Applied Mechanics, 4(2), pp.668-698.

7. Battineni, G., Sagaro, G.G., Chinatalapudi, N. and Amenta, F., 2020. Applications of machine learning predictive

Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 1s pg. 1483



Wajihus shams, M. Mustafa khan, Girish Chandra Sharma, Anupama Sharma

models in the chronic disease diagnosis. Journal of personalized medicine, 10(2), p.21.

8. Alanazi, R., 2022. Identification and prediction of chronic diseases using machine learning approach. Journal of
healthcare engineering, 2022(1), p.2826127.

9. Delpino, F.M., Costa, A K., Farias, S.R., Chiavegatto Filho, A.D.P., Arcéncio, R.A. and Nunes, B.P., 2022. Machine
learning for predicting chronic diseases: a systematic review. Public Health, 205, pp.14-25.

10. Yang, J., Ju, X., Liu, F., Asan, O., Church, T.S. and Smith, J.O., 2021. Prediction for the risk of multiple chronic
conditions among working population in the United States with machine learning models. IEEE open journal of
engineering in medicine and biology, 2, pp.291-298.

11. Patel, K., Mistry, C., Mehta, D., Thakker, U., Tanwar, S., Gupta, R. and Kumar, N., 2022. A survey on artificial
intelligence techniques for chronic diseases: open issues and challenges. Artificial Intelligence Review, 55(5), pp.3747-
3800.

12. Islam, R., Sultana, A. and Islam, M.R., 2024. A comprehensive review for chronic disease prediction using machine
learning algorithms. Journal of Electrical Systems and Information Technology, 11(1), p.27.

13. Uddin, S., Wang, S., Lu, H., Khan, A., Hajati, F. and Khushi, M., 2022. Comorbidity and multimorbidity prediction
of major chronic diseases using machine learning and network analytics. Expert Systems with Applications, 205,
p.117761.

14. Lee, C., Jo, B., Woo, H., Im, Y., Park, R.-W. and Park, C., 2022. Chronic disease prediction using the common data
model: development study. JMIR Al, 1(1), p.e41030.

15. Tu, J.B., Liao, W.J., Liu, W.C. and Gao, X.H., 2024. Using machine learning techniques to predict the risk of
osteoporosis based on nationwide chronic disease data. Scientific Reports, 14(1), p.5245.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 1s pg. 1484



