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ABSTRACT  

COVID-19 is a dangerous and extremely infectious virus, destroyed the life of million people throughout the world. Early 

viral identification can lower virus propagation and mortality rates. A number of different detection techniques have been 

implemented to identify COVID-19 in Computed Tomography (CT) scans. Amongst, Chaotic Logistic Map based Modified 

Whale Optimization with Improved Neural Network (CLM-MWO-INN) provides an efficient result in COVID-19 

prediction. However, it cannot process large size samples. Hence, in this paper, a Reread Deep Neural Network (RDNN) 

model is proposed for processing the large number of samples from CT images. Gray Level Run Length Matrix (GLRLM) 

and Gray Level Co-Occurrence Matrix (GLCM) is used to produce the handmade features, whereas RDNN's convolutional 

layers are used to extract the deep features. These extracted attributes are combined and appropriate features are selected by 

CLM-MWO. The CLM-MWO is also used for selecting an appropriate parameter of RDNN.The feature and parameter 

selection are simultaneously performed in this model, because the selected features and parameter might affect the RDNN 

performance. The selected features by CLM-MWO are fed into the softmax layer classifies CT lung scan images into multiple 

classes, including Atelectasis, Pneumonia, Infiltrate, COVID-19, and Non-Diseased. The suggested approach yields 

favorable outcomes when compared to traditional DNN architectures, exhibiting improved convergence speed with larger 

datasets. The complete work is named as CLM-MWO with RDNN (CLM-MWO-RDNN). At last, the results show that 

compared to state-of-the-art models, the CLM-MWO-RDNN model outperforms with an accuracy of 98.59% (single 

validation) and 97.28% (4-fold cross validation) on the SARS-CoV-2 CT scan dataset, 97.74% (without augmentation) and 

96.32% (with augmentation and 4-fold cross validation) on Customized Lung disease dataset than ViT- LSTM and ViT-

CNN-LSTM models.  

Keywords: COVID-19, Reread Deep Neural Network, hand-crafted features, deep features, Computed Tomography Images. 

1. INTRODUCTION 

SARS-CoV-2 causes the coronavirus sickness known as COVID-19. The virus was formally called COVID-19 by the World 

Health Organization (WHO) on February 11, 2020 (WHO, 2020). [1]. By June 2021, approximately 180 million confirmed 

cases had been reported, according to data gathered by the WHO, as the virus rapidly spread beyond its initial point of origin 

[2]. 

COVID-19 screening begins at primary care or hospitals, with imaging used for rapid assessment while Reverse 

Transcription-Polymerase Chain Reaction (RT-PCR) remains the standard technique for prediction [3]. Then, patients with 

severe respiratory symptoms undergo chest X-rays (CXR) and CT scans if more detail is required. Imaging techniques are 

fast and practical, helping clinicians quickly identify the disease and assess its severity. As a result, CXR and CT scans are 

widely adopted as alternative diagnostic tools in clinical settings [4]. 

To improve diagnosis, doctors examine CXR/CT images of the lungs to identify signs of COVID-19- related changes. Patient 

cases have increased significantly due to the rapid dissemination of COVID-19, making the process of assessing the virus's 

progression both labor-intensive and time-consuming. This challenge can be addressed by leveraging Machine Learning 

(ML) methods for more efficient detection of COVID-19. Medical imaging with Computer-Aided Diagnosis (CAD) has 

made significant use of ML approaches in recent years, with the goal of boosting up the process of detecting COVID-19 

patients. [5] 

For instance, a ML-based system has been developed to identify COVID-19 from CT/CXR images [6]. The images were 

pre-processed with fuzzy c-means (FCM) clustering for normalization and segmentation which extracts statistical, textural 

and Wavelet Transform (WT) features.  using Principal Component Analysis (PCA) was used to select relevant features. K- 

mailto:suganca@gmail.Com
mailto:saromaran@gmail.Com


N. Suganthi, Dr.K.Sarojini  

pg. 115 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 33s 

 

Nearest Neighbour, Artificial Neural Networks (ANN) and Support Vector Machines (SVM) was applied to classify normal, 

pneumonia or COVID-19 This model aims for early detection, but classifier performance depends on predefined parameters. 

Also, hyper-parameter regularization enhances the network generalization across different datasets 

To choose an appropriate hyper parameters and feature selection for effectively improving performance of classifier, CLM-

MWO-INN was developed [7]. The CLM-MWO-INN framework is divided into two parts. Using the GLCM and GLRLM 

techniques, the attributes are first derived from the CT images. Second, the CLM-MWO algorithm was used to choose an 

appropriate hyper parameters and feature selection for INN classifier’s efficiency. This model simultaneously performs 

hyperparameter tuning and feature selection due to their independence. But, lower result was obtained on large size sample 

and identifying the optimal number of nodes in INN structure is another challenging task. 

The DNN method effectively addresses the problem by efficiently extracting features from CXR/CT images, minimizing 

training cycles to differentiate between healthy, pneumonia, and COVID-19 cases. It plays a key role in diagnosing COVID-

19 by tackling complex challenges in disease identification [8]. 

On motivating by this, this paper develops the CLM-MWO-RDNN model to process a large number of samples without 

affecting COVID-19 classification performance. In order to construct an RDNN model, it is necessary to define parameters 

like the quantity of layers of convolution, maximum pooling layers, convolution filter sizes, hidden layers, Fully Connected 

(FC) layer, and the number of nodes in each layer. Additionally, training parameters like the learning rate and regularization 

methods (e.g., sigmoid and tangent functions) must be defined. In RDNN model, deep features extracted by convolutional 

layers of RDNN and the handcrafted features extracted by GLCM and GLRLM are combined after FC layer. The handcrafted 

features combined here with the aim of capturing visual characteristics of an image especially, its texture. To improve training 

accuracy, the CLM-MWO method is then used to choose the right features and parameters. Feature selection and parameter 

tuning are conducted simultaneously, as the chosen model features can affect hyperparameter efficiency. The selected 

features are then inputted into the softmax layer for classification. This proposed method demonstrates improved accuracy 

and a faster convergence rate compared to traditional DNN methods.  

The rest of the paper is structured as, research on COVID-19 prediction is reviewed in Section 2. The suggested study 

framework is described in Section 3 and its efficacy is shown in Section IV. Section V concludes the study and suggests 

future directions. 

2. LITERATURE SURVEY 

A Multi-Class CNN (MC-CNN) structure was presented [9] to classify the lung diseases from CT images. But, the considered 

database was limited, and the restrictions affect the prediction metrics.  

In order to identify COVID-19 instances in CT scans, Deformable ResNet50 model was devised [10]. However, this model 

results in lower classification accuracy. A COVID-19 recognition model was created [11] using Improved Attention ResNet 

called COVID-ResNet. However, this model faces difficulty in feature extraction lesions were not addressed properly, which 

decrease the precision.  

To predict the presence of COVID-19 in lung CT scans, a Duffing Equation Tuna Swarm (DETS) Optimized ResNet 101 

(DETSOR) classifier was presented [12]. But, this model results in overfitting issues and reduce the classifcation accuracy.  

In order to classify COVID-19 using CT and X-ray images, Deep Transfer Learning (Deep TL) was devised [13]. ConvNeXt, 

EfficientNetV2, DenseNet121 and ResNet34 were applied as TL models. Among these models, ConvNeXt provides efficient 

predict results. However, the models hyper-parameter was not fine-tuned properly lowering the accuracy rate.  

To detect COVID-19 in CT scans, Salarabadi et al. HTL-FED model was constructed [14] which combines TL with Fuzzy 

Edge Detection. But, this model results in uncertainty issues which lowers the models prediction performances. A technique 

for detecting COVID-19 in chest CT images was created [15] by combining ensemble classification with optimized deep 

features. VGG19 and ResNet 50 was employed to extract the features., Max voting ensemble classification (MVEC) was 

used for the COVID19 detection. However, this model results in uncertainty issues which lowers the models performances. 

3. PROPOSED METHODOLOGY 

This section provides a brief description of the CLM-MWO-RDNN model. Initially, image-processing techniques (GLCM, 

GLRLM) are applied for extracting handcrafted attributes from the given dataset [7]. The RDNN uses convolutional layers 

to generate deep features, which are combined with extracted information using CLM-MWO, and then input into softmax 

layers for Lung disease categorization. Fig.  1 shows a schematic depiction of the study as a whole. Table 1 shows the 

suggested model's notation list. 
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Table 1. Notation List 

Notations  Description 

GLCM and GLRLM 

𝑎, 𝑏 Row and column index of gray  scale matrix of pixels 

𝒫(𝑎, 𝑏) Normalized gray level element  at 𝑎𝑡ℎ row and 𝑏𝑡ℎ 

column  of gray matrix  

𝜇 and 𝜎 Mean and Varaince 

𝑁𝑔 Number of gray level values 

𝑁𝑟 Number of Run Length 

𝑍𝑖𝑗 Element of GLRLM with 𝑖𝑡ℎ row and 𝑗𝑡ℎ column  of 

gray matrix 

𝑅max  Maximum Run Length  

𝑁 Number of total pixels in ROI 

ln Natural logarithmic 

Deep Convolutional Layer 

 𝑥 Input feature map in convolutional layer 

𝑤, 𝑏 weight and bias 

ℎ Output feature map generated in the convolution layer 

𝑜𝑙 Output layer 

× Convolutional Operation 

𝑘 Convolution kernel 

𝐾(𝑙) Convolution kernel 

𝑓 pooling Function 

𝑓𝑚𝑎𝑥 Max-pooling Function  

𝑜𝑙 Final Extracted  Features from FC layer 

𝑛_𝑙𝑎𝑏𝑒𝑙   Numerical Quantity in image Label 

𝑦𝑗 Predicted Label 

CLM-MWO algorithm 

𝑋𝑓 , 𝑋𝑝  Whale position for selecting features and parameters 

𝑋𝑓
× , 𝑋𝑝

×   Best solution for feature and parameter selection 

𝐷 Distance between the initial whales position  

|∙| Absolute value operation 

• Element wise Multiplication 

𝑙 spiral movement of whale 
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𝐴  Spiral Position Adjustment Factor 

𝑎  Exploitation-Exploration Balance Factor 

𝐶  Coefficient Vector for Distance Weighting 

𝑡 Number of iteration 

𝑟  Random Number 

𝐷′ Distance between best whale position  

𝑞 Constant Integer 

𝑖, 𝑙 Indices 

𝑐𝑢(𝑓), 𝑐𝑢(𝑝) Best Feature and Parameter values selected by whale 

𝜇 Behavioural factor in whale 

𝐹𝑓(𝑖) 𝐹𝑝(𝑖) Fitness function for feature and parameter 

𝜗𝑓 , 𝜗𝑝  Whale population for feature and parameter 

𝛼𝑓 , 𝛼𝑝 Weighting factor of feature and parameter  

𝑛𝑓 , 𝑛𝑝  Total number of features and parameters 

𝑔 Highest number of iteration 

 

Extracting handcraft features using GLCM and GLRLM 

In this model, GLCM and GLRLM are used to extract handcraft features  

GLCM Technique: GLCM is a crucial technique for evaluating image texture attributes by analyzing the probability density 

of pixel relationships within the image. [16]. GLCM features are calculated from normalized gray level elements 𝒫 from the 

pixel matrix of 𝑁𝑔  grayscale values with 𝑎 rows and 𝑏  columns. Eq. (1) - Eq. (8) are used to compute the following GLCM-

derived texture features. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝒫𝑎,𝑏(𝑎, 𝑏)2𝑁𝑔−1

𝑎,𝑏=0                         (1) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ 𝒫𝑎,𝑏 [
(𝑎−𝜇𝑎)(𝑏−𝜇𝑏)

√(𝜎𝑎
2)(𝜎𝑏

2)

]
𝑁𝑔−1

𝑎,𝑏=0
      (2) 

𝑀𝑒𝑎𝑛, 𝜇𝑎 = ∑ 𝑎(𝒫𝑎,𝑏)

𝑁𝑔−1

𝑎,𝑏=0

;  

                 𝜇𝑏 =      ∑ 𝑏(𝒫𝑎,𝑏)
𝑁𝑔−1

𝑎,𝑏=0
                          (3)  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝜎𝑎
2 = ∑ 𝒫𝑎,𝑏(𝑎 − 𝜇𝑎)2

𝑁𝑔−1

𝑎,𝑏=0

;  

            𝜎𝑏
2 = ∑ 𝒫𝑎,𝑏(𝑏 − 𝜇𝑏)2𝑁𝑔−1

𝑎,𝑏=0
                        (4) 

     𝑆𝐷 𝜎𝑎 = √𝜎𝑎
2; 𝜎𝑏 =  √𝜎𝑎

2                               (5) 
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Figure. 1 Working model of the optimized RDNN 

     𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝒫𝑎,𝑏(− ln 𝒫𝑎,𝑏)
𝑁𝑔−1

𝑎,𝑏=0
   (6) 

  𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝒫𝑎,𝑏
2𝑁𝑔−1

𝑎,𝑏=0    (7) 

  𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝒫𝑎,𝑏

1+(𝑎−𝑏)2

𝑁𝑔−1

𝑎,𝑏=0   (8) 

GLRLM Technique: It is utilized to derive texture features for detailed texture analysis [17]. In GLRLM, 𝑍 denotes the 

GLRLM, 𝑍𝑖𝑗 is the (𝑖, 𝑗)𝑡ℎ entry of the GLRLM. Also, 𝑁𝑟 represents the set of different run-length that actually appeared in 

ROI and    𝑁𝑔 defines the set of gray scale images. 𝑁 denotes the total pixel in the ROI. The 𝑁𝑟 systematically searches the 

image in a specified direction to find sequences of pixels with identical gray levels (𝑁𝑔). These 𝑁𝑔 −  𝑁𝑟  features forms a 

part of statistical features used in texture analysis. The general representation of the run-length matrix in given in Eq. (9) 

𝑅 (𝑖, 𝑗)  =  (𝑔 (𝑖, 𝑗) | 𝑖), 0 ≤  𝑖 ≤  𝑁𝑔 , 0 ≤  𝑗 ≤      𝑅𝑚𝑎𝑥  ;                                                             (9) 

Where 𝑅max  is the maximum run length. Eq.  (10) – Eq. (16) provide the texture features obtained from the GLRLM. The 

features used for texture-based evaluation include measurements such as short run emphasize, long run emphasize, and gray 

level non-uniformity. 

(i) Short Run Emphasis (SRE): It is a metric for short run length distribution and higher indicates fine textural textures. It 

is represented in Eq. (10) 

𝑆𝑅𝐸 =  
∑ ∑

𝑍𝑖𝑗

𝑗2𝑗∈𝑁𝑟𝑖∈𝑁𝑔

∑ ∑ 𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

                                        (10)      

(ii) Long Run Emphasis (LRE): It is a metric for long run length distribution and higher value indicates coarser structural 

textures is mentioned in Eq. (11)   

𝐿𝑅𝐸 =  
∑ ∑ 𝑗2𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

∑ ∑ 𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

                                        (11)      

(iii) Gray Level Non-uniformity (GLN): The GLN is a metric used to measure the variation in an image's pixel intensity 

values, with lower values indicating greater uniformity, indicating less variation in gray levels as in Eq. (12) 

𝐺𝐿𝑁 =  
∑ (∑ 𝑍𝑖𝑗𝑗∈𝑁𝑟 )

2
𝑖∈𝑁𝑔

∑ ∑ 𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

                                 (12) 

(iv) Run Length Non-uniformity (RLN): The RLN metric assesses an image's run length consistency, with a lower value 

indicating greater uniformity and texture homogeneity due to similar run lengths throughout the image. It is mentioned in 

Eq. (13)   

            𝑅𝐿𝑁 =  
∑ (∑ 𝑍𝑖𝑗𝑖∈𝑁𝑔 )

2

𝑗∈𝑁𝑟

∑ ∑ 𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

                           (13)   
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(iv) Run Percentage (RP): Proportion of run count to the voxels count in the ROI is used to determine the texture coarseness.  

The higher values indicate that a large ROI proportion is made up of short runs. It is mentioned in Eq. (14)   

            𝑅𝑃 =  
∑ ∑ 𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

𝑁
                                 (14)       

(vi) Low Gray Level Run Emphasis (LGRE): The LGRE metric in Eq. (15)  evaluates the presence of lower gray-level 

values within an image. A higher LGRE value indicates a stronger concentration of low-intensity values, highlighting areas 

dominated by darker tones. 

    𝐿𝐺𝑅𝐸 =  
∑ ∑ 𝑍𝑖𝑗\𝑖2

𝑗∈𝑁𝑟𝑖∈𝑁𝑔

∑ ∑ 𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

                                  (15) 

(vii) High Gray Level Run Emphasis (HGRE): The HGRE metric Eq. (16) assesses the distribution of high-intensity image 

values. Higher HGRE score indicates a greater concentration of bright or high gray-level areas, signifying regions with 

stronger intensities. 

     𝐻𝐺𝑅𝐸 =  
∑ ∑ 𝑖2𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

∑ ∑ 𝑍𝑖𝑗𝑗∈𝑁𝑟𝑖∈𝑁𝑔

                                          (16) 

The GLCM and GLRLM techniques extract feature sets from CT and CXR images, distinguishing textures with similar SRE 

and LRE values but different gray-level distributions. These handcrafted features are then input into the feature layer 

(convolutional layer) of RDNN model r for further processing 

Deep feature extraction 

In order to extract deep features, many layers of convolution, max pooling layers, and FC layers are used. This layered 

structure enables the model to effectively capture deep features from CT images. The steps involved in this are briefly 

illustrated below. 

Convolution layers   

The following is an expression for the convolution layer: 

 

ℎ𝑗
𝑘 = 𝑏𝑗

𝑘 + ∑ 𝑤𝑖,𝑗
𝑘−1 × 𝑥𝑖

𝑘                          (17)                           

In Eq. (17) uses the input feature map (𝑥), weight (𝑤), and the bias (𝑏). The output map of features produced by the layer of 

convolution is denoted by ℎ, the operator × signifies convolution, and 𝑘 represents the 𝑘𝑡ℎ convolutional kernel layer. 

Max pooling layer 

The pooling layer can be described as follows: 

 

ℎ𝑗
𝑘+1 = 𝑓𝑚𝑎𝑥(ℎ𝑗

𝑘)              (18)                                  

In Eq. (18), 𝑓 represents the pooling function, specifically the max-pooling operation in this case and ℎ is the output of the 

layer of pooling. 

Fully connected layer 

The FC layer receives the hybrid feature vector that has been generated and is shown as: 

 

𝑜𝑙 = 𝑏𝑙 + 𝑤𝑙ℎ𝑙               (19)                                  

Here in Eq. (19), ℎ𝑙 represents the input to the entire connected layer, 𝑤𝑙  denotes the weights, and 𝑏𝑙 is the bias. 𝑜𝑙 stands 

for the result that corresponds to the deep features that were extracted. 

Feature selection  

In the feature selection layer, the handcrafted features extracted by image processing techniques like GLCM and GLRLM 

and deep features extracted from layers of RDNN are concatenated.  Then the important feature for classification of diseases 

are selected by CLM-MWO. The details of feature selection are explained in section 3. 

Classification – softmax layer 

Finally, the softmax layer is used for categorization process. In the final layer, the softmax function is applied to compute 

the probability for each image label, as follows: 
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𝑦𝑗 =
𝑒𝑜𝑙

∑ 𝑒𝑜𝑙 𝑛_𝑙𝑎𝑏𝑒𝑙
𝑖

             (20) 

        In Eq. (20), 𝑛_𝑙𝑎𝑏𝑒𝑙  represent numeral quantity of image label, 𝑦𝑗 is the estimated label of given test image.  

Selecting important feature and optimal parameters of RDNN using CLM-MWO algorithm           

The CLM-MWO algorithm is a hybrid approach that combines chaotic theory with MWO to improve feature and parameter 

selection. It enhances the algorithm's hunting behavior for humpback whales, unlike the original Whale Optimization 

Algorithm (WOA), which mimics predatory behavior by diving to twelve meters and following a bubble trail to the surface. 

Here are the steps to follow when participating in the WOA: 

Exploitation Phase: During the exploitation phase, the humpback whales target the optimal features and parameters as the 

optimum prey. They update the position using two strategies like bubble-net feeding and shrinking encircling. Below 

provided shrink encircling mechanism is utilized for feature selection and parameters optimization. 

𝐷𝑓 =  |𝐶 • 𝑋𝑓
×(𝑡)−𝑋𝑓 (𝑡)|                              (21) 

𝑋𝑓(𝑡 + 1) =  𝑋𝑓
×(𝑡) −  𝐴 • 𝐷                         (22)    

 𝐷𝑝 =  |𝐶 • 𝑋𝑝
×(𝑡) − 𝑋𝑝 (𝑡)|                         (23)     

𝑋𝑝(𝑡 + 1) =  𝑋𝑝
× −  𝐴 • 𝐷                           (24) 

From Eq. (21) – Eq. (24), 𝑋𝑓  and 𝑋𝑝 represent the whale position for features and parameters selection, while 𝑋𝑓
× and 𝑋𝑝

×  

denote the best solution for feature and parameter selection updated during each iteration when a better solution is found. 𝑡 

indicates the current iteration, while 𝐷 is the distance between the 𝑖𝑡ℎ whale's position, 𝑋 and the global best solution, 𝑋×.  
|∙| and •represents the absolute value operation and element-wise multiplication respectively. In addition, the variables A and 

C can be found using the following formulas in Eq. (25) and Eq. (26): 

𝐴 =   2𝑎• 𝑟 −  𝑎                                               (25)  

𝐶 =   2 • 𝑟                                                      (26) 

Where, 𝑟 represents a randomly generated value within the range of [0, 1] while the parameter 𝑎 progressively reduces from 

2 to 0 throughout the iterative process. The gradual decrease in exploration allows for precise transition from exploration to 

exploitation for solution refinement. The spiral movement (𝑙) used for adjusting feature and parameter positions is described 

through a set of Eq. (27) – Eq. (30), which simulate the spiraling path followed by humpback whales when hunting. 

𝐷′𝑓 = | 𝑋𝑓
×| (𝑡) − 𝑋𝑓(𝑡)                              (27) 

      𝑋𝑓 (t + 1) = 𝐷′•𝑒𝑞𝑙• cos(2cosπ 𝑙) + 𝑋𝑓
×(𝑡)   

(28)                                                                                                          

      𝐷′𝑝 = | 𝑋𝑝
×| (𝑡) − 𝑋𝑝(𝑡)                               (29)        

𝑋𝑝(t + 1) = 𝐷′•𝑒𝑏𝑙• cos(2cosπ 𝑙) + 𝑋𝑝
×(𝑡)       

                                                                        (30)      

                                                                                                                                    

In this case, 𝐷′() represents the distance among the solution that has been identified up to that moment and the 𝑖𝑡ℎ whale. 

Furthermore, 𝑙 is a value randomly selected within the interval [−1, 1]. The logarithmic spiral shape with 𝑞 as a constant, is 

determined by Humpback whales' simultaneous prey capture strategies using a spiral path and shrinking encircling behaviors. 

To replicate this behavior, 50% probability is applied to feature and parameter selection in equations (31) and (32). 

𝑋𝑓(t + 1) =  {
𝑋𝑓

×(𝑡) −  𝐴 • 𝐷                                𝑖𝑓 𝑟 < 0.5 

𝐷′• 𝑒𝑞𝑙•cos (2cosπ 𝑙) + 𝑋𝑓
×(𝑡)   𝑖𝑓 𝑟 < 0.5 

                       

                                                                              (31) 

𝑋𝑝 (t + 1) =  {
𝑋𝑝

×(𝑡) −  𝐴 • 𝐷                                𝑖𝑓 𝑟 < 0.5 

𝐷′• 𝑒𝑞𝑙•cos (2cosπ 𝑙) + 𝑋𝑝
×(𝑡)   𝑖𝑓 𝑟 < 0.5 

      

(32)                                                                                

Exploration phase: In this phase, global search mechanism is used to improve the exploration in feature and parameter 

selection. An arbitrary search agent, instead of the optimal one, guides the search. If |𝐴|  >  1 or <  −1, position updates 
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follow exploration or exploitation strategies, as defined in Eq. (33) – Eq. (36). 

                     𝐷 = | 𝐶• 𝑋𝑟𝑎𝑛𝑑 − 𝑋𝑓|                                   (33)                                                                                        

                    𝑋𝑓 (t + 1) = 𝑋𝑟𝑎𝑛𝑑 −  𝐴 • 𝐷                         (34)                                                            

                        𝐷 = | 𝐶• 𝑋𝑟𝑎𝑛𝑑 − 𝑋𝑝|                                  (35)                                                                      

                        𝑋𝑝 (t + 1) = 𝑋𝑟𝑎𝑛𝑑 −  𝐴 • 𝐷                       (36)                                                     

In this model,  𝑋𝑟𝑎𝑛𝑑  is a randomly chosen as the position vector from the current population. MWO enhances WOA by 

integrating chaotic techniques to improve convergence speed. Among various chaotic maps utilized for balancing exploration 

and exploitation, logistic maps significantly boost WOA performance and convergence. 

(i) Chaotic Systems: Chaos is a complex system with dependencies on initial conditions and nonlinear irregular waves, 

enhances global search in optimization by preventing local optima trapping and allowing full exploration using specific range 

values [18]. The n-dimensional map for feature and parameter optimization is a time-dependent dynamic approach, defined 

by Eq. (37) and (38). 

𝑐𝑢𝑖
(𝑓+1)

= 𝑓 (𝑐𝑢𝑖
(𝑓)

)                                      (37)      

𝑐𝑢𝑖
(𝑝+1)

= 𝑓 (𝑐𝑢𝑖
(𝑝)

)                                      (38)                                                       

A chaotic sequence can be evaluated by initializing the system with an initial state, denoted as 𝑐𝑢𝑖
(0)

. From this starting point, 

chaotic sequences for feature selection can be defined as 𝑐𝑢𝑖
(𝑓)

, where 𝑓 = 0,1,2, … and for parameter selection, the sequence 

is represented as 𝑐𝑢𝑖
(𝑝)

 where 𝑝 = 0,1,2, … 𝑛. The study presents a chaotic search algorithm that uses an Ergodic condition 

to determine the chaotic vector value, employing multiple chaotic functions for various evolutionary paths and utilizing three 

types of chaotic maps for feature selection and optimization performance. 

(ii) Chaotic Maps: A chaotic strategy improves WOA by preventing premature convergence, accelerating optimization, and 

managing randomness in factor values. Three distinct chaotic maps are employed to enhance feature selection performance, 

each contributing uniquely to the optimization process, allowing better determination of system states in nonlinear systems. 

(A) Logistic map: This map depends on a chaotic system and a nonlinear equation and considered as a second-degree 

polynomial mapping, utilizing mathematical formulas for feature and parameter selection, as in Eq. (39) and (40): 

𝑥𝑓 = 𝜇 × 𝑥𝑓−1 × (1 − 𝑥𝑓−1)                         (39)                                                                                                   

𝑥𝑝 = 𝜇 × 𝑥𝑝−1 × (1 − 𝑥𝑝−1)                        (40)   

The variable 𝜇, which affects the behavior of the system, is usually placed between 0 and 4 in these equations. When 𝜇 > 4, 

the system's values fall outside the interval [0,1]. However, when 𝜇 = 4, the system reaches the chaotic state, signifying the 

onset of chaotic behavior in the mapping process. 

(B) Tent map: Within this framework, the parameter 𝜇 can only take values between zero and two. At 𝜇 = 2, a tent map 

shows a change from possible stability to disorderly behavior. In order to choose features and parameters, the chaotic map 

is defined using Eq. (41) and (42): 

    𝑥𝑓 =  {
𝜇 × 𝑥𝑓−1 𝑖𝑓      0 ≤𝑥𝑓 ≤ 0.5,

𝜇 × (1 − 𝑥𝑓−1) 𝑖𝑓 0.5 ≤ 𝑥𝑓 ≤ 1
      (41)        

  𝑥𝑝 =  {
𝜇 × 𝑥𝑝−1 𝑖𝑓 0 ≤𝑥𝑝 ≤ 0.5,

𝜇 × (1 − 𝑥𝑝−1) 𝑖𝑓 0.5 ≤ 𝑥𝑝 ≤ 1
        (42)    

Mathematicians and clinicians have discovered numerous chaotic maps, which are utilized in algorithms to tackle real-world 

optimization challenges. The fitness function chaotic whale feature selection in Eq. (43) and parameter section Eq. (44) 

𝐹𝑓(𝑖) =  
𝑚𝑎𝑥

𝜗𝑓
 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑋𝑓) − 𝛼𝑓 ×

𝑋𝑓

𝑛𝑓
 )  (43)   

𝐹𝑝(𝑖) =  
𝑚𝑎𝑥

𝜗𝑝
 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑋𝑝) − 𝛼𝑝 ×

𝑋𝑝

𝑛𝑓
 )   (44)                     

Where, 𝐹𝑓(𝑖) and 𝐹𝑝(𝑖) denotes the fitness function for feature and parameter, 𝜗𝑓 and 𝜗𝑝 represents the whale population for 

feature and parameter, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑋𝑓), 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑋𝑝) depicts the classification accuracy for feature and parameter selected 

by whales, 𝛼𝑓 and 𝛼𝑝 are the weighting parameter, 𝑛𝑓 and 𝑛𝑝 denotes the total number of features and parameters. 
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As a result, CLM-MWO-RDNN framework is utilized for effectively classifying Lung disease cases using chest CT images. 

The trained CT images are processed through a softmax classifier for feature learning and model training. During the 

validation phase, the framework categorizes images as COVID-19 positive or negative, ensuring an improved convergence 

rate and more accurate diagnosis. 

 

Algorithm: Proposed CLM-MWO-RDNN model 

Input: Training CT  images 

Output: Final Lung disease detection images 

 

Extract handcrafted features from the training images using GLCM ((Eq. 1) – Eq. (8)) and GLRLM (Eq. (10) - Eq. (16)). 

Utilize RDNN's convolutional, max pooling and FC layers to extract deep features. 

Select features using the CLM-MWO approach. 

Tune parameters of the RDNN model using the CLM-MWO approach. 

// Whale Optimization Algorithm (WOA) 

Set up the whale population at random and the generation counter to 𝑔. 

Select features (𝑋𝑓(𝑖 =  1, 2, 3, … , 𝑛)) and  parameters,𝑋𝑝(𝑖 =  1, 2, 3, … , 𝑛) 

Evaluate the fitness of each whale to identify the best whale 𝑋∗ in the initial population for both feature and parameter  

Initialize the chaotic map value 𝑥0 randomly. 

While 𝑔 < greatest number of iteration: 

Use the corresponding chaotic maps (the Eq. (41) and Eq. (42)) to update the chaotic map. 

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒘𝒉𝒂𝒍𝒆: 

Update 𝑎, 𝐴, 𝐶, 𝑙 𝑎𝑛𝑑 𝑟. 

𝒊𝒇 𝒓 < 𝟎. 𝟓: 

𝒊𝒇 ∣ 𝑨 ∣< 𝟏: 

Apply Eq. (22) and Eq. (24), respectively, to update the whale's position for the feature and parameter. 

𝒆𝒍𝒔𝒆 𝒊𝒇 ∣ 𝑨 ∣≥ 𝟏: 

Select a random search whale 𝑋𝑟𝑎𝑛𝑑. 

Update the position of current whale using Eq. (34) and Eq. (36). 

𝒆𝒍𝒔𝒆 𝒊𝒇 𝒓 ≥ 𝟎. 𝟓: 

Modify the current whale's position with relation to the feature and parameter. 

𝒆𝒏𝒅 𝒇𝒐𝒓 

Check if any whale goes beyond the search space to ensure that each whale is valid. 

Compute the fitness of each whale for both feature and parameter as in Eq. (43) and Eq. (44) 

Update 𝑋𝑓
× and 𝑋𝑝

× if a better solution is found. 

Increment 𝑔 =  𝑔 +  1. 

Return the best feature and parameter sets 𝑋𝑓
× and 𝑋𝑝

×. 

Train the model with the optimized features and parameters. 

Classify test image samples using the trained model and softmax layer (Eq. (20). 

Validate the model’s performance in classifying  Lung Disease cases.  

Result and Discussion 

Dataset Description 

The significance of the suggested model was demonstrated using two separate CT imaging datasets, which are detailed 
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below. 

Dataset 1: Individuals in São Paulo, Brazil, who were actually patients at hospitals, provided the SARS-CoV-2 CT image 

database [19]. This dataset's principal goal is to support AI research and development efforts aimed at CT scan processing 

for the detection of SARS-CoV-2 infection. Table 2 details the total number of CT scans used in the performance evaluation 

from this dataset. 

Dataset 2: The Customized Lung Disease collection contains CT pictures of normal, COVID-19, pneumonia, atelectasis, 

infiltration, and other lung  

Table 2. Distribution of CT Images Across Different Disease Categories 

Category Image Count 

Normal       1230 

COVID  1252 

Total 2482 

Table 3. CT Image Distribution by Lung Disease Category (Before Augmentation) 

Category  Image Count 

COVID     1002 

Normal  984 

Pneumonia 1762 

Atelectasis  310 

Infiltrate 260 

Total  4318 

 

Table 4. CT Image Distribution by Lung Disease Category (After Augmentation) 

Category  Image Count 

COVID     1762 

Normal  1762 

Pneumonia 1762 

Atelectasis  1762 

Infiltrate 1762 

Total  8810 

 

disorders. The images were sourced from public repositories: atelectasis from [20], COVID and Normal from [21], 

pneumonia from [22] and infiltration from [23]. The total number of CT images for evaluation is shown in Table 3. 

Data augmentation is a technique used to artificially improve the size and diversity of a dataset by applying the 

transformations like rotation, flipping, scaling, zooming and noise addition.    In table 2, data augmentation was not applied 

because the dataset was relatively balanced between COVID and normal cases (1252 vs. 1230), which does not require any 

augmentation. In contrast, table 3 showed significant class imbalance issues where pneumonia has highest values of 1762 

while Infiltrate has 260 values. Hence, it is necessary to upsample the minority classes using data augmentation techniques. 

Table 4 depicts the after augmentation values equalizing all categories to 1762 images. This ensures that the model treats all 

classes equally during training, which improves the generalizability and reduces over-fitting.    
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Experimental Setup and Performance Metrics  

This section compares proposed and various lung disease prediction algorithms. Implementation is processed in   Matlab 

2019b with Windows 10 64-bit machine with an Intel® CoreTM i5-4210 CPU running at 3GHz, 4GB of RAM, and a 1TB 

hard drive is used. Table 5 depicts the hyperparameter settings of proposed and existing models. For the performance 

evaluation, the collected dataset is divided into 60% for training i.e., 1489 for dataset 1; 2590 (without augmentation) and 

5285 for dataset 2 (with augmentation) and remaining 40% (i.e., 993 for dataset 1; 1728 (without augmentation) and 3525 

(with augmentation) for dataset 2, were the test considers the following criteria: 

True Positive (TP): Number of lung disease characteristics that were positively confirmed as belonging to the lung diseases. 

 

Table 5. Hyperparameter Settings of Proposed and Existing Models 

Ref No. Hyperparameters Range 

 

 

[7] 

Learning Rate 0.01 

Optimizer Stochastic Gradient 

Descent (SGD) 

Epoch   50 

Batch Size  32 

 

[9] 

Learning Rate 0.0001 

 Batch size 32 

Epoch 32 

Momentum 0.9 

 

 

 

[10] 

 Optimizer Adam 

Learning Rate 0.001 

Loss Function  Categorical Cross-

Entropy (CE) 

Epochs 60 

Dropout Rate 0.4 

 

 

[11] 

 Optimizer   Adam 

Epoch 150 

Batch Size 32 

Learning Rate 0.001 

Momentum 0.9 

Loss Function  CE  

[12]  Optimizer  Adam  

Loss Function CE 

 

 

[13] 

Optimizer Adam 

Learning Rate 0.001 

Batch Size 32 

Epoch  10 
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Loss Function  Binary CE  

 

 

[14] 

Optimizer Adam 

Learning Rate 0.0001 

Batch Size 32 

Epoch  100 

Loss Function  CE  

 

[15] 

Learning Rate  0.01 

Optimizer Adam 

Epoch 30 

 

Our 

Work 

Learning Rate 0.001  

Weight Decay 0.0005 

Momentum 0.9 

Epoch  250-500 

Batch Size 64 

Loss Function CE 

Dropout Rate 0.5 -0.2  

Optimizer CLM-MWO 

True Negative (TN): The amount of typical characteristics that were accurately classified as typical. 

False Positive (FP): Number of typical characteristics that were wrongly classified as lung disease. 

False Negative (FN): Number of COVID-19 or lung disease characteristics that were wrongly classified as normal. 

The evaluation measures detailed below are used to assess the efficacy of the suggested approach. 

Accuracy: The percentage of right predictions relative to all predictions, as determined by Eq. (45) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                            (45) 

Precision: The percentage of correct predictions relative to a total amount of positive predictions, as determined by Eq. (46). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                        (46)       

Recall: The percentage of actual positives that are correctly identified, as determined by Eq. (47). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑁

𝑇𝑃+𝐹𝑁
                                              (47)     

                    

F1 Score: The precision and recall harmonic mean, which shows how well they balance each other out, as determined by 

Eq. (48). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
(2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)
                (48) 

Receiver Operating Characteristic (ROC) curve: Eq. (49) and Eq. (50) compares the TP rate (TPR) to FP Rate (FPR) for 

every possible cut-off point of a detection test. The cut of point interval for FPR is fixed between 0.1 to 1. The TPR is found 

for each interval.  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                  (49) 

    𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                   (50) 



N. Suganthi, Dr.K.Sarojini  

pg. 126 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 33s 

 

Performance Analysis  

 This section assesses and contrasts the suggested CLM-MWO-RDNN model with standard DL models like CNN and CNN-

Long Short-Term Memory (LSTM) and Visual Transformer (ViT)-LSTM. CNN, LSTM, ViT and ViT-CNN-LSTM were 

widely used for image classifcation. CNNs extract features based on spatial relationship among the features, LSTMs capture 

temporal dependencies and ViTs leverage attention mechanisms for obtaining the global context of images. The proposed 

CLM-MWO-RDNN model definitely benchmarked if it perform better than those methods. The results proved that proposed 

work is better than those methods.  Table 6 depicts confusion matrix for   both dataset usng without augmentation along with 

single validation and   with augmentation along with 4 fold Cross Validation(CV) .  

The suggested CLM-MWO-RDNN model is compared to existing models in terms of accuracy, precision, recall and F1-

Score in Fig.  2. The results show that the proposed method achieves a higher performance results when compared to other 

existing models. The accuracy rate of CLM-MWO-RDNN is 14.96%, 11.11%, 8.23% and 3.75% higher than the CNN, 

CNN-LSTM, ViT-LSTM and ViT-CNN-LSTM models, respectively. The values of proposed other metrics of proposed 

method also higher than the other DL models.     

 

Table 6. Confusion matrix of two datasets (Test Images)  

Datasets Classes Confusion Matrix 

TP FP TN FN 

SARS-CoV-2 CT dataset COVID 490 8 489 6 

Normal 489 6 490 8 

SARS-CoV-2 CT dataset 

with 4 fold CV 

COVID 489 13 485 15 

Normal 485 15 477 13 

 

Customised Lung disease 

dataset (without 

augmentation and single 

validation) 

COVID 382 20 1307 19 

Normal 383 29 1305 11 

Pneumonia 685 21 1002 20 

Atelectasis 106 23 1581 18 

Infiltrate 98 35 1589 6 

 

Customised Lung disease 

dataset (with augmentation  

and 4 fold CV) 

COVID 678 26 2794 27 

Normal 680 27 2793 25 

Pneumonia 679 24 2796 26 

Atelectasis 678 25 2795 27 

Infiltrate 680 28 2792 25 

 

Figure 2. Performance Analysis for SARS-CoV-2 CT scan dataset 
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Figure  3. Performance Analysis for SARS-CoV-2 CT scan dataset (4 fold CV) 

 

Figure 4.  Performance Analysis on Customised Lung disease dataset (without augmentation) 

 

Figure 5.  Performance Analysis on Customised Lung disease dataset (with augmentation and 4-fold CV) 

 

Figure 6. p-value result on Dataset 1 and Dataset 2 
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The accuracy, precision, recall and F1-Score of the suggested and existing models tested on the customized lung Disease 

dataset for without augmentation in Fig. 4. In this analysis, CLM-MWO-RDNN model outperforms the other models in terms 

of accuracy. Fig. 5 shoes the comparison of proposed and existing models on Customised Lung disease dataset (with 

augmentation and 4-fold cross validation) in terms of accuracy, precision, recall and F1-Score. In this analysis, CLM-MWO-

RDNN model outperforms the other models respectively higher than CNN, CNN-LSTM, ViT-LSTM and ViT-CNN-LSTM.   

A p-value quantifies the probability of obtaining a particular result if the null hypothesis is true. Fig. 6 provides the 

comparison of p-values results for proposed and existing models on SARS-CoV-2 and Customised Lung disease dataset 

(without and with augmentation). In this analysis, the proposed model achieves 0.0187, 0.0193 and 0.0168 𝑝 − 𝑣𝑎𝑙𝑢𝑒 on   

dataset 1 and dataset 2 (without and with augmentation) respectively. This indicates that proposed model has lower p-value 

that performs better across different datasets resulting in accurate predictions for COVID and other lung illnesses.   

Fig. 7   and Fig. 8 present the ROC curves for the proposed CLM-MWO-RDNN model compared to hybrid deep learning 

models on SARS-CoV-2 and Customised Lung disease dataset (without and with augmentation) respectively. These figures 

depict the trade-off between TPR and FPR across thresholds, indicating the model’s ability to distinguish COVID-19 from 

non-COVID cases. Curves closer to the top-left corner reflect higher diagnostic accuracy, highlighting the effectiveness of 

the CLM-MWO-RDNN model in classification. 

Table 7 presents the performance analysis of proposed CLM-MWO-RDNN model for handcrafted, deep feature and 

combined for RDNN model. In this analysis, combined features only   achieves 91.45% on SARS-CoV-2 CT, 90.85% 

(without augmentation) and 88.30% (with augmentation) on customized lung disease datasets. The handcrafted features 

GLCM and GLRLM provides textural subtleties to RDNN and deep semantic patterns is extracted by RDNN, resulting in 

better feature representations and accurate Covid-19 diagnosis.  

 Table 8 presents the performance analysis of proposed CLM-MWO-RDNN model for with and without tuning model 

hyperparameters on Dataset 1 and Dataset 2. Before hyperparameter tuning, it achieved accuracies of 91.13% on SARS-

CoV-2 CT, 90.47% (without augmentation) and 88.74% (with augmentation) on customized lung disease datasets  

 

Figure. 7 ROC curve for CLM-MWO-RDNN Model with hybrid DL models on SARS-CoV-2 CT dataset 

 

Figure. 8 ROC curve for proposed CLM-MWO-RDNN Model with hybrid DL models for customized lung diseases 

dataset  
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Table 7. Comparison of CLM-MWO-RDNN Model performance on various features for Two Dataset 

Datasets Metrics (%) 

Test condition 

RDNN 

(handcraft 

feature only) 

RDNN model 

(deep feature 

only) 

Combined 

handcrafted 

features with 

RDNN 

SARS-CoV-2 CT 

Accuracy 85.61 89.69 98.58 

Precision 84.32 88.97 98.61 

Recall 83.12 89.03 98.55 

F1-score 83.67 89.17 98.57 

SARS-CoV-2 CT (4 

fold Cross validation) 

Accuracy           83..43  86.43 96.98 

Precision 82.56 86.34 96.89 

Recall 81.67 85.85 96.94 

F1-score 81.97 85.23 96.87 

Customized Lung 

Disease CT Images 

(Without 

augmentation) 

Accuracy 84.34 87.71 97.65 

Precision 85.56 88.47 97.47 

Recall 85.67 87.98 97.72 

F1-score 86.19 88.63 97.61 

Customized Lung 

Disease CT Images 

(With augmentation 

and 4 fold CV) 

Accuracy 82.56 85.12 95.22 

Precision 83.8 86.11 95.41 

Recall 83.62 85.34 95.35 

F1-score 83.56 85.72 95.50 

 

Table 8. Comparison of RDNN Model for hyperparameter optimization  

Datasets 
Metrics 

(%) 

Test condition 

Without 

hyperparameter 

optimization   

 

Grid 

search 

Adam 

Optimizer 

Parameter 

optimization 

and Feature 

selection by 

CLM-MWO) 

 SARS-CoV-2 CT 

Accuracy  91.13 92.05 92.68 98.59 

Precision  90.91 91.74 92.22 98.58 

Recall 91.63 92.5 93.07 98.61 

F1-score 91.27 92.11 92.64 98.60 

SARS-CoV-2 CT(4 fold 

CV) 

Accuracy  91.01 91.88 92.57 97.28 

Precision  90.74 91.45 91.84 97.29 

Recall 91.47 91.98 92.99 97.28 

F1-score 90.99 92.01 92.45 97.28 



N. Suganthi, Dr.K.Sarojini  

pg. 130 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 33s 

 

Customized Lung 

Disease CT Images 

(Without augmentation) 

Accuracy 90.47 91.38 92.91 97.74 

Precision 91.68 92.30 92.74 94.10 

Recall  90.99 91.92 92.44 95.50 

F1-score 91.28 92.11 92.59 94.80 

Customized Lung 

Disease CT Images 

(With augmentation and 

4 fold CV) 

Accuracy 88.74 89.53 90.12 96.32 

Precision 88.12 89.01 90.45 96.31 

Recall  87.79 88.93 90.10 96.29 

F1-score 87.93 88.96 90.26 96.30 

 

Table 9. Computational efficiency of the proposed CLM-MWO-RDNN model using different datasets 

Datasets 

Models Training time 

(sec) 

Inference time 

(sec)  

Memory usage  

(MB) 

CPU GPU CPU GPU CPU GPU 

Dataset 1 ViT-CNN-LSTM 4980 1600 440 1300 13800 9400 

CLM-MWO-RDNN 3890 960 240 700 8100 6200 

Dataset 1(4 fold Cross 

validation) 

ViT-CNN-LSTM 8520 2360 690 1680 15400 10070 

CLM-MWO-RDNN 7910 1180 380 890 9520 7450 

Dataset 2  

(Without augmentation)  

ViT-CNN-LSTM 9600 3400 750 1800 18600 14000 

CLM-MWO-RDNN 7762  1850 520 1300 16900 12800 

Dataset 2  

(With augmentation and 

4 fold CV) 

ViT-CNN-LSTM 10113 3600 790 1950 19100 14700 

CLM-MWO-RDNN 8140 2020 570 1420 17200 13200 

 

Table 10. Comparison of robustness for CLM-MWO-RDNN Model against adversarial noisy mages 

Datasets Metrics (%) 
SNR levels  in input images  

30 25 20 15 10  5 

SARS-CoV-2 CT 

Accuracy  67.24 75.76 80.12 85.45 91.91 93.74 

Precision  65.23 74.38 80.56 85.67 92.63 94.12 

Recall 67.14 75.76 80.78 85.34 91.83 93.41 

F1-score 66.54 76.12 81.25 85.49 92.19 94.65 

       SARS-CoV-2 CT(4 

fold Cross validation) 

Accuracy    65.13 73.34 76.17 82.34 87.12 91.34 

Precision     65.56 73.76 76.86 82.65 86.54 92.31 

Recall    64.75 72.21 75.34 81.67 85.12 91.32 

F1-score    64.57 72.75 75.12 81.45 86.12 91.12 

Customized Lung 

Disease CT Images 

Accuracy 67.32 77.43 82.34 86.12 90.34 93.65 

Precision 68.96 76.98 81.78 86.23 91.92 94.02 
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 (Without augmentation) Recall 67.67 77.06 82.45 85.98 91.61 93.95 

F1-score 67.45 77.10 83.12 86.38 91.09 93.87 

Customized Lung 

Disease CT Images 

 (With augmentation and 

4 fold CV ) 

Accuracy 65.34 72.89 78.67 83.91 88.73 91.82 

Precision 64.12 71.46 77.45 83.04 88.15 91.23 

Recall 65.87 72.02 78.01 83.56 88.39 91.47 

F1-score 64.99 71.71 77.72 83.29 88.27 91.35 

 

Table 11. Comparison of Different Existing Models and Proposed Model 

Ref

. 

No 

Models Dataset No. 

of. 

Imag

es  

No. 

of. 

clas

s 

Training\ 

Testing\ 

Validatio

n 

Performance Metrics (%) 

Accurac

y 

Precisio

n 

Recal

l 

F1-

Score 

[7] CLM-

MWO-

INN 

SARS-CoV-2 CT 

scan dataset 

2482 

 

2 60\40 91.13 90.91 91.63 91.27 

Lung disease 

dataset 

4318 5 60\40 93.11 85.30 85.92 85.61 

[9] MC-

CNN 

Radiology 

Encyclopedia and 

the Italian Society 

of Interventional 

and Medical 

Radiology (SIRM) 

810 3 70\30 98.80 98.60 98.50 - 

[10

] 

Deform

able 

ResNet-

50 

Images sourced 

from hospitals in 

São Paulo, Brazil, 

and stored in the 

Kaggle repository. 

2481 2 80\10\10 97.6 98.2 96.5 97.3 

[11

] 

COVID

-ResNet 

 SARS-CoV-2 CT 

scans on Kaggle 

and COVID-19 on 

UCSD-AI4H 

3227 2 6\2\2 96.89 95.79 98.15 96.96 

[12

] 

DETS- 

DETSO

R 

SARS-COV-2 Ct-

Scan Dataset 

3734 2 70\30 97.2  95.9  

[13

] 

ConvNe

Xt 

SARS-CoV-2 CT-

Scan Dataset 

2482  5-fold CV 89.4 87.3 92.9 90 

[14

] 

HTL-

FED 

300 lung CT scan 

images from 

Fariabi 

Hospital in 

Kermanshah 

3500 2 2,400 

(train) 

1,500 

(test) 

97 

(Train) 

88 

(Test) 

97 

(Train) 

88 

(Test) 

95 

(Train

) 

87 

(Test) 

 

- 

[15

] 

VGG-

19+ 

ResNet

CT images 

collected 

2481 2 80\20 98.51 97.47 99.49 - 
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50+ 

RFE 

from hospitals 

across Brazil 

 

 

 

Ou

rs 

 

 

CLM-

MWO-

RDNN 

SARS-CoV-2 CT 

scan dataset 

2482 

 

2 60\40 98.59 98.58 98.61 98.60 

SARS-CoV-2 CT  

dataset with 4 

fold CV)  

2482 

 

2 60\40 for 

each fold  

97.28 97.29 97.28 97.28 

Customized Lung 

disease dataset  

(without 

augment) 

   

4318 

5 60\40 97.74 94.1 95.5 94.8 

Customized Lung 

disease dataset  

(with 

augmentation 

and 4 fold CV) 

 8810 5 60\40- for 

each fold 

96.32 96.31 96.29 96.30 

 

respectively. After hyperparameter optimization through CLM-MWO, the accuracies improved to 93.69% on SARS-CoV-2 

CT, 92.71% (without augmentation) and 91.85% (with augmentation). 93.69% and 92.71%, respectively. Precision, recall, 

and F1-score also observed significant enhancements across all datasets, indicating that optimal hyper parameters bolstered 

the model's capacity to accurately predict Covid-19. 

Table 9 shows the computational efficiency of the proposed CLM-MWO-RDNN model on SARS-CoV-2 CT and customized 

lung diseases dataset (without. and with augmentation). The training time, inference time and memory usage are measured 

separately for CPU and GPU environments The results demonstrate that all the computational efficiency are much faster 

than other method. Speeds up training and inference while also reducing memory usage. In addition, the scalability is 

evaluated for SARS-CoV-2 CT and customized lung diseases dataset (without and with augmentation). The analysis states 

that the dataset size increases, training time increases proportionally with minimal overhead, proving the proposed model is 

scalable for Covid-19 prediction 

Table 10 contrasts the proposed CLM-MWO-RDNN model adversarial noisy images in SARS-CoV-2 CT and customized 

lung diseases dataset (without and with augmentation). Testing on adversarial images, the proposed model achieves 91.91% 

on SARS-CoV-2 CT, 90.34% (without augmentation) and (with augmentation) on  customized lung diseases dataset 

correspondingly which reduces its accuracy. Following pre-processing, on both dataset, the accuracy rises to 93.74%, 93.65% 

and 91.82% respectively. Similar improvements in accuracy, recall and F1-score point to pre-processing greatly improving 

model performance. This emphasizes the models resilience and the need of data preparation in reducing the influence of the 

Covid-19 prediction task 

Comparative Analysis of state-of-arts models with proposed models 

Table 11 displays a comprehensive comparison of the proposed model's results with those of prior research. The existing 

models referenced in this comparison have been sourced from the literature reviewed in Section 2. In this analysis, Accuracy, 

precision, recall, and F1-score for CLM-MWO-INN in detecting SARS-CoV-2 were 91.13%, 90.91%, 91.63% and 91.27% 

respectively. When tested on a lung disease dataset, it achieved 93.11% accuracy, though with slightly lower precision 

(85.30%), recall (85.92%), and F1-score (85.61%). CLM-MWO-RDNN model, developed in the current study, outperformed 

all others methods, achieving 98.59% accuracy on SARS-CoV-2 dataset, 97.74% on lung diseases dataset (without 

augmentation) and 96.32% on lung diseases dataset (with augmentation). Similarly, it demonstrated outstanding precision, 

recall and F1-scores given in table 10. Overall, CLM-MWO-RDNN model outperformed others models, achieving better 

outcomes on both datasets.  

Potential limitations 

The results of the prospeod model can be  

affected by Imaging variations like Magnetic Resonance Imaging (MRI) and other medical images. Models perform better 

on previously observed data.  It would be beneficial to have models that can function on data that has never been seen before. 

The hyper parameter tuning proposed in this study solves these issues significantly. However, transfer learning from pre-
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trained models and intelligent data augmentation can further overcome these limitations and approaches.    

4. CONCLUSION 

This paper proposes the CLM-MWO-RDNN model for Lung disease detection. The main goal of this model is to improve 

classifier performance by determining the best architecture and informative features.  In the RDNN, the CLM-MWO 

algorithm handles features and parameter selection. In addition, combining deep and handmade features considerably 

enhances Lung disease identification. The results demonstrate that the suggested method outperforms existing approaches 

with a superior convergence rate. It obtains an accuracy of 99.69% using the SARS-CoV-2 CT database and 99.71% (without 

augmentation) and 96.32% (with augmentation) using the customized lung disease dataset. In the future, an advanced model 

like Generative Adverbial Network (GAN) or improved self-attention mechanism will be developed to address challenges 

related to performance on unseen data. 
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