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ABSTRACT

COVID-19 is a dangerous and extremely infectious virus, destroyed the life of million people throughout the world. Early
viral identification can lower virus propagation and mortality rates. A number of different detection techniques have been
implemented to identify COVID-19 in Computed Tomography (CT) scans. Amongst, Chaotic Logistic Map based Modified
Whale Optimization with Improved Neural Network (CLM-MWO-INN) provides an efficient result in COVID-19
prediction. However, it cannot process large size samples. Hence, in this paper, a Reread Deep Neural Network (RDNN)
model is proposed for processing the large number of samples from CT images. Gray Level Run Length Matrix (GLRLM)
and Gray Level Co-Occurrence Matrix (GLCM) is used to produce the handmade features, whereas RDNN's convolutional
layers are used to extract the deep features. These extracted attributes are combined and appropriate features are selected by
CLM-MWO. The CLM-MWO is also used for selecting an appropriate parameter of RDNN.The feature and parameter
selection are simultaneously performed in this model, because the selected features and parameter might affect the RDNN
performance. The selected features by CLM-MWO are fed into the softmax layer classifies CT lung scan images into multiple
classes, including Atelectasis, Pneumonia, Infiltrate, COVID-19, and Non-Diseased. The suggested approach yields
favorable outcomes when compared to traditional DNN architectures, exhibiting improved convergence speed with larger
datasets. The complete work is named as CLM-MWO with RDNN (CLM-MWO-RDNN). At last, the results show that
compared to state-of-the-art models, the CLM-MWO-RDNN model outperforms with an accuracy of 98.59% (single
validation) and 97.28% (4-fold cross validation) on the SARS-CoV-2 CT scan dataset, 97.74% (without augmentation) and
96.32% (with augmentation and 4-fold cross validation) on Customized Lung disease dataset than ViT- LSTM and ViT-
CNN-LSTM models.

Keywords: COVID-19, Reread Deep Neural Network, hand-crafted features, deep features, Computed Tomography Images.

1. INTRODUCTION

SARS-CoV-2 causes the coronavirus sickness known as COVID-19. The virus was formally called COVID-19 by the World
Health Organization (WHO) on February 11, 2020 (WHO, 2020). [1]. By June 2021, approximately 180 million confirmed
cases had been reported, according to data gathered by the WHO, as the virus rapidly spread beyond its initial point of origin
[2].

COVID-19 screening begins at primary care or hospitals, with imaging used for rapid assessment while Reverse
Transcription-Polymerase Chain Reaction (RT-PCR) remains the standard technique for prediction [3]. Then, patients with
severe respiratory symptoms undergo chest X-rays (CXR) and CT scans if more detail is required. Imaging techniques are
fast and practical, helping clinicians quickly identify the disease and assess its severity. As a result, CXR and CT scans are
widely adopted as alternative diagnostic tools in clinical settings [4].

To improve diagnosis, doctors examine CXR/CT images of the lungs to identify signs of COVID-19- related changes. Patient
cases have increased significantly due to the rapid dissemination of COVID-19, making the process of assessing the virus's
progression both labor-intensive and time-consuming. This challenge can be addressed by leveraging Machine Learning
(ML) methods for more efficient detection of COVID-19. Medical imaging with Computer-Aided Diagnosis (CAD) has
made significant use of ML approaches in recent years, with the goal of boosting up the process of detecting COVID-19
patients. [5]

For instance, a ML-based system has been developed to identify COVID-19 from CT/CXR images [6]. The images were

pre-processed with fuzzy c-means (FCM) clustering for normalization and segmentation which extracts statistical, textural

and Wavelet Transform (WT) features. using Principal Component Analysis (PCA) was used to select relevant features. K-
Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 33s

pg. 114


mailto:suganca@gmail.Com
mailto:saromaran@gmail.Com

N. Suganthi, Dr.K.Sarojini

Nearest Neighbour, Artificial Neural Networks (ANN) and Support Vector Machines (SVM) was applied to classify normal,
pneumonia or COVID-19 This model aims for early detection, but classifier performance depends on predefined parameters.
Also, hyper-parameter regularization enhances the network generalization across different datasets

To choose an appropriate hyper parameters and feature selection for effectively improving performance of classifier, CLM-
MWO-INN was developed [7]. The CLM-MWO-INN framework is divided into two parts. Using the GLCM and GLRLM
techniques, the attributes are first derived from the CT images. Second, the CLM-MWO algorithm was used to choose an
appropriate hyper parameters and feature selection for INN classifier’s efficiency. This model simultaneously performs
hyperparameter tuning and feature selection due to their independence. But, lower result was obtained on large size sample
and identifying the optimal number of nodes in INN structure is another challenging task.

The DNN method effectively addresses the problem by efficiently extracting features from CXR/CT images, minimizing
training cycles to differentiate between healthy, pneumonia, and COVID-19 cases. It plays a key role in diagnosing COVID-
19 by tackling complex challenges in disease identification [§].

On motivating by this, this paper develops the CLM-MWO-RDNN model to process a large number of samples without
affecting COVID-19 classification performance. In order to construct an RDNN model, it is necessary to define parameters
like the quantity of layers of convolution, maximum pooling layers, convolution filter sizes, hidden layers, Fully Connected
(FC) layer, and the number of nodes in each layer. Additionally, training parameters like the learning rate and regularization
methods (e.g., sigmoid and tangent functions) must be defined. In RDNN model, deep features extracted by convolutional
layers of RDNN and the handcrafted features extracted by GLCM and GLRLM are combined after FC layer. The handcrafted
features combined here with the aim of capturing visual characteristics of an image especially, its texture. To improve training
accuracy, the CLM-MWO method is then used to choose the right features and parameters. Feature selection and parameter
tuning are conducted simultaneously, as the chosen model features can affect hyperparameter efficiency. The selected
features are then inputted into the softmax layer for classification. This proposed method demonstrates improved accuracy
and a faster convergence rate compared to traditional DNN methods.

The rest of the paper is structured as, research on COVID-19 prediction is reviewed in Section 2. The suggested study
framework is described in Section 3 and its efficacy is shown in Section IV. Section V concludes the study and suggests
future directions.

2. LITERATURE SURVEY

A Multi-Class CNN (MC-CNN) structure was presented [9] to classify the lung diseases from CT images. But, the considered
database was limited, and the restrictions affect the prediction metrics.

In order to identify COVID-19 instances in CT scans, Deformable ResNet50 model was devised [10]. However, this model
results in lower classification accuracy. A COVID-19 recognition model was created [11] using Improved Attention ResNet
called COVID-ResNet. However, this model faces difficulty in feature extraction lesions were not addressed properly, which
decrease the precision.

To predict the presence of COVID-19 in lung CT scans, a Duffing Equation Tuna Swarm (DETS) Optimized ResNet 101
(DETSOR) classifier was presented [12]. But, this model results in overfitting issues and reduce the classifcation accuracy.
In order to classify COVID-19 using CT and X-ray images, Deep Transfer Learning (Deep TL) was devised [13]. ConvNeXt,
EfficientNetV2, DenseNet121 and ResNet34 were applied as TL models. Among these models, ConvNeXt provides efficient
predict results. However, the models hyper-parameter was not fine-tuned properly lowering the accuracy rate.

To detect COVID-19 in CT scans, Salarabadi et al. HTL-FED model was constructed [14] which combines TL with Fuzzy
Edge Detection. But, this model results in uncertainty issues which lowers the models prediction performances. A technique
for detecting COVID-19 in chest CT images was created [15] by combining ensemble classification with optimized deep
features. VGG19 and ResNet 50 was employed to extract the features., Max voting ensemble classification (MVEC) was
used for the COVID19 detection. However, this model results in uncertainty issues which lowers the models performances.

3. PROPOSED METHODOLOGY

This section provides a brief description of the CLM-MWO-RDNN model. Initially, image-processing techniques (GLCM,
GLRLM) are applied for extracting handcrafted attributes from the given dataset [7]. The RDNN uses convolutional layers
to generate deep features, which are combined with extracted information using CLM-MWO, and then input into softmax
layers for Lung disease categorization. Fig. 1 shows a schematic depiction of the study as a whole. Table 1 shows the
suggested model's notation list.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 33s
pg. 115



N. Suganthi, Dr.K.Sarojini

Table 1. Notation List

Notations Description

GLCM and GLRLM

a,b Row and column index of gray scale matrix of pixels

P(a,b) Normalized gray level element at a‘® row and bt"
column of gray matrix

uand o Mean and Varaince

Ny Number of gray level values

N, Number of Run Length

Z; Element of GLRLM with i" row and j** column of
gray matrix

Rnax Maximum Run Length

N Number of total pixels in ROI

In Natural logarithmic

Deep Convolutional Layer

x Input feature map in convolutional layer
w,b weight and bias

h Output feature map generated in the convolution layer
o Output layer

X Convolutional Operation

k Convolution kernel

K® Convolution kernel

f pooling Function

fmax Max-pooling Function

ot Final Extracted Features from FC layer
n_label Numerical Quantity in image Label

Yj Predicted Label

CLM-MWO algorithm

X, Xp Whale position for selecting features and parameters
X<, X, Best solution for feature and parameter selection
D Distance between the initial whales position

Absolute value operation

Element wise Multiplication

spiral movement of whale
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A Spiral Position Adjustment Factor

a Exploitation-Exploration Balance Factor

C Coefficient Vector for Distance Weighting
t Number of iteration

r Random Number

D' Distance between best whale position

q Constant Integer

il Indices

cu®®, cu® Best Feature and Parameter values selected by whale
u Behavioural factor in whale

F(i) E, (D) Fitness function for feature and parameter
9,9, Whale population for feature and parameter
as , ap Weighting factor of feature and parameter
g, Ny Total number of features and parameters

g Highest number of iteration

Extracting handcraft features using GLCM and GLRLM
In this model, GLCM and GLRLM are used to extract handcraft features

GLCM Technique: GLCM is a crucial technique for evaluating image texture attributes by analyzing the probability density
of pixel relationships within the image. [16]. GLCM features are calculated from normalized gray level elements P from the
pixel matrix of N, grayscale values with a rows and b columns. Eq. (1) - Eq. (8) are used to compute the following GLCM-
derived texture features.

Contrast —Zab o Pap(a, b)?

Correlation = 3/} _ t Pap (e ba) i)
. aa)(ab
Ng—l
Mean, u, = Z a(Pap);
a,b=0
N -1
= Zohob(Pap) 3)
Ng—1
Variance,c? = Z Pap(@a—1g)?;
a,b=0
2= Y09 Poy(b — uy)? 4
Op = Za_bzg a,b( Up) 4
SD o, = Jo§;0p = |0 (5)
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Handeraft feature extraction

by GLCM and GLRM
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Figure. 1 Working model of the optimized RDNN

Ng—1
Entropy = Za,%:o?a,b(_ In?,,) (6)
Ng—1
Energy =% .5 _Per (1)

Ng—l ?a,b
a,b=0 1+(a-b)2 ®)

Homogeneity =),

GLRLM Technique: 1t is utilized to derive texture features for detailed texture analysis [17]. In GLRLM, Z denotes the
GLRLM, Z;; is the (i, ) th entry of the GLRLM. Also, N, represents the set of different run-length that actually appeared in
ROI'and N, defines the set of gray scale images. N denotes the total pixel in the ROI. The N, systematically searches the
image in a specified direction to find sequences of pixels with identical gray levels (N,). These N; — N, features forms a
part of statistical features used in texture analysis. The general representation of the run-length matrix in given in Eq. (9)

Where R,,.x 1s the maximum run length. Eq. (10) — Eq. (16) provide the texture features obtained from the GLRLM. The
features used for texture-based evaluation include measurements such as short run emphasize, long run emphasize, and gray
level non-uniformity.

(i) Short Run Emphasis (SRE): 1t is a metric for short run length distribution and higher indicates fine textural textures. It
is represented in Eq. (10)

Zij

Lieng X jeN: T3

SRE = (10)

Yieng LjeNy Zij
(ii) Long Run Emphasis (LRE): 1t is a metric for long run length distribution and higher value indicates coarser structural
textures is mentioned in Eq. (11)
ZieNg ZjeNTjZZij

LRE = (11)

ZieNngeNTZij
(iii) Gray Level Non-uniformity (GLN): The GLN is a metric used to measure the variation in an image's pixel intensity
values, with lower values indicating greater uniformity, indicating less variation in gray levels as in Eq. (12)

2
ZiENg(ZjENr Zij)

LieNg ZjeNy Zij

GLN = (12)
(iv) Run Length Non-uniformity (RLN): The RLN metric assesses an image's run length consistency, with a lower value

indicating greater uniformity and texture homogeneity due to similar run lengths throughout the image. It is mentioned in
Eq. (13)

ZjENT(ZiENg Zij)2

RLN =
ZieNg ZjeNT Zij

(13)

Journal of Neonatal Surgery | Year: 2025 | Volume: 14| Issue 33s
pg. 118



N. Suganthi, Dr.K.Sarojini

(iv) Run Percentage (RP): Proportion of run count to the voxels count in the ROI is used to determine the texture coarseness.
The higher values indicate that a large ROI proportion is made up of short runs. It is mentioned in Eq. (14)

(14)

(vi) Low Gray Level Run Emphasis (LGRE): The LGRE metric in Eq. (15) evaluates the presence of lower gray-level
values within an image. A higher LGRE value indicates a stronger concentration of low-intensity values, highlighting areas
dominated by darker tones.

Yieng ZjeNrZij
N

RP =

i2
Yieng ZjeNy Zij\i

LGRE = (15)

Yieng ZjeNrZij

(vii) High Gray Level Run Emphasis (HGRE): The HGRE metric Eq. (16) assesses the distribution of high-intensity image
values. Higher HGRE score indicates a greater concentration of bright or high gray-level areas, signifying regions with
stronger intensities.

22
Yieng Xjeny L Zij

HGRE = (16)

ZieNg ZjeNrZij

The GLCM and GLRLM techniques extract feature sets from CT and CXR images, distinguishing textures with similar SRE
and LRE values but different gray-level distributions. These handcrafted features are then input into the feature layer
(convolutional layer) of RDNN model r for further processing

Deep feature extraction

In order to extract deep features, many layers of convolution, max pooling layers, and FC layers are used. This layered
structure enables the model to effectively capture deep features from CT images. The steps involved in this are briefly
illustrated below.

Convolution layers

The following is an expression for the convolution layer:

k _ pk k-1 K
In Eq. (17) uses the input feature map (x), weight (w), and the bias (b). The output map of features produced by the layer of
convolution is denoted by h, the operator X signifies convolution, and k represents the k** convolutional kernel layer.
Max pooling layer

The pooling layer can be described as follows:

h]l_c+1 — fmax(h]l_c) (18)

In Eq. (18), f represents the pooling function, specifically the max-pooling operation in this case and h is the output of the
layer of pooling.

Fully connected layer

The FC layer receives the hybrid feature vector that has been generated and is shown as:

o' = bt +wth! (19)

Here in Eq. (19), h' represents the input to the entire connected layer, w' denotes the weights, and b is the bias. o' stands
for the result that corresponds to the deep features that were extracted.

Feature selection

In the feature selection layer, the handcrafted features extracted by image processing techniques like GLCM and GLRLM
and deep features extracted from layers of RDNN are concatenated. Then the important feature for classification of diseases
are selected by CLM-MWO. The details of feature selection are explained in section 3.

Classification — softmax layer

Finally, the softmax layer is used for categorization process. In the final layer, the softmax function is applied to compute
the probability for each image label, as follows:
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l
e

yj = kalabf?leol (20)

13

In Eq. (20), n_label represent numeral quantity of image label, y; is the estimated label of given test image.

Selecting important feature and optimal parameters of RDNN using CLM-MWO algorithm

The CLM-MWO algorithm is a hybrid approach that combines chaotic theory with MWO to improve feature and parameter
selection. It enhances the algorithm's hunting behavior for humpback whales, unlike the original Whale Optimization
Algorithm (WOA), which mimics predatory behavior by diving to twelve meters and following a bubble trail to the surface.
Here are the steps to follow when participating in the WOA:

Exploitation Phase: During the exploitation phase, the humpback whales target the optimal features and parameters as the
optimum prey. They update the position using two strategies like bubble-net feeding and shrinking encircling. Below
provided shrink encircling mechanism is utilized for feature selection and parameters optimization.

Dy = |C eXF()—X; ()] (21)
X(t+1) = X}(@)— AeD (22)
D, = |C eX}(t) — X, ()] (23)
X,(t+1)= Xy — AeD (24)

From Eq. (21) - Eq. (24), X; and X,, represent the whale position for features and parameters selection, while X f>< and pr
denote the best solution for feature and parameter selection updated during each iteration when a better solution is found. ¢t
indicates the current iteration, while D is the distance between the i* whale's position, X and the global best solution, X*.
|| and srepresents the absolute value operation and element-wise multiplication respectively. In addition, the variables A and
C can be found using the following formulas in Eq. (25) and Eq. (26):

A = 2aer — a (25)
C = 2er (26)

Where, r represents a randomly generated value within the range of [0, 1] while the parameter a progressively reduces from
2 to 0 throughout the iterative process. The gradual decrease in exploration allows for precise transition from exploration to
exploitation for solution refinement. The spiral movement (1) used for adjusting feature and parameter positions is described
through a set of Eq. (27) — Eq. (30), which simulate the spiraling path followed by humpback whales when hunting.

D'y = | X¥| (©) — Xp(t) (27)
X (t+1) = D'ee?e cos(2cosm 1) + X7 (t)
(28)
D', =|X¥| (© — X,(0) (29)
Xp(t+1) = D'eePle cos(2cosm 1) + X, (t)
(30)

In this case, D'() represents the distance among the solution that has been identified up to that moment and the i** whale.
Furthermore, [ is a value randomly selected within the interval [—1, 1]. The logarithmic spiral shape with q as a constant, is
determined by Humpback whales' simultaneous prey capture strategies using a spiral path and shrinking encircling behaviors.
To replicate this behavior, 50% probability is applied to feature and parameter selection in equations (31) and (32).

K= {xfx(t)— AeD ifr <05
D'e e%'ecos (2cosm 1) + X7 (t) if r <05

(1)
KD {x;(t)—A-D ifr<05
D'e eecos (2cosm 1) + X (t) if r < 0.5

(32)

Exploration phase: In this phase, global search mechanism is used to improve the exploration in feature and parameter
selection. An arbitrary search agent, instead of the optimal one, guides the search. If |A] > 1 or < —1, position updates
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follow exploration or exploitation strategies, as defined in Eq. (33) — Eq. (36).

D =|CeXpana — Xyl (33)
X (t+1) =Xpgna— AeD (34)
D =|CeXrana — Xp| (35)
X, (t+1) =Xyqng— AeD (36)

In this model, X, 44 is @ randomly chosen as the position vector from the current population. MWO enhances WOA by
integrating chaotic techniques to improve convergence speed. Among various chaotic maps utilized for balancing exploration
and exploitation, logistic maps significantly boost WOA performance and convergence.

(i) Chaotic Systems: Chaos is a complex system with dependencies on initial conditions and nonlinear irregular waves,
enhances global search in optimization by preventing local optima trapping and allowing full exploration using specific range
values [18]. The n-dimensional map for feature and parameter optimization is a time-dependent dynamic approach, defined
by Eq. (37) and (38).

cul(f“) =f (cui(f)) 37
™ = f (cui(p)) (38)

A chaotic sequence can be evaluated by initializing the system with an initial state, denoted as cul@. From this starting point,

chaotic sequences for feature selection can be defined as cugf ) , where f = 0,1,2, ... and for parameter selection, the sequence

is represented as cuEp) where p = 0,1,2, ... n. The study presents a chaotic search algorithm that uses an Ergodic condition

to determine the chaotic vector value, employing multiple chaotic functions for various evolutionary paths and utilizing three
types of chaotic maps for feature selection and optimization performance.

(ii) Chaotic Maps: A chaotic strategy improves WOA by preventing premature convergence, accelerating optimization, and
managing randomness in factor values. Three distinct chaotic maps are employed to enhance feature selection performance,
each contributing uniquely to the optimization process, allowing better determination of system states in nonlinear systems.

(A) Logistic map: This map depends on a chaotic system and a nonlinear equation and considered as a second-degree
polynomial mapping, utilizing mathematical formulas for feature and parameter selection, as in Eq. (39) and (40):

Xp = U XX X (1L —xp_q) (39)
Xp =P XXy g X (1 —xp_1) (40)
The variable u, which affects the behavior of the system, is usually placed between 0 and 4 in these equations. When u > 4,

the system's values fall outside the interval [0,1]. However, when u = 4, the system reaches the chaotic state, signifying the
onset of chaotic behavior in the mapping process.

(B) Tent map: Within this framework, the parameter y can only take values between zero and two. At u = 2, a tent map
shows a change from possible stability to disorderly behavior. In order to choose features and parameters, the chaotic map
is defined using Eq. (41) and (42):

uxxy if 0<x <05,
f = _ i (41)
UX A —xp4) if05<x=<1
XXy if0<x, <05, o
P= lux(-x,) if05<x,<1

Mathematicians and clinicians have discovered numerous chaotic maps, which are utilized in algorithms to tackle real-world
optimization challenges. The fitness function chaotic whale feature selection in Eq. (43) and parameter section Eq. (44)
Xr

] max
Fr(D) = 9 (accuracy (Xf) —ay X n—f) (43)

. max pe
E, (1) = 9, (accuracy (X,) — a, x TTZ) (44)

Where, Ff(i) and F, (i) denotes the fitness function for feature and parameter, 9y and ¥, represents the whale population for
feature and parameter, accuracy (X f), accuracy (Xp) depicts the classification accuracy for feature and parameter selected
by whales, a; and a,, are the weighting parameter, n; and n,, denotes the total number of features and parameters.
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As a result, CLM-MWO-RDNN framework is utilized for effectively classifying Lung disease cases using chest CT images.
The trained CT images are processed through a softmax classifier for feature learning and model training. During the
validation phase, the framework categorizes images as COVID-19 positive or negative, ensuring an improved convergence
rate and more accurate diagnosis.

Algorithm: Proposed CLM-MWO-RDNN model
Input: Training CT images

Output: Final Lung disease detection images

Extract handcrafted features from the training images using GLCM ((Eq. 1) — Eq. (8)) and GLRLM (Eq. (10) - Eq. (16)).
Utilize RDNN's convolutional, max pooling and FC layers to extract deep features.
Select features using the CLM-MWO approach.
Tune parameters of the RDNN model using the CLM-MWO approach.
/! Whale Optimization Algorithm (WOA)
Set up the whale population at random and the generation counter to g.
Select features (X¢(i = 1,2,3,...,n)) and parameters,X,,(i = 1,2,3,...,n)
Evaluate the fitness of each whale to identify the best whale X* in the initial population for both feature and parameter
Initialize the chaotic map value x, randomly.
While g < greatest number of iteration:
Use the corresponding chaotic maps (the Eq. (41) and Eq. (42)) to update the chaotic map.
for each whale:
Update a,A4,C,land r.
ifr<o0.5:
if 141<1:
Apply Eq. (22) and Eq. (24), respectively, to update the whale's position for the feature and parameter.
elseif 1A= 1:
Select a random search whale X,.;,,4-
Update the position of current whale using Eq. (34) and Eq. (36).
elseifr>0.5:
Modify the current whale's position with relation to the feature and parameter.
end for
Check if any whale goes beyond the search space to ensure that each whale is valid.
Compute the fitness of each whale for both feature and parameter as in Eq. (43) and Eq. (44)
Update X ;( and X if a better solution is found.
Incrementg = g + 1.
Return the best feature and parameter sets X, fx and X
Train the model with the optimized features and parameters.
Classify test image samples using the trained model and softmax layer (Eq. (20).
Validate the model’s performance in classifying Lung Disease cases.
Result and Discussion
Dataset Description

The significance of the suggested model was demonstrated using two separate CT imaging datasets, which are detailed
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below.

Dataset 1: Individuals in Sao Paulo, Brazil, who were actually patients at hospitals, provided the SARS-CoV-2 CT image
database [19]. This dataset's principal goal is to support Al research and development efforts aimed at CT scan processing
for the detection of SARS-CoV-2 infection. Table 2 details the total number of CT scans used in the performance evaluation
from this dataset.

Dataset 2: The Customized Lung Disease collection contains CT pictures of normal, COVID-19, pneumonia, atelectasis,
infiltration, and other lung

Table 2. Distribution of CT Images Across Different Disease Categories

Category Image Count
Normal 1230
COVID 1252
Total 2482

Table 3. CT Image Distribution by Lung Disease Category (Before Augmentation)

Category Image Count
COVID 1002

Normal 984
Pneumonia 1762
Atelectasis 310

Infiltrate 260

Total 4318

Table 4. CT Image Distribution by Lung Disease Category (After Augmentation)

Category Image Count
COVID 1762
Normal 1762
Pneumonia 1762
Atelectasis 1762
Infiltrate 1762
Total 8810

disorders. The images were sourced from public repositories: atelectasis from [20], COVID and Normal from [21],
pneumonia from [22] and infiltration from [23]. The total number of CT images for evaluation is shown in Table 3.

Data augmentation is a technique used to artificially improve the size and diversity of a dataset by applying the
transformations like rotation, flipping, scaling, zooming and noise addition. In table 2, data augmentation was not applied
because the dataset was relatively balanced between COVID and normal cases (1252 vs. 1230), which does not require any
augmentation. In contrast, table 3 showed significant class imbalance issues where pneumonia has highest values of 1762
while Infiltrate has 260 values. Hence, it is necessary to upsample the minority classes using data augmentation techniques.
Table 4 depicts the after augmentation values equalizing all categories to 1762 images. This ensures that the model treats all
classes equally during training, which improves the generalizability and reduces over-fitting.
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Experimental Setup and Performance Metrics

This section compares proposed and various lung disease prediction algorithms. Implementation is processed in Matlab
2019b with Windows 10 64-bit machine with an Intel® CoreTM i5-4210 CPU running at 3GHz, 4GB of RAM, and a 1TB
hard drive is used. Table 5 depicts the hyperparameter settings of proposed and existing models. For the performance
evaluation, the collected dataset is divided into 60% for training i.e., 1489 for dataset 1; 2590 (without augmentation) and
5285 for dataset 2 (with augmentation) and remaining 40% (i.e., 993 for dataset 1; 1728 (without augmentation) and 3525
(with augmentation) for dataset 2, were the test considers the following criteria:

True Positive (TP): Number of lung disease characteristics that were positively confirmed as belonging to the lung diseases.

Table 5. Hyperparameter Settings of Proposed and Existing Models

Ref No. | Hyperparameters Range
Learning Rate 0.01
Optimizer Stochastic Gradient
[7] Descent (SGD)
Epoch 50
Batch Size 32
Learning Rate 0.0001
[9] Batch size 32
Epoch 32
Momentum 0.9
Optimizer Adam
Learning Rate 0.001
Loss Function Categorical Cross-
[10] Entropy (CE)
Epochs 60
Dropout Rate 0.4
Optimizer Adam
Epoch 150
[11] Batch Size 32
Learning Rate 0.001
Momentum 0.9
Loss Function CE
[12] Optimizer Adam
Loss Function CE
Optimizer Adam
Learning Rate 0.001
[13] Batch Size 32
Epoch 10
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Loss Function Binary CE
Optimizer Adam
Learning Rate 0.0001
[14] Batch Size 32
Epoch 100
Loss Function CE
Learning Rate 0.01
[15] Optimizer Adam
Epoch 30
Learning Rate 0.001
Our Weight Decay 0.0005
Work
Momentum 0.9
Epoch 250-500
Batch Size 64
Loss Function CE
Dropout Rate 0.5-0.2
Optimizer CLM-MWO

True Negative (TN): The amount of typical characteristics that were accurately classified as typical.

False Positive (FP): Number of typical characteristics that were wrongly classified as lung disease.

False Negative (FN): Number of COVID-19 or lung disease characteristics that were wrongly classified as normal.
The evaluation measures detailed below are used to assess the efficacy of the suggested approach.

Accuracy: The percentage of right predictions relative to all predictions, as determined by Eq. (45)

TP+TN

Accuracy = ————
y TP+TN+FP+FN

(45)
Precision: The percentage of correct predictions relative to a total amount of positive predictions, as determined by Eq. (46).

TP (46)

TP+FP

Precision =

Recall: The percentage of actual positives that are correctly identified, as determined by Eq. (47).

TN
TP+FN

Recall = 47)

F1 Score: The precision and recall harmonic mean, which shows how well they balance each other out, as determined by
Eq. (48).

(2 x Precision x Recall)

F1 — Score =

(48)

(Precision x Recall)

Receiver Operating Characteristic (ROC) curve: Eq. (49) and Eq. (50) compares the TP rate (TPR) to FP Rate (FPR) for
every possible cut-off point of a detection test. The cut of point interval for FPR is fixed between 0.1 to 1. The TPR is found
for each interval.

TPR = —— (49)
TP+FN
FPR = = (50)
FP+TN
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Performance Analysis

This section assesses and contrasts the suggested CLM-MWO-RDNN model with standard DL models like CNN and CNN-
Long Short-Term Memory (LSTM) and Visual Transformer (ViT)-LSTM. CNN, LSTM, ViT and ViT-CNN-LSTM were
widely used for image classifcation. CNNs extract features based on spatial relationship among the features, LSTMs capture
temporal dependencies and ViTs leverage attention mechanisms for obtaining the global context of images. The proposed
CLM-MWO-RDNN model definitely benchmarked if it perform better than those methods. The results proved that proposed
work is better than those methods. Table 6 depicts confusion matrix for both dataset usng without augmentation along with
single validation and with augmentation along with 4 fold Cross Validation(CV) .

The suggested CLM-MWO-RDNN model is compared to existing models in terms of accuracy, precision, recall and F1-
Score in Fig. 2. The results show that the proposed method achieves a higher performance results when compared to other
existing models. The accuracy rate of CLM-MWO-RDNN is 14.96%, 11.11%, 8.23% and 3.75% higher than the CNN,
CNN-LSTM, ViT-LSTM and ViT-CNN-LSTM models, respectively. The values of proposed other metrics of proposed
method also higher than the other DL models.

Table 6. Confusion matrix of two datasets (Test Images)

Datasets Classes Confusion Matrix
TP FP TN FN
SARS-CoV-2 CT dataset COVID 490 8 489 6
Normal 489 6 490 8
SARS-CoV-2 CT dataset | COVID 489 13 485 15
with 4 fold CV
Normal 485 15 477 13
COVID 382 20 1307 19
Customised Lung disease | Normal 383 29 1305 11
dataset (without
augmentation and single | Pneumonia 685 21 1002 20
validation) Atelectasis 106 23 | 1581 |18
Infiltrate 98 35 1589 6
COVID 678 26 2794 27
Customised Lung disease | Normal 680 27 2793 25
dataset (with augmentation
and 4 fold CV) Pneumonia 679 24 2796 | 26
Atelectasis 678 25 2795 27
Infiltrate 6830 28 2792 25

Performance Anlaysis for SARS-CoV-2 CT scan dataset (Single validation)
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Figure 2. Performance Analysis for SARS-CoV-2 CT scan dataset
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Figure 4. Performance Analysis on Customised Lung disease dataset (without augmentation)
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Figure 5. Performance Analysis on Customised Lung disease dataset (with augmentation and 4-fold CV)
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The accuracy, precision, recall and F1-Score of the suggested and existing models tested on the customized lung Disease
dataset for without augmentation in Fig. 4. In this analysis, CLM-MWO-RDNN model outperforms the other models in terms
of accuracy. Fig. 5 shoes the comparison of proposed and existing models on Customised Lung disease dataset (with
augmentation and 4-fold cross validation) in terms of accuracy, precision, recall and F1-Score. In this analysis, CLM-MWO-
RDNN model outperforms the other models respectively higher than CNN, CNN-LSTM, ViT-LSTM and ViT-CNN-LSTM.

A p-value quantifies the probability of obtaining a particular result if the null hypothesis is true. Fig. 6 provides the
comparison of p-values results for proposed and existing models on SARS-CoV-2 and Customised Lung disease dataset
(without and with augmentation). In this analysis, the proposed model achieves 0.0187, 0.0193 and 0.0168 p — value on
dataset 1 and dataset 2 (without and with augmentation) respectively. This indicates that proposed model has lower p-value
that performs better across different datasets resulting in accurate predictions for COVID and other lung illnesses.

Fig. 7 and Fig. 8 present the ROC curves for the proposed CLM-MWO-RDNN model compared to hybrid deep learning
models on SARS-CoV-2 and Customised Lung disease dataset (without and with augmentation) respectively. These figures
depict the trade-off between TPR and FPR across thresholds, indicating the model’s ability to distinguish COVID-19 from
non-COVID cases. Curves closer to the top-left corner reflect higher diagnostic accuracy, highlighting the effectiveness of
the CLM-MWO-RDNN model in classification.

Table 7 presents the performance analysis of proposed CLM-MWO-RDNN model for handcrafted, deep feature and
combined for RDNN model. In this analysis, combined features only achieves 91.45% on SARS-CoV-2 CT, 90.85%
(without augmentation) and 88.30% (with augmentation) on customized lung disease datasets. The handcrafted features
GLCM and GLRLM provides textural subtleties to RDNN and deep semantic patterns is extracted by RDNN, resulting in
better feature representations and accurate Covid-19 diagnosis.

Table 8 presents the performance analysis of proposed CLM-MWO-RDNN model for with and without tuning model
hyperparameters on Dataset 1 and Dataset 2. Before hyperparameter tuning, it achieved accuracies of 91.13% on SARS-
CoV-2 CT, 90.47% (without augmentation) and 88.74% (with augmentation) on customized lung disease datasets

1o ROC - SARS -Cov2-CT (4-fold CV )
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Figure. 7 ROC curve for CLM-MWO-RDNN Model with hybrid DL models on SARS-CoV-2 CT dataset
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Figure. 8 ROC curve for proposed CLM-MWO-RDNN Model with hybrid DL models for customized lung diseases
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Table 7. Comparison of CLM-MWO-RDNN Model performance on various features for Two Dataset

Test condition
RDNN Combined
Datasets Metrics (%) | (handcraft RDNN model handcrafted
(deep feature .
feature only) only) features with
y RDNN
Accuracy 85.61 89.69 98.58
Precision 84.32 88.97 98.61
SARS-CoV-2 CT
Recall 83.12 89.03 98.55
F1-score 83.67 89.17 98.57
SARS-CoV-2 CT (4 | Accuracy 83..43 86.43 96.98
fold Cross validation) —
Precision 82.56 86.34 96.89
Recall 81.67 85.85 96.94
Fl-score 81.97 85.23 96.87
Accuracy 84.34 87.71 97.65
Customized Lung —
Discase CT Images Precision 85.56 88.47 97.47
(Without - Recall 85.67 87.98 97.72
augmentation)
Fl-score 86.19 88.63 97.61
Customized Lung | Accuracy 82.56 85.12 95.22
Disease CT Images —
(With augmentation Precision 83.8 86.11 95.41
and 4 fold CV) Recall 83.62 85.34 95.35
Fl1-score 83.56 85.72 95.50

Table 8. Comparison of RDNN Model for hyperparameter optimization

Test condition
. Without Grid Adam Parameter
Datasets 1\‘/)Ietr1cs hyperparameter | search Optimizer | optimization
(%) optimization and Feature
selection by
CLM-MWO)
Accuracy | 91.13 92.05 92.68 98.59
Precision | 90.91 91.74 92.22 98.58
SARS-CoV-2 CT
Recall 91.63 92.5 93.07 98.61
Fl-score | 91.27 92.11 92.64 98.60
SARS-CoV-2 CT(4 fold | Accuracy | 91.01 91.88 92.57 97.28
cv
) Precision | 90.74 91.45 91.84 97.29
Recall 91.47 91.98 92.99 97.28
Fl-score | 90.99 92.01 92.45 97.28
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Accuracy | 90.47 91.38 92.91 97.74
Customized Lung | Precision | 91.68 92.30 92.74 94.10
Disease CT Images
(W]thout augmentation) Recall 90.99 91.92 92.44 95.50
F1-score 91.28 92.11 92.59 94.80
Customized Lung | Accuracy | 88.74 89.53 90.12 96.32
Disease CT Images —
(With augmentation and Precision | 88.12 89.01 90.45 96.31
4 fold CV) Recall 87.79 88.93 90.10 96.29
Fl-score | 87.93 88.96 90.26 96.30

Table 9. Computational efficiency of the proposed CLM-MWO-RDNN model using different datasets

Models Training time | Inference time | Memory usage
Datasets (sec) (sec) (MB)

CPU | GPU CPU | GPU CPU GPU

Dataset 1 ViT-CNN-LSTM 4980 | 1600 440 1300 13800 | 9400

CLM-MWO-RDNN | 3890 | 960 240 700 8100 6200

Dataset 1(4 fold Cross | ViT-CNN-LSTM 8520 | 2360 690 1680 15400 | 10070

lidati
validation) CLM-MWO-RDNN | 7910 | 1180 | 380 | 890 9520 | 7450

Dataset 2 ViT-CNN-LSTM 9600 | 3400 750 1800 18600 | 14000

(Without augmentation) | CLM-MWO-RDNN | 7762 | 1850 520 1300 16900 | 12800

Dataset 2 ViT-CNN-LSTM 10113 | 3600 790 1950 19100 | 14700

(With augmentation and | CLM-MWO-RDNN | 8140 | 2020 570 1420 17200 | 13200
4 fold CV)

Table 10. Comparison of robustness for CLM-MWO-RDNN Model against adversarial noisy mages

SNR levels in input images
Datasets Metrics (%)
30 25 20 15 10 5
Accuracy 67.24 75.76 | 80.12 85.45 91.91 93.74
Precision 65.23 74.38 | 80.56 85.67 92.63 94.12
SARS-CoV-2 CT
Recall 67.14 75.76 | 80.78 85.34 91.83 9341
Fl-score 66.54 76.12 | 81.25 85.49 92.19 94.65
SARS-CoV-2 CT(4 | Accuracy 65.13 73.34 | 76.17 82.34 87.12 91.34
fold Cross validation) —
Precision 65.56 | 73.76 | 76.86 82.65 86.54 92.31
Recall 64.75 | 72.21 | 75.34 81.67 85.12 91.32
Fl1-score 64.57 | 72.75 | 75.12 81.45 86.12 91.12
Customized Lung | Accuracy 67.32 | 7743 | 8234 |86.12 [9034 |93.65
Disease CT Images Precision 68.96 | 76.98 |81.78 | 86.23 91.92 | 94.02
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(Without augmentation) | Recall 67.67 | 77.06 | 8245 | 8598 91.61 | 93.95
Fl-score 67.45 77.10 | 83.12 86.38 91.09 93.87
Customized Lung | Accuracy 65.34 72.89 | 78.67 83.91 88.73 91.82
Disease CT Images —
Precision 64.12 71.46 | 77.45 83.04 88.15 91.23
(With augmentation and
4 fold CV) Recall 65.87 72.02 | 78.01 83.56 88.39 91.47
Fl-score 64.99 71.71 | 77.72 83.29 88.27 91.35
Table 11. Comparison of Different Existing Models and Proposed Model
Ref | Models | Dataset No. No. | Training\ | Performance Metrics (%)
of. of. Testing\
N Imag | clas g Accurac | Precisio | Recal | F1-
0 es s Validatio |y n 1 Score
n
[7] | CLM- SARS-CoV-2 CT | 2482 |2 60\40 91.13 90.91 91.63 | 91.27
MWO- | scan dataset
INN
Lung disease | 4318 | 5 60\40 93.11 85.30 85.92 | 85.61
dataset
[9] | MC- Radiology 810 3 70\30 98.80 98.60 98.50 | -
CNN Encyclopedia and
the Italian Society
of Interventional
and Medical
Radiology (SIRM)
[10 | Deform | Images  sourced | 2481 | 2 80\O\O 97.6 98.2 96.5 97.3
] able from hospitals in
ResNet- | Sdo Paulo, Brazil,
50 and stored in the
Kaggle repository.
[11 | COVID | SARS-CoV-2 CT | 3227 |2 6\2\2 96.89 95.79 98.15 | 96.96
] -ResNet | scans on Kaggle
and COVID-19 on
UCSD-AI4H
[12 | DETS- | SARS-COV-2 Ct- | 3734 |2 70030 97.2 95.9
] DETSO | Scan Dataset
R
[13 | ConvNe | SARS-CoV-2 CT- | 2482 5-foldCV | 89.4 87.3 92.9 90
] Xt Scan Dataset
[14 | HTL- 300 lung CT scan | 3500 2 2,400 97 97 95
] FED images from (train) (Train) (Train) (Train |
Fariabi g&ig? 38 38 )
Eospltal - in (Test) (Test) 87
ermansha (Test)
[15 | VGG- CT images | 2481 | 2 80\20 98.51 97.47 99.49 | -
] 19+ collected
ResNet
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50+ from hospitals
RFE across Brazil
SARS-CoV-2 CT | 2482 |2 60\40 98.59 98.58 98.61 | 98.60

scan dataset

CLM- | SARS-CoV-2 CT | 2482 |2 60\40 for | 97.28 97.29 97.28 | 97.28
ou | MWO- | dataset with 4 each fold
rs | RDNN | fold CV)

Customized Lung 5 60\40 97.74 94.1 95.5 94.8
disease dataset 4318

(without
augment)

Customized Lung | 8810 | 5 60\40- for | 96.32 96.31 96.29 | 96.30
disease dataset each fold
(with
augmentation
and 4 fold CV)

respectively. After hyperparameter optimization through CLM-MWO, the accuracies improved to 93.69% on SARS-CoV-2
CT, 92.71% (without augmentation) and 91.85% (with augmentation). 93.69% and 92.71%, respectively. Precision, recall,
and F1-score also observed significant enhancements across all datasets, indicating that optimal hyper parameters bolstered
the model's capacity to accurately predict Covid-19.

Table 9 shows the computational efficiency of the proposed CLM-MWO-RDNN model on SARS-CoV-2 CT and customized
lung diseases dataset (without. and with augmentation). The training time, inference time and memory usage are measured
separately for CPU and GPU environments The results demonstrate that all the computational efficiency are much faster
than other method. Speeds up training and inference while also reducing memory usage. In addition, the scalability is
evaluated for SARS-CoV-2 CT and customized lung diseases dataset (without and with augmentation). The analysis states
that the dataset size increases, training time increases proportionally with minimal overhead, proving the proposed model is
scalable for Covid-19 prediction

Table 10 contrasts the proposed CLM-MWO-RDNN model adversarial noisy images in SARS-CoV-2 CT and customized
lung diseases dataset (without and with augmentation). Testing on adversarial images, the proposed model achieves 91.91%
on SARS-CoV-2 CT, 90.34% (without augmentation) and (with augmentation) on customized lung diseases dataset
correspondingly which reduces its accuracy. Following pre-processing, on both dataset, the accuracy rises to 93.74%, 93.65%
and 91.82% respectively. Similar improvements in accuracy, recall and F1-score point to pre-processing greatly improving
model performance. This emphasizes the models resilience and the need of data preparation in reducing the influence of the
Covid-19 prediction task

Comparative Analysis of state-of-arts models with proposed models

Table 11 displays a comprehensive comparison of the proposed model's results with those of prior research. The existing
models referenced in this comparison have been sourced from the literature reviewed in Section 2. In this analysis, Accuracy,
precision, recall, and F1-score for CLM-MWO-INN in detecting SARS-CoV-2 were 91.13%, 90.91%, 91.63% and 91.27%
respectively. When tested on a lung disease dataset, it achieved 93.11% accuracy, though with slightly lower precision
(85.30%), recall (85.92%), and F1-score (85.61%). CLM-MWO-RDNN model, developed in the current study, outperformed
all others methods, achieving 98.59% accuracy on SARS-CoV-2 dataset, 97.74% on lung diseases dataset (without
augmentation) and 96.32% on lung diseases dataset (with augmentation). Similarly, it demonstrated outstanding precision,
recall and F1-scores given in table 10. Overall, CLM-MWO-RDNN model outperformed others models, achieving better
outcomes on both datasets.

Potential limitations
The results of the prospeod model can be

affected by Imaging variations like Magnetic Resonance Imaging (MRI) and other medical images. Models perform better
on previously observed data. It would be beneficial to have models that can function on data that has never been seen before.
The hyper parameter tuning proposed in this study solves these issues significantly. However, transfer learning from pre-
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trained models and intelligent data augmentation can further overcome these limitations and approaches.

4. CONCLUSION

This paper proposes the CLM-MWO-RDNN model for Lung disease detection. The main goal of this model is to improve
classifier performance by determining the best architecture and informative features. In the RDNN, the CLM-MWO
algorithm handles features and parameter selection. In addition, combining deep and handmade features considerably
enhances Lung disease identification. The results demonstrate that the suggested method outperforms existing approaches
with a superior convergence rate. It obtains an accuracy of 99.69% using the SARS-CoV-2 CT database and 99.71% (without
augmentation) and 96.32% (with augmentation) using the customized lung disease dataset. In the future, an advanced model
like Generative Adverbial Network (GAN) or improved self-attention mechanism will be developed to address challenges
related to performance on unseen data.
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