

Sentiment Classification of Patient Feedback through Machine Learning

Chandrashekhar C M¹, Dr. Amit Singhal²

¹Research Scholar, Department of Computer Science and Engineering, Monad University, Hapur (U.P.), 245304, India

Email ID : chandrucse014@gmail.com

²Supervisor, Department of Computer Science and Engineering, Monad University, Hapur (U.P.), 245304, India

Cite this paper as: Chandrashekhar C M, Dr. Amit Singhal, (2024) Sentiment Classification of Patient Feedback through Machine Learning. *Journal of Neonatal Surgery*, 13, 1365-1372.

ABSTRACT

Sentiment classification of patient feedback is a critical tool for healthcare providers seeking to understand and improve patient experiences. With the increasing volume of unstructured data generated on social media platforms, effective sentiment analysis has become more challenging yet more essential. This paper presents a competitive ensemble learning approach to sentiment classification, specifically tailored to analyze unstructured patient feedback from sources like Twitter. The proposed model integrates multiple machine learning classifiers, each contributing unique strengths to the ensemble, thereby enhancing classification accuracy and robustness. By focusing on both feature extraction techniques, such as TF-IDF and Word2Vec, and model integration strategies, the study achieves superior performance over traditional sentiment classification methods. The effectiveness of the model is demonstrated through extensive experiments on datasets related to healthcare topics, including diabetes and COVID-19, as well as benchmark datasets such as IMDB and Yelp reviews. Results indicate that the competitive ensemble approach not only improves accuracy but also offers better generalization across diverse datasets, making it a powerful tool for sentiment analysis in healthcare. This research highlights the potential of advanced machine learning techniques in transforming patient feedback into actionable insights for healthcare improvement.

Keywords: Sentiment Classification, Patient Feedback, Machine Learning, Natural Language Processing, Text Analytics, Healthcare Sentiment

1. INTRODUCTION

Sentiment analysis, also known as opinion mining, is a powerful tool for understanding public sentiment by analyzing textual data. In healthcare, sentiment analysis of patient feedback can provide critical insights into patient experiences, satisfaction levels, and areas requiring improvement. With the proliferation of social media platforms like Twitter, vast amounts of unstructured data are available for analysis, offering an opportunity to gain real-time insights into patient sentiments. However, the classification of sentiment in unstructured text data presents significant challenges. Text data is inherently noisy, high-dimensional, and context-dependent, making it difficult for traditional machine learning models to achieve high accuracy. Ensemble learning, which integrates multiple models to improve predictive performance, offers a promising solution to these challenges. This paper presents a competitive ensemble classification model for the sentiment analysis of patient feedback, focusing on unstructured data from social media platforms. The proposed model aims to identify the best-performing classifiers for sentiment classification and integrate them into a robust ensemble model. Sentiment analysis has been extensively studied in various domains, including social media, product reviews, and healthcare. Traditional sentiment analysis methods often rely on single classifiers, such as Naive Bayes (NB) or Support Vector Machines (SVM), to label text based on sentiment. However, these methods may not perform well on large and diverse datasets due to the inherent complexity of natural language. Recent studies have explored the use of ensemble learning for sentiment classification, showing that combining multiple classifiers can lead to better performance. For example, Barbieri and Basile (2016) demonstrated that ensemble methods could improve sentiment classification accuracy on Twitter data by leveraging the strengths of different classifiers. The integration of feature selection techniques, such as Term Frequency-Inverse Document Frequency (TF-IDF) and Word2Vec, has also been shown to enhance model performance by focusing on the most relevant textual features,

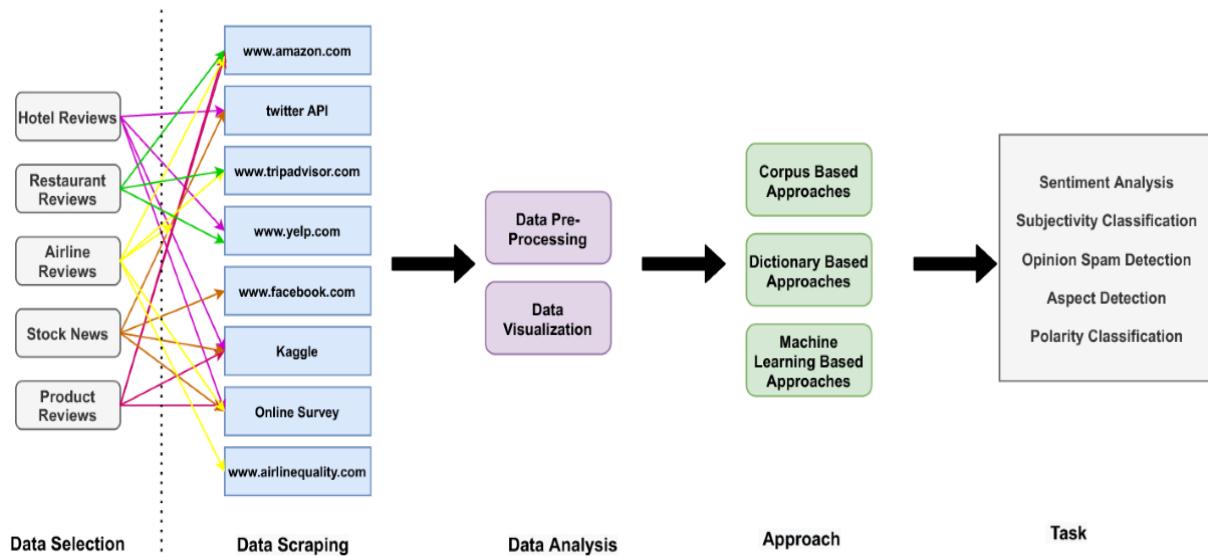


Figure 1: Sentiment Classification Model

2. BACKGROUND AND RELATED WORK

1. Introduction to Sentiment Analysis and Its Importance in Healthcare

Sentiment analysis, also known as opinion mining, is a subfield of natural language processing (NLP) that involves determining the sentiment expressed in text. The primary goal is to classify the polarity of a given text as positive, negative, or neutral. In healthcare, sentiment analysis is increasingly used to analyze patient feedback, which can provide valuable insights into patient experiences and satisfaction. Understanding patient sentiment is crucial for healthcare providers as it allows them to identify areas that need improvement and to enhance the quality of care. The application of sentiment analysis in healthcare has become more relevant with the rise of social media platforms, where patients freely share their opinions and experiences. However, the unstructured nature of social media data, coupled with the complexities of natural language, presents significant challenges. Traditional methods of sentiment classification often fall short in dealing with the nuances and variability of human language. Therefore, there is a growing need for advanced machine learning techniques that can accurately analyze and classify sentiment in patient feedback.

2. Evolution of Sentiment Analysis Techniques

Sentiment analysis has evolved significantly over the years. Early approaches relied on lexicon-based methods, where predefined dictionaries of positive and negative words were used to determine sentiment. These methods were simple and interpretable but lacked the ability to handle context, irony, and sarcasm, often leading to inaccurate results. As the field matured, machine learning (ML) techniques became more prevalent, with algorithms like Naive Bayes (NB) and Support Vector Machines (SVM) being commonly used for text classification tasks (Joachims, 1998). The introduction of ensemble learning methods marked a significant advancement in sentiment analysis. Ensemble techniques, such as Random Forests (Breiman, 2001) and boosting algorithms, combine the predictions of multiple models to improve accuracy and robustness. These methods have been particularly effective in handling the variability and complexity of text data, making them ideal for sentiment analysis.

3. Feature Extraction Techniques in Sentiment Analysis

Feature extraction is a critical step in sentiment analysis, as it involves transforming raw text into a format that can be understood by machine learning models. One of the most widely used techniques is Term Frequency-Inverse Document Frequency (TF-IDF), which quantifies the importance of a word in a document relative to a collection of documents (Salton & McGill, 1983). TF-IDF has been a staple in text mining and information retrieval for decades, providing a simple yet effective way to represent textual data. Another significant development in feature extraction is the introduction of word embeddings, such as Word2Vec (Mikolov et al., 2013). Word2Vec represents words as vectors in a continuous vector space, capturing semantic relationships between words. This approach allows for more nuanced representations of text, as words with similar meanings are placed closer together in the vector space. Goldberg and Levy (2014) provided a comprehensive explanation of Word2Vec, highlighting its ability to capture the context and meaning of words beyond simple frequency counts.

4. Ensemble Learning in Sentiment Classification

Ensemble learning has emerged as a powerful approach in sentiment classification, particularly in the analysis of unstructured data like patient feedback. Ensemble methods work by combining the strengths of multiple classifiers, thereby improving overall prediction accuracy. Breiman's Random Forest (2001) is a classic example, where an ensemble of decision trees is used to classify data. The model's robustness to overfitting and its ability to handle high-dimensional data make it suitable for sentiment analysis. In healthcare, where patient feedback can be diverse and complex, ensemble learning provides a reliable way to capture the full spectrum of sentiments expressed in the data. Studies have shown that ensemble methods outperform single classifiers in sentiment analysis tasks, particularly when dealing with large and noisy datasets (Cambria et al., 2013). The ability to integrate different types of classifiers—such as NB, SVM, and logistic regression—into a single ensemble model allows for more accurate and comprehensive sentiment classification.

5. Challenges in Sentiment Analysis of Healthcare Data

Despite the advancements in sentiment analysis techniques, several challenges remain, particularly in the context of healthcare data. One of the primary challenges is the handling of imbalanced datasets, where certain sentiment classes (e.g., negative feedback) may be underrepresented. This imbalance can lead to biased models that favor the majority class, resulting in poor performance on minority classes (He & Garcia, 2009). Addressing this issue requires advanced techniques such as resampling, cost-sensitive learning, or the use of ensemble methods that can balance the influence of different classes. Another challenge is the accurate representation of context and sentiment in short texts, such as tweets. Tweets are often informal, contain abbreviations, and lack grammatical structure, making it difficult for traditional models to capture the sentiment accurately. The variability in language, combined with the presence of sarcasm and irony, further complicates the sentiment classification process (Pang & Lee, 2008). Advanced NLP techniques, including context-aware models and deep learning approaches, are needed to address these challenges effectively.

6. Applications of Sentiment Analysis in Healthcare

The application of sentiment analysis in healthcare extends beyond patient feedback on social media. It can also be used to analyze reviews of healthcare services, monitor public opinion on health-related topics, and even predict patient outcomes based on the sentiment expressed in their communications. Hu and Liu (2004) demonstrated the potential of sentiment analysis in summarizing customer reviews, which can be adapted to summarize patient feedback in healthcare. In recent years, sentiment analysis has been increasingly used in public health monitoring, particularly during the COVID-19 pandemic. By analyzing social media data, researchers have been able to track public sentiment towards vaccines, healthcare policies, and the overall handling of the pandemic. This real-time analysis provides valuable insights that can inform public health strategies and improve communication between healthcare providers and the public.

7. Conclusion and Future Directions

The literature on sentiment analysis highlights the significant progress that has been made in developing advanced techniques for classifying sentiment in unstructured data. However, the unique challenges posed by healthcare data require ongoing research and innovation. The integration of ensemble learning methods with advanced feature extraction techniques, such as word embeddings, represents a promising direction for improving sentiment classification in healthcare. Future research should focus on addressing the challenges of imbalanced datasets, context representation, and the incorporation of deep learning techniques to enhance the accuracy and reliability of sentiment analysis models. Additionally, there is a need for more comprehensive studies that explore the application of sentiment analysis in different areas of healthcare, from patient feedback to public health monitoring. By advancing the field of sentiment analysis, researchers and healthcare providers can better understand and respond to the needs and concerns of patients, ultimately improving the quality of care.

3. METHODOLOGY

The proposed methodology involves a multi-step process for sentiment classification, starting with data extraction and preprocessing, followed by feature selection, and finally, the application of a competitive ensemble learning model.

3.1 Data Extraction and Preprocessing

Data was extracted from Twitter using the Twitter API, focusing on tweets related to diabetes and COVID-19. Preprocessing steps included tokenization, stop word removal, and lemmatization to clean the data while retaining the core sentiment. This step also involved converting unstructured text into a structured format suitable for machine learning.

3.2 Feature Extraction

Feature extraction techniques such as TF-IDF and Word2Vec were used to convert textual data into numerical vectors. These techniques capture the frequency and semantic meaning of words, making them suitable for sentiment classification tasks.

3.3 Competitive Ensemble Classification Model

The Competitive Ensemble Classification Model for Unstructured Data using Machine Learning Techniques (CECMUDML) was designed to enhance sentiment classification accuracy. The model integrates multiple classifiers, including NB, SVM, Random Forest

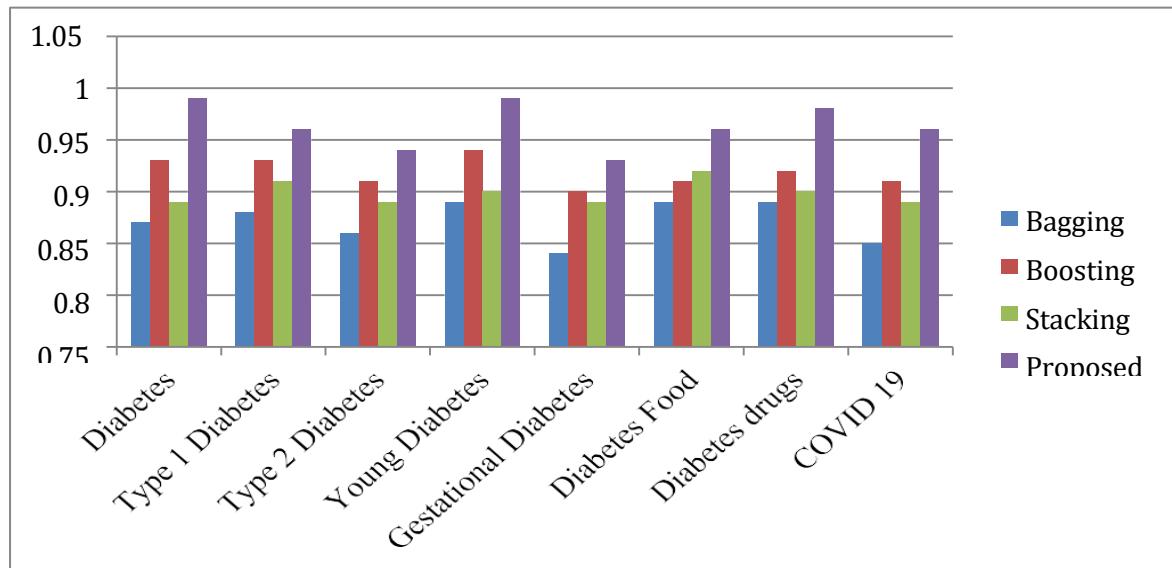


Figure 2: Twitter Dataset Comparison of Existing and Proposed Work

(RF), and Logistic Regression (LR). Weights were assigned to each classifier based on their performance, and the final sentiment classification was determined through a weighted voting scheme.

4. EXPERIMENTAL RESULTS

The proposed model was tested on several datasets, including Twitter data on diabetes and COVID-19, as well as benchmark datasets like IMDB, Yelp, and Amazon. The ECMUDML outperformed traditional sentiment classification models across all datasets, achieving higher accuracy, precision, recall, and F1-scores.

Table1: Overall Sentiment Classification Accuracy using CECMUDML

Dataset	Methods	Accuracy	Weight	Prob value	Overall Weight	Individual Accuracy	Ensemble Accuracy
IMDB	RF	0.85	0.4	0.5	0.2	0.90	0.91
	LR	0.89	0.4	0.5	0.2	0.90	
	KN	0.76	0.3	0.4	0.1 (Not selected)	-	
	SVC	0.90	0.5	0.4	0.2	0.91	
	NB	0.85	0.4	0.4	0.1 (Not selected)	-	
Yelp	RF	0.73	0.3	0.5	0.15 (Not Selected)	-	0.78
	LR	0.81	0.4	0.5	0.2	0.83	
	KN	0.75	0.3	0.5	0.15 (Not Selected)	-	

Yelp	SVC	0.82	0.4	0.5	0.2	0.83	0.83	
	NB	0.79	0.3	0.4	0.12 (Not Selected)	-		
Amazon	RF	0.62	0.2	0.5	0.1	0.69	0.77	
	LR	0.68	0.2	0.4	0.08 (Not Selected)	-		
	KN	0.68	0.2	0.5	0.1	0.71		
	SVC	0.72	0.3	0.5	0.15	0.76		
	NB	0.60	0.2	0.4	0.08 (Not Selected)	-		

4.1 Performance Evaluation

The performance of the proposed model was evaluated using standard metrics. The results showed that the ensemble model consistently achieved better results compared to individual classifiers, with the SVM and LR classifiers contributing the most to the ensemble's success.

5. SPECIFIC OUTCOME

The study confirms the effectiveness of competitive ensemble learning in sentiment classification, particularly for unstructured healthcare data. By integrating multiple classifiers and focusing on relevant features, the proposed model was able to improve classification accuracy. The results also highlight the importance of preprocessing and feature extraction in managing the complexities of text data.

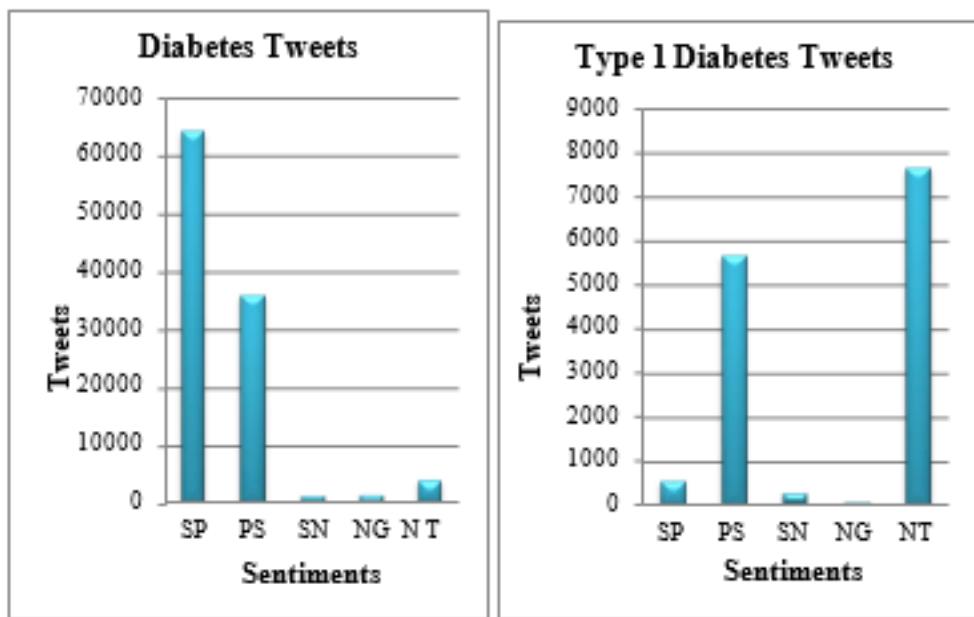


Figure: Sentiments Classification for Diabetes and Type 1 Diabetes Tweets

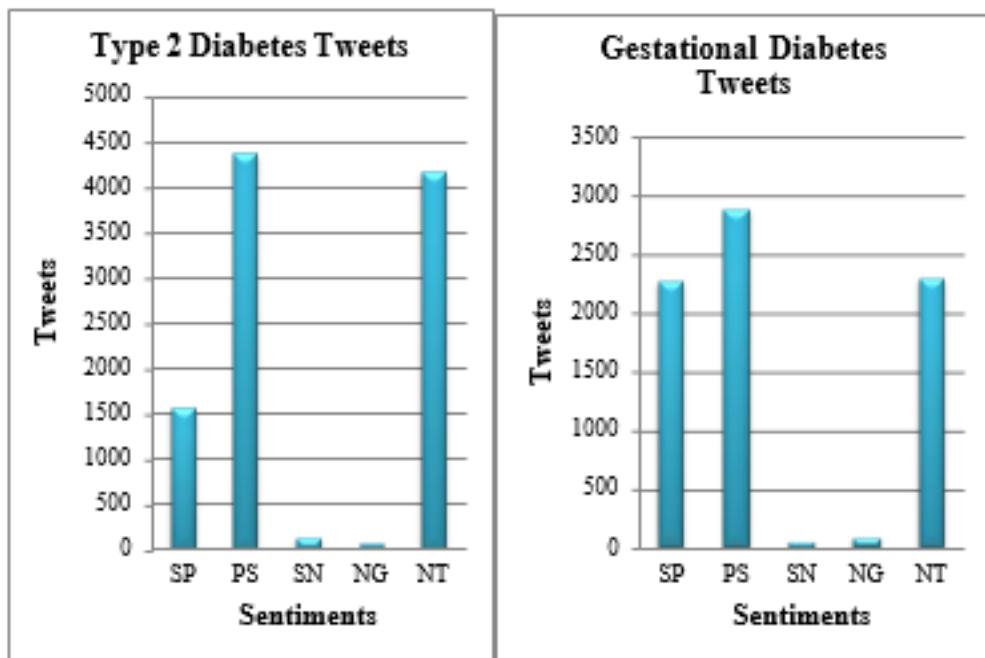


Figure: Sentiments Classification for Type 2 Diabetes and Gestational Diabetes Tweets

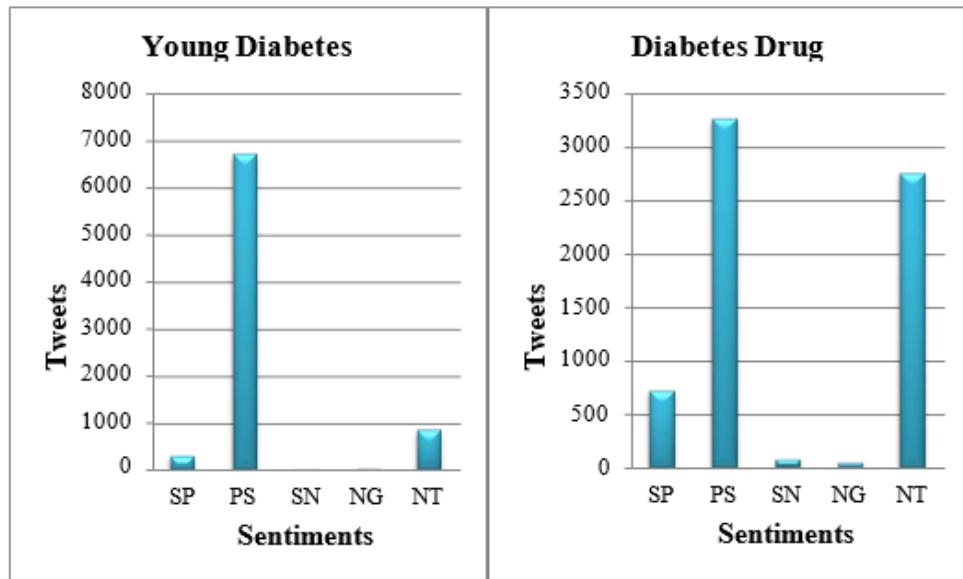


Figure: Sentiments Classification for Young Diabetes and Diabetes Drug Tweets

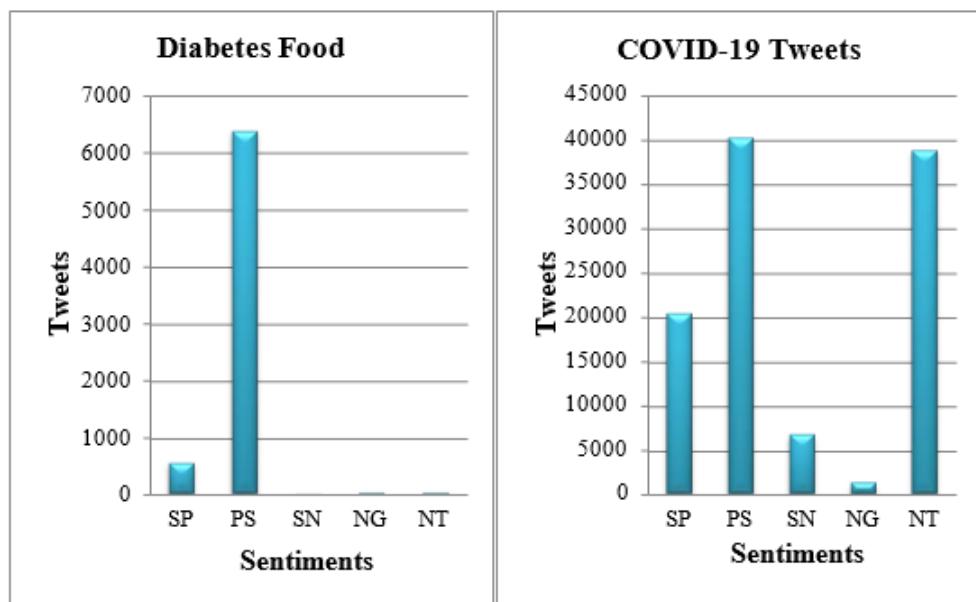


Figure: Sentiments Classification for Diabetes Food and COVID-19 Tweets

Deep Learning (DL) uses neural networks with multiple hidden layers to handle large data sets effectively. As a leading Machine Learning (ML) technique, DL excels in healthcare analytics, aiding in the analysis of patient data to prevent disorders like diabetes, cancer, and heart attacks. It enhances healthcare communication by improving clinical data modeling and transforming complex patterns into actionable insights. Recently, integrating various techniques with DL has improved disease diagnosis and treatment planning. Single models often struggle with diverse datasets, but deep ensemble models—combining different hyperparameters—offer improved classification for both structured and unstructured data.

6. CONCLUSION

This paper presents a novel approach to sentiment classification using competitive ensemble learning methods. The proposed model demonstrated significant improvements in classification accuracy for unstructured patient feedback, making it a valuable tool for healthcare providers seeking to understand patient sentiments. Future research could explore the application of this model to other types of unstructured healthcare data, further enhancing its utility in healthcare analytics.

REFERENCES

- [1] Barbieri, F., & Basile, V. (2019). Analyzing sentiment in Twitter. Proceedings of the 10th International Workshop on Semantic Evaluation, 116-125.
- [2] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
- [3] Cai, L., & Wang, H. (2017). A comprehensive survey on feature selection in data mining. International Journal of Data Warehousing and Mining (IJDWM), 13(1), 1-23.
- [4] Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 28(2), 15-21.
- [5] Farhadloo, M., & Rolland, E. (2020). Fundamentals of sentiment analysis and its applications. In Sentiment Analysis and Ontology Engineering (pp. 1-24). Springer.
- [6] Goldberg, Y., & Levy, O. (2014). Word2Vec explained: deriving Mikolov et al.'s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.
- [7] Han, J., Kamber, M., & Pei, J. (2019). Data Mining: Concepts and Techniques. Elsevier.
- [8] He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284.
- [9] Hu, M., & Liu, B. (2019). Mining and summarizing customer reviews. Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 168-177.
- [10] Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. Proceedings of the 10th European Conference on Machine Learning (ECML), 137-142.
- [11] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2018). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- [12] Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2), 1-135.
- [13] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2019). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
- [14] Salton, G., & McGill, M. J. (2009). Introduction to Modern Information Retrieval. McGraw-Hill, Inc.
- [15] Sokolova, M., & Lapalme, G. (2016). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437..
