

Influence of planting dates and nitrogen fertilizer levels on grain quality and chemical properties on two Oat varieties (Aveva sativa L.).

Aya E. El-Sharawy¹, Maha M. Abdalla¹, Al-Sayed B Gaballah¹, Ameen H. Bassiouny¹

¹Plant Production Department, Faculty of Technology and Development, Zagazig University Egypt.

Email ID : ayaiezat@zu.edu.eg

Email ID : dr_mahamabdalla@yahoo.com

Email ID : aminh@zu.edu.es

Email ID : bayoumi1950@gmail.com

Corresponding authors:

Aya Ezzat Awad Atia El-Sharawy

Cite this paper as Aya E. El-Sharawy, Maha M. Abdalla, Al-Sayed B Gaballah , Ameen H. Bassiouny (2024) Influence of planting dates and nitrogen fertilizer levels on grain quality and chemical properties on two Oat varieties (Aveva sativa L.). Journal of Neonatal Surgery, 13 1834-1843

ABSTRACT

The field trial was conducted at an extension in Research Farm of Faculty of Technology and Development, Zagazig University at Ghazalah village Zagazig District Sharkia Governorate, Egypt during 2022/2023 and 2023/2024 seasons to study the effect of planting dates (30th October, 15th November and 30th November) and nitrogen fertilizer rates (zero, 30, 60 and 90 kg. N/fed.) on quality and chemical properties of two Oat varieties (White and Rad Oat).

The results showed that planting dates had a significant difference in both seasons and combined in all properties, as well as the (30th October) early planting date produced highest germination %, good seedling %, stem length (cm.), root length (cm.), fresh weight of seedling (g.) and dry weight of seedling (g.). While (15th November) middle planting date gave the highest values of chemical properties.

Also, the results indicated that White Oat variety was superior and significantly increased than the Red Oat variety in all studied properties of quality and chemical properties.

Increasing nitrogen levels from zero,30 to 60 and 90 kg. N/ fed. significantly increased of the most studied characters. In general, 90 kg. N/fed. gave the highest values, followed by 60, 30 kg. N/ fed., while zero treatment was recorded a lowest in this respect.

The results indicated also that, grain yield (ton/ fed.) appeared a positive significant correlation with no. grains/panicle, 1000-grain weight (g.), grains protein %, grains carbohydrates %, straw protein% and straw carbohydrates %, germination % and stem length (cm.).

In addition, Path analysis revealed that number of spikelets / panicle, number of grains/panicle and 1000-grain weight (g.) were the main grain yield variation and the relative contributions were about 4.985, 5.795 and 126.330 % in respective order.

Conclusively, all studied quality characters; 30th October surpassed than 15th November and 30th November, respectively when 90kg. N/fed. gave the highest values viability, vigour and chemical characters. White Oat variety superior in all studied characters, i.e. germination%, good seedling %, stem length (cm.), root length (cm.), fresh and dry weight of seedling (g.), grains protein and carbohydrates %, straw protein and carbohydrates %. The grain yield (ton/fed.) appeared a positive significant correlation with most studied characters..

Keywords: Germination –Nitrogen -Protein, Carbohydrates -Viability – Vigour- Oat.

1. INTRODUCTION

Oat (*Avena sativa L.*) is a kind of cereal which is suitable for personal consumption amongst the cool climate cereal of the world. Besides being directly used in the human nutrition,

Oat is also used as an important raw material in industry. Moreover, its grain and straw is also frequently used for animal. According to year of 2018, 230 thousand tons of Oat is produced in the world FAO (2020).

Seed quality is one of the main factor that affect establishment and performance of crops, and it is related to the sum of the genetic, physical, physiological and health aspects that affect the capacity of seeds and gave high-yielding plants (**Marcos-Filho 2015**). Understanding the relationship between planting dates of the crop environments and the yield of varieties is essential for production seeds of superior quality. According to **Caron et al., (2017)** the characterization of phonological modifications that occur in plants as a result of contrasting planting dates is important for defining the adoption of crop practices that assist in taking better advantage of environmental conditions and in maximizing the yield of better quality seeds from planting dates of growing period.

The evaluation of Oat varieties has been studied by several investigators, since the test varieties significantly differed in seed yield, quality and chemical properties (**Dumlupinar et al., 2011; Chakraborty et al., 2014; Mut et al., 2015; Godara et al., 2016; Ali et al., 2017; Mut et al., 2018; Ratan et al., 2018; Al-Ajmi and AL-Refai 2020; Murali et al., 2021; Kumar et al., 2023 and Samal et al., 2023**; while, **Alhilfi, 2020** reported that two types of (Jauzania and Shefa Oats) had no significant differences in 1000-grain weight (g.) and protein ratio.

The effect of planting dates on Oat by **Jehangir et al., 2013; Shaker et al., 2016; Al-Ajmi and AL-Refai, 2020; Bazzo et al., 2020; Murali et al., 2021** and **TONG et al., 2021**. They showed that significant increased yields, quality and chemical properties by planting dates data. On the other hand, planting dates had no significant influence on nutrient contents in grain and straw of Oat by **kadam et al., (2022)**.

It is well known that nitrogen fertilization plays an important role on the productivity of different field crops. The yield attributes, yield quality and chemical properties to be affected with nitrogen fertilization. The obtained results showed an obvious and positive response on most of the studied characters as N level increased. This conclusion was obtained by **Iqbal et al., 2013; Lafond et al., 2013; Jat et al., 2014; Brunava et al., 2015; Midha et al., 2015; Godara et al., 2016; Ali et al., 2017; Kumar et al., 2017; Yan et al., 2017; Jat et al., 2018; Devi et al., 2019; Obour et al., 2019 and Kumar et al., 2023**.

Concerning the yield analysis, **Tessema and Getinet (2020)** and **Mahajan and Chauhan (2021)** illustrated that Oat seed yield positively correlated with most components characters. The objective of this study was the effect plating dates and N fertilizer on quality, chemical properties and yield analysis of two Oats cultivars.

2. MATERIALS AND METHODS

The field experiment was conducted at Research Farm of the Faculty of Technology and Development, Zagazig University at Ghazalah village, Zagazig District Sharkia Governorate, Egypt during the two successive winter seasons of 2022/2023 and 2023/2024 to study the effect of plating dates and nitrogen fertilization on yield, quality and chemical properties of tow Oat varieties (*Avena sativa* L.).

The experiment included 24 treatments which the combination of three planting dates (30th October, 15th November and 30th November), four levels of nitrogen, i.e. Zero, 30, 60 and 90 kg N/fed., with two varieties of Oats. The experimental field was laid in a randomized block design with three replications. The plot area was 6m² (3m x 2m) and seeds were drilled in rows 20 apart. Other normal cultural practices for Oat crop was followed all through the season. The four nitrogen fertilizer (ammonium nitrate 33.05%) for each plot was divided into two equal parts (after 25 and 60 days) respectively from sowing.

Studied characters: -

I- Seed viability and vigour:

Germination tests was performed according to International Seed Tasting Association (**ISTA 1999**). Sample of 300 seeds were randomly taken from each treatment and divided into three replicates and germinated under laboratory conditions at 25 ± 2 °C for ten days in sterilized paper to estimate the followings:

Standard germination test

Germination percentage: Germination percentage was defined as the total number of normal seedling at the end of the test after 10 days.

Good seedling percentage: Percentage of good seedling was accorded according to (**ISTA, 1999**).

Stem length (cm.): During the final count; ten normal seedlings from each replicate were taken randomly to measure the stem length (cm.).

Rood length (cm.): Same in measure for stem length (cm.).

Seedling fresh weight (g.): During the final count, ten normal seedlings which were used for measuring the seedling fresh weight (g.).

Seedling dry weight (g.): Seedling length were dried in a forced air oven at 105°C for 24 hours and weights thereafter. Dry

weight recorded and expressed in milligrams (**Krishnasamy and Seshu, 1990**).

II- Chemical properties: -

Grain: Protein content % was determined using the standard methods by **Westerman (1990)** and crud protein % was calculated by multiplying N Content X 5.36 according to **Wrolstad et al., (2005)** and **Evenhuis and Waard (1980)**. Carbohydrates content% was determined by **DuBois et al. (1956)** and **A.O.A.C (1970)**.

Straw: Protein content % and carbohydrates content%.

Statistical analysis: -

The proper statistical analysis of split-split plot design was combined analysis was performed for the characters recorded in both seasons and combined. The analysis of variance described by **Snedecor and Cochran (1981)**. The collected data were statistically analyzed using the Analysis of Variance (ANOVA) to detect significance if any at treatment level. Differences among treatments were judged according to **Duncan (1955)**. Means followed by different letters were statistically significant. Farther, the correlation coefficients among all possible combinations of characters were calculated and Path analysis to nitrogen fertilization using the method of **Svab (1973)**.

3. RESULTS AND DISCUSSION

Viability and vigour:

Laboratory experiments were carried out at Seed Laboratory of Faculty of Technology and Development, Zagazig University Egypt, during the winter seasons of 2022/2023 and 22023/2024 to study the effect of planting dates and nitrogen levels on seed viability and vigour of two Oat varieties (*Avena sativa L.*).

Germination percentage and Good seedling %: -

The results in Table (1) show that planting dates differed highly significantly in germination % and good seedling % in two seasons and the combined as well meanwhile, 30th October planting date appeared to produce the highest germination % (95.373%) and good seedlings% (65.30%) which was followed by 15th November and 30th November planting date. The results are in a good accordance with those reported. **Caron et al., 2017; Ali et al., 2017; Mut et al., 2018; Al-Ajmi and Al-Refai, 2020; Murali et al., 2021; Kumar et al., 2023 and Samal et al., 2023**.

Also, the results in Table (1) show that the tested varieties (White and Red Oat) differed highly significantly in germination% and good seedling % in both seasons and the combined, whereas White Oat was superior than Red Oat. This is in harmony with results obtained by **Murali et al., (2021) and Samal et al., (2023)**.

Regarding, the influence of nitrogen fertilization had high significant on germination % and good seedling % to in both seasons and the combined. Since, the relative increase in germination to due to increasing nitrogen levels from control Kg N/ fed. were about 0.853 %, 1.695 % and 2.435 % and the relative increase in good seedling % due to nitrogen applied in same forward from control Kg N/fed. were about 1.176%, 2.351% and 3.242%.

2- Seedling measurements: -

Seedling measurements include stem length (cm.), root length (cm.), fresh weight of seedling "g." and dry weight of seedling "g." are shown in Tables (1 and 2). The results indicated highly significant differences in both seasons and the combined in all cases. The effect of planting dates on all seedling measurements the results showed that early planting date 30th October tented to the longest and higher values in two seasons and the combined for stem length (11.90 cm.); root length (7.022 cm.); seedling fresh weight (2.768 g.) and seedling dry weight (0.8365 g.) and the densest planting data followed by the second and dates (15th November to 30th November).

Generally, most of seed viability and vigour of Oat verities to be reduced with delaying of planting dates lower values, respectively. So, it could be concluded that planting of Oat early under such conditions could be greatly improve grain viability and vigour properties and produce higher and longer grains **Rahuma, M. A. (2018); Călugăru et al., (2024) and popa et al., (2025)**.

It is clear from results in Tables (1 and 2) show that verities (White and Red Oat) differed highly significant in stem length (cm.) and root length (cm.) and significant in fresh and dry weight of seedling (g.) in seasons and the combined respectively. White Oat gave the taller length (cm.) and higher weight in all studied characters (seedling measurements) than Red Oat.

But, the differences did not reach the level of significance on stem length (cm.) and root length (cm.) with nitrogen applied. However, nitrogen fertilization had significant effect on fresh and dry weight of seedling (g.). General, 90 kg / N fed., gave the highest values of seedling measurements. These results are in agreement with those obtained by **Călugăru et al. (2024)** and **popa et al. (2025)**.

Table (1): Germination percentage (%), Good seedling percentage (%), Stem length (cm.) and Root length (cm.) Oat as affect by planting dates, varieties and Nitrogen levels in two seasons and their combined

Main effects and Interactions	germination percentage (%)			good seedling percentage (%)			Stem length (cm.)			Root length (cm.)		
	1 st season 2022/2023	2 nd season 2023/2024	Combined Data	1 st season 2022/2023	2 nd season 2023/2024	Combined Data	1 st season 2022/2023	2 nd season 2023/2024	Combined Data	1 st season 2022/2023	2 nd season 2023/2024	Combined Data
Planting dates (D)												
30 th October	85.36 a	95.13 a	95.39 a	65.30 a	64.75 a	65.03 a	12.08 a	11.72 a	11.90 a	7.302 a	6.732 a	7.022 a
15 th November	90.40 b	89.88 b	90.14 b	60.88 b	60.33 b	60.61 b	10.73 b	10.37 b	10.55 b	6.195 b	5.625 b	5.915 b
30 th November	95.65 c	84.84 c	85.10 c	56.28 c	55.73 c	56.01 c	8.83 c	8.47 c	8.65 c	5.062 c	4.492 c	4.782 c
F .test	**	**	**	**	**	**	**	**	**	**	**	**
Varieties (V)												
White Oat	91.95 a	91.43 a	91.69 a	61.96 a	61.41 a	61.69 a	11.08 a	10.72 a	10.90 a	6.577 a	6.007 a	6.297 a
Red Oat	88.99 b	88.47 b	88.73 b	59.68 b	59.13 b	59.40 b	10.02 b	9.659 b	9.84 b	5.796 b	5.226 b	5.515 b
F .test	**	**	**	**	**	**	**	**	**	**	**	**
Nitrogen levels (N)												
Control (N zero)	89.36 c	88.84 d	89.10 c	59.81 d	59.26 d	59.54 d	10.20	9.837	10.02	5.927	5.357	5.647
30 kg/fed.	90.12 b	89.60 c	89.86 c	60.51 c	59.96 c	60.24 C	10.45	10.09	10.27	6.082	5.512	5.802
60 kg/fed.	90.87 b	90.35 b	90.61 b	61.21 b	60.66 b	60.94 b	10.68	10.32	10.50	6.256	5.686	5.976
90 kg/fed.	91.53 a	91.01 a	91.27 a	61.74 a	61.19 a	61.47 a	10.87	10.51	10.69	6.481	5.911	6.201
F .test	*	*	*	*	*	*	N.S	N.S	N.S	N.S	N.S	N.S
Interaction												
D*V	**	**	**	**	**	**	**	**	**	**	**	**
D*N	**	**	**	**	**	**	N.S	N.S	N.S	N.S	N.S	N.S
V*N	**	**	**	*	*	*	N.S	N.S	N.S	N.S	N.S	N.S
D*V*N	**	**	**	*	*	*	*	*	*	*	*	*

Treatment within a column followed by different letter are significantly with Duncan's multiple range test at 5 % level

Table (2): Fresh weight of seedling (g.) and Dry weight of seedling (g.) of Oat as affect by planting dates, varieties and Nitrogen levels in two seasons and their combined

Main effects and Interactions	Fresh weight of seedling (g.)			Dry weight of seedling (g.)		
	1 st season 2022/2023	2 nd season 2023/2024	Combined Data	1 st season 2022/2023	2 nd season 2023/2024	Combined Data
Planting dates (D)						
30 th October	2.98 a	2.55 a	2.77 a	0.954 a	0.719 a	0.837 a
15 th November	1.99 b	1.56 b	1.77 b	0.636 b	0.400 b	0.518 b
30 th November	1.57 c	1.22 c	1.39 c	0.500 c	0.265 c	0.383 c
F .test	**	**	**	**	**	**
Varieties (V)						
White Oat	2.40 a	1.97 a	2.18 a	0.766 a	0.531 a	0.649 a
Red Oat	1.96 b	1.59 a	1.77 b	0.627 b	0.392 b	0.509 b
F .test	**	N.S	*	*	*	*
Nitrogen levels (N)						
Control (N zero)	1.98 b	1.58 b	1.78 b	0.634 b	0.399 b	0.516 b
30 kg/fed.	2.15 a	1.74 a	1.94 a	0.686 b	0.451 b	0.568 b
60 kg/fed.	2.25 a	1.84 a	2.05 a	0.718 a	0.483 b	0.600 a
90 kg/fed.	2.34 a	1.94 a	2.14 a	0.749 a	0.514 a	0.632 a

F .test		*	*	*	*	*	*
Interaction							
D*V		*	*	*	*	*	*
D*N		*	*	*	*	*	*
V*N		*	*	*	*	*	*
D*V*N		*	*	*	*	*	*

Treatment within a column followed by different letter are significantly with Duncan's multiple range test at 5 % level

Table (3): Protein (%) and Total Carbohydrates of Grains and Straw of Oat as affect by planting date, varieties and Nitrogen levels in two seasons and their combined

Main effects and interactions	Grains						Straw					
	Protein %			Total Carbohydrates %			Protein %			Total Carbohydrates %		
	1 st season 2022/2023	2 nd season 2023/2024	Combi ned Data	1 st season 2022/2023	2 nd season 2023/2024	Combi ned	1 st season 2022/2023	2 nd season 2023/2024	C o m bi ne d D at a	1 st sea son 2022/2023	2 nd season 2023/2024	Combi ned Data
Planting dates (D)												
30 th October	9.26 b	9.14 b	9.20 b	50.54 b	50.65 b	50.60 b	5.06 b	4.97 b	5.02 b	43.23 b	43.35 b	43.29 b
15 th November	9.59 a	9.50 a	9.54 a	51.87 a	51.96 a	51.92 a	5.87 a	5.74 a	5.81 a	45.59 a	45.84 a	45.72 a
30 th November	8.27 c	8.18 c	8.22 c	46.39 c	46.48 c	46.44 c	4.05 c	3.97 c	4.01 c	38.31 c	38.42 c	38.37 c
F .test	**	**	**	**	**	**	**	**	**	**	**	**
Varieties (V)												
White Oat	9.19 a	9.07 a	9.13 a	50.42 a	50.52 a	50.47 a	5.22 a	5.11 a	5.17 a	43.40 a	43.60 a	43.50 a
Red Oat	8.89 b	8.80 b	8.85 b	48.78 b	48.88 b	48.83 b	4.76 b	4.68 b	4.72 b	41.36 b	41.48 b	41.42 b
F .test	**	**	**	**	**	**	**	**	**	**	**	**
Nitrogen levels (N)												
Control (N zero)	8.65 d	8.54 d	8.60 d	48.66 d	48.75 d	48.71 d	4.55 d	4.46 d	4.50 d	41.37 d	41.49 d	41.43 d
30 kg/fed.	8.88 c	8.80 c	8.84 c	48.90 c	49.01 c	48.96 c	4.81 c	4.73 c	4.77 c	41.83 c	41.95 c	41.89 c
60 kg/fed.	9.18 b	9.08 a	9.13 b	49.56 b	49.66 b	49.62 b	5.17 b	5.09 b	5.13 b	42.56 b	42.85 b	42.71 b

90 kg/fed.	9.45 a	9.33 a	9.39 a	51.27 a	51.37 a	51.32 a	5.44 a	5.31 a	5.38 a	43.75 a	43.86 a	43.81 a
F .test	**	**	**	**	*	*	**	**	**	**	**	**
Interaction												
D*V	*	*	*	**	**	**	**	N.S	*	**	**	**
D*N	N.S	N.S	N.S	**	**	**	**	*	**	**	*	**
V*N	*	*	*	**	**	**	**	N.S	N.S	**	**	**
D*V*N	N.S	N.S	N.S	**	**	**	**	N.S	*	**	N.S	*

Treatment within a column followed by different letter are significantly with Duncan's multiple range test at 5 % level

Table (4): Correlation coefficient among some studied chemical and quality characters of Oat

Characters	2	3	4	5	6	7	8	9	10	11	12	13
1-Grain yield (ton/ fed.)	.764 (*)	.903 (**)	.997 (**)	.882 (**)	.884 (**)	.809 (**)	.891 (**)	0.428 (*)	0.220	.50 7 (*)	.06 1	.222
2- No. spikelet's/ panicle		.436 (*)	.713 (**)	.577 (*)	.564 (*)	.407 (*)	0.519 (*)	.396 (*)	.107	.42 8 (*)	.33 6 (*)	.333 (*)
3-No. grains/panicle			.933 (**)	.849 (**)	.866 (**)	.878 (**)	.925 (**)	.379 (*)	.316	.47 3 (*)	.15 7	.101
4- 1000-grain weight (g.)				.888 (**)	.892 (**)	.831 (**)	.909 (*)	.420 (*)	.234	.50 3 (*)	.02 5	.202
5- Grains Protein (%)					.979 (**)	.965 (**)	.968 (**)	.711 (**)	.503 (*)	.76 5 (*)	.36 7 (*)	.157
6- Grains Carbohydrates (%)						.971 (**)	.985 (**)	.736 (**)	.572 (*)	.79 2 (*)	.39 4 (*)	.149
7- Straw Protein (%)							.979 (**)	.598 (*)	.419 (*)	.66 9 (*)	.26 2	.153
8- Straw Carbohydrates (%)								.690 (**)	.571 (*)	.75 8 (*)	.39 1 (*)	.131
9-Germination percentage (%)									.909 (**)	.99 4 (*)	.72 5 (*)	.115
10- Good seedling percentage (%)										.90 8 (*)	.84 2 (*)	.015
11- Stem length (cm.)											.70 5 (*)	.120
12- Root length (cm.)												.133
13-Dry weight of seedling (g.)												

** Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed)

2-Path analysis:

Path analysis was used to determine the relative importance of number of spikelet's/ panicle, number of grains/panicle and 1000 grain weight (g.) to grain yield variation in Oat. The effects of direct and indirect path coefficients of yield components on grain yield are shown in Table (5). 1000-grain weight (g.) showed a highly direct on grain yield of Oat.

The indirect effect through number spikelet's /panicle was a positive value (0.041449) while the indirect effect through number of grains/panicle was negative and low value (-0.099919). Similar trend was presented for number of spikelet's / panicle except, indirect effect through number of grains/ panicle was negative value (-0.046684). But, number of spikelet's/panicle showed negative direct effect of (-0.107094). While, the indirect effects through each of number of grains/panicle and 1000- grain weight (g.) were a positive value of (0.025341) and (0.984753), respectively.

The relative importance of the studied components to grain yield variation as percentage are presented in Table (6). It is clear that 1000- grain weight (g.) and number of grains / panicle as well as their interaction contributed as much in grain yield variation, since R^2 recorded herein was time 100% of total yield variation. However, the residual affect contributing grain yield was zero of the total variation. The data obtained showed that the most important sources of grain yield variation may be arranged according to their importance in following order: 1000- grains weight(g.) and number of spikelet's/panicle and its interaction (Number of grains / panicle X 1000-grain weight (g.) and number of spikelet's/panicle X Number of grains/panicle. Since their values. were 111.40%, 1.15, 21.09 and 0.54 % contributing to grain yield variation. Also, the total direct and indirect effect for 1000-grain weight (g.), number of grains/panicle and number of spikelet's/panicle (4.985, 5.795 and 126.320). From these results, it can be stated conveniently that improving the productivity of commercial varieties could be achieved when the studied treatments i.e. N fertilization and planting dates must be directed to be active in increasing number of spikelet's/panicle, number of grains/panicle and 1000-grain weight (g.).

Conclusion: all studied quality characters 30th October surpassed than 15th November and 30th November, when 90 kg. N /fed. gave the highest values viability, vigour and chemical characters. White Oat variety superior in all studied characters, i.e. germination%, good seedling %, stem length (cm.), root length (cm.), fresh and dry weight of seedling (g.), grains protein and carbohydrates %, straw protein and carbohydrates%. The grain yield (ton/fed.) appeared a positive significant correlation with most studied characters.

Table (5): Partitioning of simple Correlation coefficients between grain yield/fed. and its components under the different treatments

Source	Value
1- Number of spikelet's/ panicle.	
Direct effect	0.058134
In direct effect via Number of grains/panicle	-0.046684
In direct effect via 1000-grain weight (g.)	0.752550
Total (r y ₁)	0.764000
2- Number of grains/panicle.	
Direct effect	-0.107094
In direct effect via Number of spikelet's/ panicle	0.025341
In direct effect via 1000-grain weight (g.)	0.984753
Total (r y ₂)	0.903000
3- 1000-grain weight (g.).	
Direct effect	1.055470
In direct effect via Number of spikelet's/ panicle	0.041449
In direct effect via Number of grains/panicle	-0.099919
Total (r y ₃)	0.997000

Table (6): Direct and Joint effects of yield components to the variation of grain yield in Oat (*Avena sativa*)

Source of Variation	C.D	%
Number of spikelet's/ panicle	0.003380	0.34
Number of grains/panicle	0.011469	1.15
1000-grain weight (g.)	1.114016	111.40
Number of spikelet's/ panicle x Number of grains/panicle	-0.005428	-0.54
Number of spikelet's/ panicle x 1000-grain weight (g.)	0.087497	8.75
Number of grains/panicle x 1000-grain weight (g.)	-0.210923	-21.09
R ²	1.000011	100.00
Residual factors	-0.000011	0.00
Total	1.000000	100.00

C.D: Coefficient of determination

% = Percentage contributed

REFERENCES

- [1] A.O.A.C. (1970). Association of Official Agricultural Chemists, Official and tentative method of analysis 11th ed. Washington, D.C.
- [2] Al-Ajmi, M. H. and Al-Refai, S. I. (2020). Effect of early planting dates on the growth and yield of two varieties of oat (*Avena sativa* L.). *Plant. Arch.*, (20): 124–127.
- [3] Alhilfi, S. K. (2020). Response of two varieties of oat plant (*Avena sativa* L.) to different levels of nitrogen fertilizer. *International Journal of Agricultural and Statistical Sciences*, 16(2): 753–759.
- [4] Ali, I.; Zamir, S. I.; Hussain, M.; Shan, M. D. and Ajmal, M. (2017). Agro-economic studies of different oat (*Avena sativa* L.) cultivars under varying nitrogen levels. *Journal of Environmental and Agricultural Sciences*, (13): 31–39.
- [5] Bazzo, J. H.; Arruda, K. M.; Fonseca, I. C. and Zucareli, C. (2020). Sowing dates and densities on physiological potential of seeds of white oat cultivars. *Journal of Seed Science*, 42: e202042023.
- [6] Brunava, L.; Vilmane, L. and Zute, S. (2015). Influence of nitrogen application rate and meteorological conditions on β -glucan content in naked and husked oat grain. *Proceedings of the Latvian Academy of Sciences*, 69(4): 178–181.
- [7] Călugăru, R. E.; Varga, A.; Vana, C. D.; Ceclan, L. A.; Racz, I.; Chețan, F. and Muntean, L. (2024). Influence of Changing Weather on Old and New Maize Hybrids: A Case Study in Romania. *Plants*, 13(23): 22–33.
- [8] Caron, B. O.; Oliveira, D. M.; Elli, E. F.; Eloy, E.; Schwerz, F. and Souza, V.D. (2017). Elementos meteorológicos sobre características morfológicas e produtivas do milho em diferentes épocas de semeadura. *Científica, Jaboticabal-SP*, 45(2): 105–114.
- [9] Chakraborty, J. A.; Arora, R. N.; Joshi, U. N. and Chhabra, A. K. (2014). Evaluation of *Avena* species for yield, quality attributes and disease reaction. *Forage Research*, 39(4): 179–184.
- [10] Devi, U.; Panghaal, D.; Kumar, P.; Sewhag, M. and Kumar, P. (2019). Effect of nitrogen fertilizers on yield and quality of oats: A Review. *International Journal of Chemical Studies*, 7(2): 1999–2005.
- [11] DuBois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A. and Smith, F. (1956). Colorimetric method for determination of sugar and related substances. *Anal. Chem.*, 28(3): 350–356.
- [12] Dumluçınar, Z.; Maral, H.; Kara, R.; Dokuyucu, T. and Akkaya, A. (2011). Evaluation of Turkish oat landraces based on grain yield, yield components and some quality traits. *Turkish Journal of Field Crops*, 16(2): 190–196.
- [13] Duncan, D. B. (1955). Multiple ranges and multiple F-tests. *Biometrics*, 11: 1–24.
- [14] Evenhuis, B. and Waard, P.W. (1980). Principle and practices in plant analysis. *F.A.O. Soils Bell*. 38 (1): 152–163.
- [15] FAO (2020). Food and Agriculture Organization (FAO). <http://faostat3.Fao.org/down-load/Q/QC/E> (Accessed 01.08.2020).
- [16] Godara, A. S.; Satpal, S.; Duhan, B. S. and Pahuja, S. K. (2016). Effect of different nitrogen levels on forage yield, quality and economics of oat (*Avena sativa* L.) genotypes. *Forage Research*, 41(4): 233–236.

[17] Iqbal, M. F.; Iqbal, Z.; Farooq, M.; Ali, L. and Fiaz, M. (2013). Impact nitrogenous fertilizer on yield and quality of oat. *Pakistan Journal of Science*, 65(1): 34–39.

[18] ISTA (1999). International Rules for Seed Testing. *Handbook of Vigor Test Method*. 3rd Edition: 22–35.

[19] Jat, H. A. and Kaushik, M. K. (2018). Quality and economic of fodder oat (*Avena sativa* L.) as influenced by irrigation and nitrogen under southern Rajasthan. *Forage Research*, 44(1): 28–31.

[20] Jat, R. K.; Patel, A. G.; Shviran, A.; Bijarnia, A. L. and Bhunwal, V. B. (2014). Response of oat (*Avena sativa* L.) on quality and economics to nitrogen and phosphorus levels under North Gujarat agro-climatic conditions. *Journal of Crop and Weed*, 10(2): 492–494.

[21] Jehangir, I. A.; Khan, H. U.; Khan, M. H.; Rasool, F. U.; Bhat, R. A.; Mubarak, T. and Rasool, S. (2013). Effect of sowing dates, fertility levels and cutting managements on growth, yield and quality of oats (*Avena sativa* L.). *African Journal of Agricultural Research*, 8(7): 648–651.

[22] Kadam, S. S.; Solanki, N. S.; Arif, M.; Mundra, S. L.; Dashora, L.N. and Upadhyay, B. (2022). Effect of sowing time, cutting schedules and nitrogen levels on yield and quality of dual purpose oats (*Avena sativa* L.). *Range Management and Agroforestry*, 43(1): 102–108.

[23] Khushbu, V.; Sood, V. K. and Sanadya, S. K. (2023). Assessment of genetic variability, correlation and path coefficient analysis in backcross derived oat breeding lines. *Biological Forum — An International Journal*, 15(10): 866–870.

[24] Krishnasamy, V. and Seshu, D. V. (1990). Phosphine fumigation influence on rice seed germination and vigor. *Crop Science*, 30(1): 82–85.

[25] Kumar, B. S.; Singh, R. V.; Gupta, A. K. and Ravinder, J. (2017). Effect of nitrogen levels and cutting management on nitrogen content, protein content and protein yield of fodder oat (*Avena sativa* L.). *Int. J. Curr. Microbiol. App. Sci.*, 6(7): 2077–2083.

[26] Kumar, N.; Satpal, L.; Kharor, N. and Bhardwaj, S. (2023). Evaluating the effect of different nitrogen levels on forage yield and quality of promising entries of single cut oat. *Forage Research*, 48(4): 482–486.

[27] Lafond, G. P.; May, W.E. and Holzapfel, C. B. (2013). Row spacing and nitrogen fertilizer effect on no-till oat production. *Agronomy Journal*, 105(1): 1–10.

[28] Mahajan, G. and Chauhan, B. S. (2021). Biological traits of six sterile oat biotypes in response to planting time. *Agronomy Journal*, 113(1): 42–51.

[29] Marcos-Filho, J. (2015). *Fisiologia de sementes de plantas cultivadas* (2nd ed., 660 pp.). Londrina, Brazil: ABRATES.

[30] Midha, L. K.; Duhan, B. S. and Arya, S. (2015). Performance of promising entries of oat (*Avena sativa* L.) under different nitrogen levels. *Forage Research*, 41(2): 122–125.

[31] Murali, B.; Susheela, R.; Shanti, M. and Shashikala, T. (2021). Effect of time of sowing, seed rate, and cultivar on oat green fodder, dry matter and crude protein yield. *Indian Journal of Animal Nutrition*, 38(4): 400–406.

[32] Mut, Z.; Akay, H. and Erbaş Köse, Ö.D. (2015). Hay yield and quality of oat (*Avena sativa* L.) genotypes of worldwide origin. *International Journal of Plant Production*, 9(4): 507–522.

[33] Mut, Z.; Akay, H. and Erbaş Köse, Ö.D. (2018). Grain yield, quality traits and grain yield stability of local oat cultivars. *Journal of Soil Science and Plant Nutrition*, 18(1): 269–281.

[34] Obour, A. K.; Holman, J. D. and Schlegel, A. J. (2019). Seeding rate and nitrogen application effects on oat forage yield and nutritive value. *Journal of Plant Nutrition*, 42(13): 1452–1460.

[35] Popa, C.; Călugăru, R. E.; Varga, A.; Muntean, E.; Băcilă, I.; Vana, C. D. and Muntean, L. (2025). Evaluating maize hybrids for yield, stress tolerance, and carotenoid content: Insights into breeding for climate resilience. *Plants*, 14(1): 138.

[36] Rahuma, M. A. (2018). Sowing dates effect on growth and grain yield of some maize hybrids. *Alexandria Science Exchange Journal*, (39): 244–249.

[37] Ratan, N. E.; Yadav, M. and Singh, U.N. (2018). Responses of fodder oat (*Avena sativa* L.) varieties to irrigation and fertilizer gradient in Bundelkhand region (UP) India. *Forage Research*, 44(2): 96–100.

[38] Saini, M.; Dhama, S. K.; Bahuguna, D. K. and Kumar, N. (2025). Genetic variability, correlation coefficient and path analysis in bread wheat (*Triticum aestivum* L.). *International Journal of Agricultural Invention*, 10(1): 79–85.

[39] Samal, R. P.; Nanda, G.; Kumar, M. and Sattar, A. (2023). Yield, quality and profitability of fodder oat varieties in response to different dates of sowing. *Forage Research*, 48(4): 477–481.

[40] Shaker, A. M.; Ibrahim, M. S. and Mizel, M. S. (2016). Determined the oat (*Avena sativa* L.) genotype responding to different planting dates in southern Iraq. *International Journal of Agronomy and Agricultural Research*, 9(6): 33–43.

[41] Snedecor, G. W. and Cochran, W. G. (1981). *Statistical Methods*. Iowa State Univ. Press, Ames, Iowa, USA.

[42] Sood, V. K.; Sanadya, S. K.; Kumar, S.; Chand, S. and Kapoor, R. (2022). Health benefits of oat (*Avena sativa*) and nutritional improvement through plant breeding interventions. *Crop and Pasture Science*, 73(12): 1302–1315.

[43] Svab, J. (1973). *Biometriai modszerek a Kutatasban-Mezogazdasagi*. Kiado, Budapest.

[44] Tessema, A. and Getinet, K. (2020). Evaluation of oats (*Avena sativa*) genotypes for seed yield and yield components in the highlands of Gamo, Southern Ethiopia. *Ethiopian Journal of Agricultural Sciences*, 30(3): 15–23.

[45] TONG, Y. S.; Yu, X. J.; Xu, C. L.; Wang, P. B.; Song, J. C.; Li, Z. and Li, Y. (2021). Effects of sowing date on forage yield and quality of seven oat varieties in tianzhu alpine region. *Acta Agrestia Sinica*, 29(5): 1094–1103.

[46] Westerman, R. L. (1990). *Soil Testing and Plant Analysis*. SSSA, Madison, Wisconsin, USA: 534–587.

[47] Wrolstad, R. E.; Acree, T. E.; Decker, E. A.; Penner, M. H.; Reid, S.; Schwartz, S. J.; Shoemaker, C. F.; Smith, D. and Sporns, P. (2005). *Handbook of food analytical chemistry* (Vols. 1–2, 1779 PP.). John Wiley and Sons, Inc., Hoboken, NJ.

[48] Yan, W.; Fregeau-Reid, J.; Ma, B. L.; Pageau, D. and Vera, C. (2017). Nitrogen fertilizer complements breeding in improving yield and quality of milling oat. *Crop Science*, 57(6): 3291–3302.