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ABSTRACT 

Heart failure (HF) is a major cause of illness and death globally, highlighting the need for effective prediction models to 

identify high-risk patients. Traditional machine learning models are worked as a “black boxes”, offering little understanding 

of how they make decisions. This study 1) Present a comparative analysis of conventional machine learning models on the 

HF disease. 2) examines how to incorporate eXplainable Artificial Intelligence (XAI) techniques into heart failure 

conventional survival prediction models. 3) Analyzes the explainability of heart failure (HF) survival prediction models. 

This study analyzes a dataset containing 918 patient records with a history of HF. In the first phase of the study, the machine 

learning model Xtreme Gradient Boosting (XGB) achieves the highest accuracy of 88.59% among all models tested on the 

HF dataset. The second phase focuses on explainability, emphasizing that cholesterol levels, age, MaxHR, and Oldpeak are 

crucial features in HF prediction. With the analysis of the experts note that the model performs well because these relevant 

features significantly contribute to predicting HF and can save the human life. 
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1. INTRODUCTION 

Heart failure is a significant problem for healthcare community that influences millions of lives, highlighting the importance 

of early detection and intervention [1]. World Health Organization (WHO) identified the HF as a primary global cause of 

death disease [2]. Several studies, such as [3] and [4], have utilized machine learning and deep learning models on healthcare 

data to predict heart failure (HF). As a result, they have enhanced the accuracy and reliability of stroke prediction models. 

However, these traditional models often lack the ability to explain their predictions outcomes. This creates a gap between 

the model’s results and their practical use in clinical settings [5]. It will offer an opportunity for the research community to 

explore this area. Coronary heart disease, atrial fibrillation, heart failure, stroke, and vascular dementia are just a few of the 

many conditions that fall under the broad category of heart failure and circulatory diseases. These conditions can range from 

genetic disorders to those that develop over time, as shown in Figure 1 of the Global Heart Circulatory Diseases Factsheet 

[6]. Globally, there are currently about 620 million people who suffer fromcardiac conditions, this number is rising as a result 

of ageing populations, lifestyle changes, and increased survival rates following heart-related events. According to the Figure 

1, around the world, 1 in 13 persons are thought to suffer from a cardiac or circulation condition. In 2019, 290 million women 

were impacted, more than 260 million males [7]. With 285 million people afflicted, the prevalence of these illnesses has been 

gradually rising over time. 
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Figure 1. Geographical distribution of heart and circulatory diseases in the world 

 

Throughout many years, clinical cardiac illness has been the subject of substantial research. For instances [8], examined ten 

machine learning approach, such as Na¨ıve Bayes, Logistic Regression, and discovered that the HRFLM method—which 

mixes Random Forest with a linear approach—achieved the best accuracy. The HDPM model, which combines DBSCAN, 

SMOTEENN, and XGB-based MLA, was shown to be the most successful in predicting heart disease by [9]. after they run 

seven machine learning algorithmson the same dataset. Additionally [10] employed K-Nearest Neighbour and Random 

Forest techniques, with K-Nearest Neighbour obtaining an accuracy of 86.85%. Traditional methods may include established 

statistical approaches, while XAI techniques aim to enhance the interpretability of the models [5], allowing healthcare 

professionals to understand the reasoning behind predictions. This study examines the heart and circulatory diseases by 

applying various machine learning models, such as support vector machines, random forest and decision trees to enhance 

model performance and provide recommendations for reducing heart disease risk. The key goals of this study are: 

• To analysis the traditional heart failure survival prediction models and explainable artificial intelligence (XAI) 

techniques. 

• To assess the performance and interpretability of traditional approaches. 

• To provide insights into the clinical significance of using XAI in heart failure management. 

The rest of this paper includes literature review which describe the survival prediction models applied for the heart failure 

disease on the same dataset as this study, which can be found in Section 2. In Section 3, the propose approach has discussed 

with the dataset, several machine learning algorithms, feature selection techniques, and metrics used. Section 4 outlines the 

experiment result after constructing experiment various ML prediction model, the classification and explainability evaluation 

results, and the significance of the features for both local and global explainability. The work's conclusions are finally 

presented in Section 5. 

2. LITERATURE REVIEW 

Heart failure is a crucial health concern which impacts millions of individuals and contributing to high rates of morbidity 

and mortality [4]. Several predictive machine learning (ML) models including [3][9] in the management of heart failure play 

a significant role in stratifying patient risk, guiding treatment options, and optimizing resource allocation. However, these 

advancements often come with a trade-off between model accuracy and interpretability [11]. This literature review presents 

an overview of recent work focusing on machine learning (ML), artificial intelligence (AI), and explainable AI (XAI) 

techniques used in heart failure survival prediction models as illustrated in Table 1. Table 1 highlights the need for more 

focused studies on the application of XAI in heart failure survival prediction models. Addressing these research gaps could 

lead to the development of more interpretable, clinically relevant and effective AI systems in healthcare. 
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Table 1: A comparative study of the HF with several predictive models. 

Literature Year Scope of the existing studies Dataset 

AI ML DL XAI Public OWN 

Dahri et.al. [12] 2024 χ ✓ χ χ ✓ χ 

Alfredo D et.al. [13] 2021 χ ✓ χ χ ✓ χ 

Sutradhar et.al. [14] 2023 ✓ ✓ χ χ ✓ χ 

Hassan MM [15] 2022 ✓ ✓ χ χ ✓ χ 

Yaqoob MM [16] 2023 χ ✓ χ χ χ ✓ 

Cyriac S, [17] 2022 χ ✓ χ χ ✓ χ 

Abbas A  [18] 2022 χ ✓ χ χ ✓ χ 

Tambe PM  [19] 2025 χ χ ✓ χ χ ✓ 

Acar ZY, [20] 2024 χ χ ✓ χ ✓ χ 

Basak S  [21] 2022 χ χ ✓ χ ✓ χ 

Almutairi SA [22] 2023 χ χ ✓ χ ✓ χ 

Afiatuddin N [23] 2024 χ χ ✓ χ ✓ χ 

Barzola-Monteses J [24] 2024 χ χ ✓ χ ✓ χ 

 

Recent advances in ML and AI have improved predictive accuracy [9]. However, the “black-box” nature of many ML 

algorithms raises concerns about their application in clinical settings. In addition, AI in healthcare applications requires high 

levels of interoperability due to the critical nature of clinical decisions [25]. An explainable model such as [26] enhances 

trust and accountability, making them vital for clinical adoption in dengue disease. Furthermore, healthcare practitioners 

need to understand the rationale behind AI predictions to make informed decisions about patient care [27]. Many transparent 

machine learning models, such as linear regression, logisticregression, decision trees, na¨ıve Bayes, and k-nearest neighbors, 

have been extensively used across multiple clinical fields. These include cardiology, urology, toxicology, endocrinology, 

neurology, psychiatry, occupational health, breast cancer, Alzheimer’s disease severity, knee osteoarthritis, prostate cancer, 

diabetes, and cardiovascular disease mortality rates. 

Explainable AI (XAI) offers methodologies that clarify how predictions are made, thereby increasing trust among healthcare 

providers and patients [26]. In these various fields, AI is used to perform disease classification and XAI is added to provide 

explanation to improve the understanding of medical personnel and general users. We refer to these studies to develop a 

disease prediction model based on machine learning and apply SHapley Additive exPlanations (SHAP) values and a Local 

Interpretable Model-Agnostic Explanations (LIME), for explainability to visualize the models and provide interpretable 

rationales for their predictions. These tools allow research community to understand model predictions and the factors 

influencing them. By applying XAI techniques in the medical field, these methods aim to assist medical professionals in 

decision making and automate diagnostic processes [28]. In addition, we address the “black box” issue of AI by providing 

evidence-based insights to healthcare professionals. However, most previous studies [23],[22],[12],[9], focus primarily on 

improving the performance of AI models through hyper parameter tuning and image pre-processing, offering only a partial 

representation of the decision-making process rather than fully visualizing it with various XAI techniques. 

3. METHODOLOGY  

In this study we provide a methodology for developing a heart failure prediction model using explainable AI (XAI) 

techniques can be divided into three key layers: data collection and pre-processing, model development, and XAI evaluation 

and visualization. Architecture diagram illustrating the workflow of HF prediction using explainable AI (XAI) technique is 

shown in Figure 2. First layer, ensures that the input data is clean, representative, and ready for model training. Second layer 

study the behavior of ML models that not only predicts heart failure outcomes accurately but also generalizes well to unseen 

data. Third layer integrating XAI techniques to bridges the gap between model predictions and clinical decision-making, 
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ensuring that the model’s outputs are interpretable and actionable. Each layer plays a critical role in ensuring the robustness, 

accuracy, and interpretability of the model. 

 

Figure 2. Architecture diagram illustrating the workflow of HF prediction using explainable AI (XAI) 

 

3.1 Data Collection and Pre-processing 

According to study [29], this study made use of the Allied Hospital’s and Faisalabad Institute of Cardiology of heart failure 

clinical records dataset. 1190 observations, 272 duplicate observations, and 918 unique observation records make up the 

dataset. Each record includes 12 clinical features 11 predictive and 1 prediction—that were gathered over a follow-up period. 

We have list the features in details that can be used to predict a potential heart illness. With the utilizing these characteristics, 

machine learning models can be quite helpful to recognize and heart failure risks. These models have shown promise in 

enhancing the precision of diagnoses which will ultimately help to lessen the burden of heart failure illnesses. We have lists 

all of the attributes’ kinds and descriptions, and the study in this paper is predicated on the 12 attributes that are described 

bellow. 
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1 Age: This feature represents the age of the patient in years. It is a crucial demographic variable that can hold the 

numeric value influence health outcomes, treatment decisions, and risk assessments with the rang vale of [0-100]. 

2 Sex: This feature indicates the gender of the patient. It is categorical feature like [M: Male; F: Female] and important 

for understanding gender-specific health issues and can influence the prevalence of certain diseases, treatment 

responses, and health behaviors. 

3 ChestPainType: This feature categorizes the type of chest pain experienced by the patient. It helps in diagnosing 

potential cardiac conditions. Understanding the nature of chest pain data set used the categorical value like [TA: 

Typical Angina; ASY: Asymptomatic; NAP: Non-Anginal Pain; ATA: Atypical Angina] for determining the 

urgency and type of medical intervention required. 

4 RestingBP: This feature measures the patient’s blood pressure while at rest. Data set monitoring resting blood 

pressure in numeric with the range of [70 - 200 mmHg] as an essential feature for assessing overall health and risk 

for heart disease. 

5 Cholesterol: This feature indicates the serum cholesterol level in numeric for the patient’s blood. Cholesterol levels 

are critical for evaluating heart failure risk based on the value range [100 - 400 mg/dL], as high levels can lead to 

heart disease and other health complications. 

6 FastingBS: This feature indicates the blood sugar levels of patient during fasting. In a data set fasting blood sugar 

level have binaryvalue [1: above 120 mg/dL, 0: otherwise] suggests potential diabetes. 

7 RestingECG: This feature reflects the results of the resting electrocardiogram (ECG) test with value of [Normal, 

ST, LVH]. It helps in assessing the electrical activity of the heart and can indicate various cardiac conditions. 

8 MaxHR: This feature has numeric value ranges between [60 - 202] to represents the highest heart rate attained by 

the patient during exercise or stress testing. 

9 ExerciseAngina: This feature indicates whether the patient experiences angina (chest pain) during exercise with 

value [N: No, Y: Yes]. 

10 Oldpeak: This feature measures the ST depression induced by exercise, which is an important indicator of cardiac 

ischemia in range of [-2.6 to 6.2 mm]. The Oldpeak value helps in assessing the severity of heart disease and the 

effectiveness of treatment. 

11 ST Slope: This feature describes the slope of the ST segment during peak exercise with possible values of [Flat, 

Down, Up]. 

12 HeartDisease: This feature indicates the target feature as the presence or absence of heart disease in the patient. It 

serves as the output binary class [1: heart disease, 0: Normal] for predictive modeling and is crucial for determining 

treatment strategies and patient management plans. 

This dataset was produced by merging five previously unmerged, independently accessible datasets on cardiac disease 

illustrated in Figure 3. In particular, some feature are all nominal types, meaning they are not numerical, with the exception 

of Age, Resting Blood Pressure, Cholesterol, Fasting Blood Stream, Old Peak, and Heart Disease. The largest dataset on 

heart disease available for research reasons was created by integrating 11 common features. The Figure 3 provided a full 

breakdown of the datasets used for its curation. This final dataset, which has 918 unique observations after duplicates have 

been removed, is a useful tool for research on heart disease survival prediction. 

 

Figure 3. Description of the Dataset 

 

Dataset Description 
 

Switzerland Dataset: 123 observations Stalog (Heart) Dataset: 270 observations 

Hungarian Dataset: 294 observations 

 
Long Beach VA Dataset: 200 observations 

 
Cleveland Dataset: 303 observations 

Total Observations: 1190 

Duplicated Entries: 272 Final Dataset Size: 918 
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• Data Cleaning: Removing missing, inconsistent, or duplicate entries to ensure data quality. 

• Feature Engineering: Choosing and modifying relevant features to enhance model performance. For instance, 

normalizing continuous variables like blood pressure or scaling features to a uniform range. 

• Handling Imbalanced Data:  Since heart failure datasets often have an imbalance between positive (heart failure 

cases) and negative (non- heart failure cases) samples, methods such as oversampling (e.g., SMOTE) or under 

sampling can be utilized to achieve balance within the dataset. 

• Data Splitting: To properly assess model performance, split the dataset between training (80%) and testing (20%) 

groups. 

Since five of the features are not quantitative, they must be converted to numeric values in order to further the investigation. 

Once the quartile range has been calculated, identify the dataset’s outliers. 917 observations are now included in the dataset 

after only one outlier was found and removed. Plotting the data in a distribution map across all characteristics is now possible 

after the outlier has been removed. Figure 4 shows the potential values for each attribute.  

 

 

Figure 4. Distribution plot among all features of heart failure data set. The curve line represents Normal 

distribution 

 

The statistics from the dataset also showed that, of all heart disease cases, 47.1% were women and 52.9% were men. In the 

data set, the mean year of the onset of heart disease was estimated to be 65.6 years for males and 72.0 years for women. 

Basically, older men are more likely to develop heart disease than older women. In addition, exercise-induced angina and 

ST depression can be treated as early warning signs of heart disease. Figure 5 shows a heatmap graphic that shows the 

correlation matrix between the numerical variables that will be taken into account for the data model. Positive values show 

that two variables have a positive association, whilst negative values show that two variables have a negative relationship. 

 

Figure 5. Heatmap plot represented the correlation between the attributes of data set 
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3.2 Model Development 

In this section, we detail the various of heart failure survival prediction models, focusing on the methodologies employed, 

the rationale for their selection, and the metrics used for evaluation. We have studied the following ML model on collected 

data set. 

• Logistic Regression (LR) 

LR is a supervised machine learning approach primarily employed for task involving binary in classification where the 

objective is to estimate the probability of an event occurring, such as success/failure or yes/no outcomes [30]. It achieves 

this by modeling the relationship to one or any number of distinct (xi) of ith variables and the probability (PP) of a favourable 

outcome. The algorithm applies a transformation, typically the sigmoid function, to ensure the predicted probabilities fall 

within the range of 0 and 1. The mathematical formula used to compute this probability is as follows 

𝑃𝑃 =  
exp (𝛽0 + 𝛽1 𝑥1 + 𝛽2 𝑥2 + ⋯ + 𝛽𝑚 𝑥𝑚)

1 − exp (𝛽0 + 𝛽1 𝑥1 + 𝛽2 𝑥2 + ⋯ + 𝛽𝑚 𝑥𝑚)
 

where, β0 is the intercept, and β1, β2, ..., βm are the coefficients for the independent variables (x1, x2, ..., xm). 

• Naive Bayes (NB) Model 

One of the most basic probabilistic classifiers is the Naive Bayes model. Based on the Bayes theorem, it makes the assumption 

that, given the class label, every feature is conditionally independent. It represents the relationships between variables using 

a directed acyclic graph (DAG) [31]. In these networks, every node represents a random variable, while the edges connecting 

the nodes signify conditional dependencies. They are used to model uncertainty and calculate probabilities using Bayesian 

inference. A Bayesian Network’s structure represents a joint probability distribution as a product of conditional probabilities, 

enabling applications in diagnostics, reasoning, causal modeling, uncertainty-based decision-making, and anomaly detection. 

The mathematical formula for calculating probabilities is as follows: 

𝑃𝑃 (
𝑥

𝑦
) =

𝑃𝑃 (
𝑥
𝑦

) 𝑃𝑃(𝑥)

𝑃𝑃(𝑦)
 

where PP (X / Y) represents the subsequent probability, PP (X) represents the class’s prior probability, PP (Y) represents the 

probability prior to the predictor, and PP (Y / X) represents the predictor’s probability. 

• K-Nearest Neighbor (KNN) 

A non-parametric, supervised learning technique for classification and regression problems is the K-Nearest Neighbours 

(KNN) algorithm [32]. Based on a selected distance metric, like Euclidean distance, it determines a data point’s closest 

neighbours and uses that information to classify or predict. Choosing a suitable value for “K” (the number of neighbours) 

and figuring out the distance metric to gauge proximity are the two main components of the KNN method [33]. The algorithm 

assigns classifications or makes predictions by clustering data points based on their closeness to others in thedataset. The 

Euclidean distance formula, is the most commonly used metric for this purpose. In this study, KNN is also applied to identify 

the optimal model and can be defined as using mathematical formula of Euclidean distance 

𝑑(𝑥, 𝑦) = √∑ (𝑦𝑖 − 𝑥𝑖)2
𝑛

𝑖=0
 

Where, x and y represent the input features and n is the total number of features. 

• Support Vector Machine (SVM) 

With the ability to handle both classification and regression tasks, the SVM method is one of the most well-known supervised 

learning strategies [34]. In 1963, Vladimir N. Vapnik created it for linear models. In 1995, he expanded it to handle non-

linear data using kernel functions [35]. SVM maximises the margin between data points while identifying the best hyperplane 

to divide them into classes [34]. For non-linear data, it uses kernel functions to transform the input space into a higher-

dimensional space, making it possible to find a separating hyperplane even for complex datasets. This ability to handle both 

linear and non-linear data makes SVM a powerful tool for predictive modeling and classification tasks. The algorithm 

generates predictions based on a mathematical function that defines this hyperplane 

𝑦(𝑥, 𝑤) = ∑ 𝑤𝑖𝐾(𝑥, 𝑥𝑖) + 𝑤0

𝑛

𝑖=1

 

Where K(x, xi) is a kernel function (34). 
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• Decision Tree (DT) 

The Decision Tree (DT) algorithm was chosen as one of the prediction techniques in this study because of its ease of use and 

learning efficacy is high. One popular kind of supervised learning technique for classification and regression problems is the 

decision tree. The way they work is by using a tree-like structure to describe decisions for HF. The process starts at the root 

node, which stands for the entire dataset. The data is divided into branches according to the results of feature tests conducted 

at each internal node [36]. This process continues until the data reaches the leaf nodes, which represent the final predictions 

or classifications. Its ability to visually represent decision-making processes makes it intuitive and easy to interpret. 

Additionally, the algorithm uses measures like entropy or Gini index to determine the best splits at each node, ensuring that 

the tree effectively separates the data into meaningful groups. The final output of a Decision Tree is a set of terminal nodes 

(leaf nodes) that provide the predicted outcomes. This makes Decision Trees a powerful tool for predictive modeling, 

especially in scenarios requiring straightforward evaluation and interpretation. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  ∑ −𝑃𝑖

𝑛

𝑖=1

𝐿𝑜𝑔2(𝑃𝑖) 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) −  ∑
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)

 

Where, Sv is the subset of S with A = v, where S is a set of instances, A is an attribute, and Values (A) is the set of all possible 

values of A. The Gini value is then computed for the entire dataset D as 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑃𝑃𝑖
2

𝑛

𝑖=1
 

Where PP is the probability.  

• Random Forest (RF) 

An ensemble learning method called the Random Forest (RF) algorithm creates base learners in simultaneously. Several 

decision trees are constructed separately using this method, and each tree is trained using a different subset of the data [37]. 

A majority voting system (for classification) or average (for regression) determines the final outcome, while each tree 

generates its own prediction. This aggregation of predictions from multiple trees helps improve the accuracy and robustness 

of the model. The decision trees serve as the foundational models in the Random Forest framework. By leveraging the 

independence of these base learners, Random Forest significantly reduces errors, particularly variance, through the averaging 

of predictions. This parallel ensemble approach ensures that the model remains stable and reliable, even when dealing with 

noisy or complex datasets. It can be measure by Gini impurity for the D using the equation of Gini. 

• Gradient Boost (GB) 

By comparing the current model with earlier iterations, GB, a machine learning algorithm, is founded on the idea that 

prediction error can be reduced. Determining the desired results for the subsequent model in the series is the basic idea behind 

lowering the error. The following formula serves as a mathematical representation of this process. 

𝑔𝑡(𝑥) = 𝐸𝑦 [
𝜕𝜑(𝑦, 𝑓(𝑥)

𝜕𝑓(𝑥)
|𝑥] 𝑓(𝑥) = 𝑓𝑡−1̂ (𝑥) 

• AdaBoost (AB) 

In order to dynamically reward the relative importance of a limited set of training characteristics, this machine learning 

technique prioritises complex samples, linearly integrates the classifier’s components, and generates a single-ended 

hypothesis. It is carried out for a total of F iterations (Size of ensembling). 

𝑔(𝑝) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑓𝑙(𝑝)
𝐹

𝑓=1
) 

• Xtreme Gradient Boosting (XGBoost)  

The sum of tree branches (K-trees), or the overall score derived from the projected value’s leaves, is what makes this approach 

a form of continuous optimization. With the decision tree serving as the primary method and the loss function regulating the 

tree’s involvement, XGBoost is an additive extension to the target task design by minimizing the loss function 

∅𝜏 =  ∑ 𝑙(𝑦̂𝑖 , 𝑦𝑖) + ∑ Ω(𝑓𝑥)

𝑘𝑖

 

•  Performance Evaluation Metrics 

This study assessed the effectiveness of the proposed approach using advanced performance evaluation metrics, including 
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accuracy, precision, recall, F1-score, AUC-ROC score, and explainable matrix evaluation. The evaluation results are 

summarized in Section 4. 

• Accuracy: Accuracy is used to evaluates the level of precision of the machine learning classifier by dividing the 

number of correct predictions by the total predictions. Mathematically, it is represented in Equation. 

𝐴𝑐𝑐 =  
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 +  𝑇𝑛 + 𝐹𝑝 +  𝐹𝑛

 

where, TP = true positives, TN = true negatives, FP= false positive, and FN = false negatives. 

• Recall: It evaluates the model’s ability to identify all true positive cases. It is calculated as the ratio of true positives 

(TP) to the sum of true positives and false negatives (FN). This metric is particularly useful when minimizing false 

negatives is critical, and its formula is provided in Equation 

𝑅𝑒𝑐 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

 

• Precision: It focuses on the proportion of correctly predicted positive instances out of all predicted positives. It is 

especially important in scenarios where false positives need to be minimized. The mathematical representation of 

precision is shown in Equation. 

𝑃𝑟𝑒 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

 

• F1-score: The F1-score provides a balanced assessment of the precision and recall by describing the harmonic mean 

of these two. It is especially valuable in situations with imbalanced class distributions. The formula for calculating 

the F1-score is presented in Equation. 

𝐹1 = 2 ∗  
𝑃𝑟𝑒 + 𝑅𝑒𝑐

𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐
 

• AUC-ROC score: AUC-ROC (Area Under the Receiver Operating Characteristic Curve) illustrates the balance 

between the true positive rate (TPR) and the false positive rate (FPR). It offers a thorough assessment of the model’s 

effectiveness in differentiating between classes. This metric is especially useful for assessing binary classification 

models. 

• Explainable Matrix Evaluation: To evaluate the explainability of the proposed approach, we utilized two popular 

interpretability tech- niques, LIME and SHAP, to compute feature importances based on the model’s predictions 

for specific instances [26]. Since it is computa- tionally impractical to apply these methods to number of instances, 

we implemented a uniform sampling strategy to select k representative pa- tients sample, ensuring a balanced 

distribution between the two classes (heart failure and non heart failure). 

3.3 Proposed Algorithm 

The pseudo-code details the workflow for developing and testing an ex- plainable AI model designed to predict heart failure 

survival. It covers key stages such as data pre-processing, feature selection, model training, pruning methods, and 

performance assessment to balance accuracy with interpretabil- ity. Algorithm 1 presents the complete pseudo-code for this 

approach. 

Algorithm 1 Pseudo-code of Proposed Explainable AI for Improved Heart Failure Model 

1: Begin 

2: Pre-process heart datasets D to clean and prepare the data for analysis 

3: Apply oversampling algorithms (e.g., SMOTE) to handle class imbalance in the datasets 

4: Conduct attribute pruning to identify the most significant features. 

5: Split dataset into Train and Test. 

6: Train the selected features of the dataset using ML models. 

7: Apply the optimized parameters to the model, then conduct post-pruning to minimize complexity. 

8: Cross-validate the Explainable AI for Improved Heart Failure model. 

9: Assess the performance of models using the test dataset. 

10: Calculate performance evaluationmetrics, including accuracy, precision, recall, F1-score, and AUC-ROC, to evaluate the 

model’s effectiveness. 
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11: End 

4. EXPERIMENT RESULTS 

To achieve higher accuracy, the data must first undergo standardization. This process ensures that the data is transformed 

into a consistent format, making it suitable for machine learning algorithms. After standardization, the dataset is split into 

four variables: x train, x test, y train, and y test. This split allocates 80% of the data for training and 20% for testing purposes. 

Once the pre-processing steps are complete, these variables are ready to be utilized in the selected nine machine learning 

algorithms. This study assessed the effectiveness of the proposed approach using two advanced metrics, including 1) 

performance evaluation, and 2) explainable matrix evaluation. This study discusses each result with detailed in further sub 

section. 

4.1 Performance Evaluation Metrics 

The experiment was conducted to evaluate the performance based on the metrics discussed in the Section 3.2.10 to evaluate 

the results. We have ana- lyzed the nine traditional ML models given in the Section 3.2 in detailed. The first algorithm 

applied is the LR. Here, the number of features considered for the optimal split (max features) is set to 10, while all other 

parameters remain at their default values. For each of the machine learning algorithms mentioned, the classification results 

are calculated and illustrated in the Table 2, and the prediction outcomes are visualized using a confusion matrix.The 

evaluation of nine machine learning models reveals that ensemble methods like Random Forest and XGBoost outperform 

others, achieving the highest accuracy and balanced metrics across both classes. XGBoost, in particular, stands out with the 

best test accuracy (88.59%) and F1-scores, making it the most effective model for this dataset. Random Forest also 

demonstrates strong generalization with high precision and recall. Logistic Regression, KNN, Gradient Boost, and AdaBoost 

perform moderately well, offering balanced results but slightly lower accuracy compared to the top models. Naive Bayes 

and Decision Tree show acceptable performance but are less robust, while SVM struggles with over-fitting and fails to 

generalize effectively. Overall, the results highlight the superiority of ensemble methods for reliable classification in this 

context. 

Table 2: Performance Metrics of Various Models for Heart Failure Prediction 

 

S.No 

Model Accuracy (%) Class Precision Recall F1-Score 

Train Test 

1 Logistic Regression (LR) 85.42 81.52 (Normal) 

(HeartFailure) 

0.87 

0.78 

0.74 

0.89 

0.8 

0.83  

2 Naive Bayes (NB) 86.1 79.98 (Normal) 

(HeartFailure) 

0.86 

0.76 

0.72 

0.88 

0.78 

0.81  

3 K-Nearest Neighbor (KNN) 81.34 82.7 (Normal) 

(HeartFailure) 

0.87 

0.79 

0.74 

0.89 

0.8 

0.84  

4 Support Vector Machine (SVM) 99 59 (Normal) 

(HeartFailure) 

0.05 

0.98 

0.67 

0.59 

0.1 

0.74  

5 Decision Tree (DT) 80 79.89 (Normal) 

(HeartFailure) 

0.87 

0.75 

0.71 

0.89 

0.78 

0.81  

6 Random Forest (RF) 88 87.5 (Normal) 

(HeartFailure) 

0.9 

0.86 

0.82 

0.92 

0.86 

0.89  

7 Gradient Boost (GB) 90.33 82.07 (Normal) 

(HeartFailure) 

0.87 

0.79 

0.74 

0.89 

0.8 

0.84  

8 AdaBoost (AB) 89.37 82.07 (Normal) 

(HeartFailure) 

0.87 

0.79 

0.74 

0.89 

0.80 

0.84  

9 Xtreme Gradient Boosting (XGB) 93.6 88.59 (Normal) 

(HeartFailure) 

0.91 

0.87 

0.83 

0.93 

0.87 

0.90  

 

Random Forest (RF) and XGBoost stand out as the top-performing models, with high accuracy, precision, recall, and F1-

scores for both classes. The ROC curves and AUC (Area Under the Curve) values for the nine models provide a 

comprehensive evaluation of their performance in distinguishing between the two classes (e.g., Normal vs. Heart Failure). 

Figure 6 shows de- tailed explanation of the results and a summary of the models’ performance. LR achieved a moderate 
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AUC score, indicating that it performs reasonably well in distinguishing between the two classes. NB showed a slightly 

lower AUC compared to Logistic Regression, suggesting that it may not handle the data distribution as effectively. AdaBoost 

and XGBoost are ensemble method that focuses on misclassified samples, improving performance iteratively. It works well 

with weak learners like decision trees. 

 

Figure 6: ROC Curves for Machine Learning Models on Heart Failure Dataset. 

 

4.2 Explainable Evaluation Metrics 

The evaluation of explainable machine learning models on the heart fail- ure dataset highlights the importance of balancing 

predictive accuracy with interpretability to support clinical decision-making using LIME (38) and SHAPE (39) model. The 

feature importance of applied machine learning models is illustrated in the Figure 8 and 7. This study observe that XG- Boost 

demonstrated superior performance, achieving the highest test accuracy (up to 88.59%) and balanced metrics with the highest 

importance of cholesterol feature in the heart failure surveillance. Where as ensemble methods like Random Forest 

demonstrated good performance, achieving the highest test accuracy (up to 87.50%) and balanced metrics such as precision, 

recall, and F1-scores, making them reliable for identifying both normal and heart failure cases. These models excel in 

capturing complex patterns in the data and show that ST Slope feature have the high importance in surveillance HF, which 

is critical for accurate predictions in medical contexts. However, simpler models like Logistic Regression and KNN also 

performed well, offering competitive feature importance of there prediction accuracy and interpretability, which are essential 

for building trust in clinical applications. On the other hand, models like SVM struggled with overfitting, highlighting the 

need for careful parameter tuning and validation. Explainable evaluation metrics, such as precision and recall, provide deeper 
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insights into the models’ decision-making processes, ensuring that predictions align with clinical priorities, such as 

minimizing false negatives in heart failure detection. Overall, the results emphasize the potential of machine learning in 

improving heart failure diagnosis while underscoring the need for explainability to foster trust and usability in healthcare 

settings. 

 

Figure 7: Feature Importance of Different ML Models. 

 

 

Figure 8: Feature Importance of XGBoots Models. 
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5. CONCLUSION  

This study underscores the transformative role of machine learning (ML) and explainable artificial intelligence (XAI) in 

heart failure (HF) survival prediction. By comparing traditional ML models with XAI-enhanced ap- proaches, it highlights 

the superior predictive accuracy and balanced perfor- mance metrics of nine ML model. This study shows that ensemble 

methods like Random Forest and XGBoost perform well and highly effective in fore- casting HF patient mortality. Further, 

the integration of XAI techniques ad- dresses the interpretability challenges of conventional “black-box” nature of traditional 

models and enabling clinicians to better understand the decision- making process in heart failure. This interpretability is 

essential for fostering trust and facilitating the adoption of these models in clinical practice. Ad- ditionally, the study 

underscores the importance of explainable evaluation metrics, such as precision, recall, and F1-scores, which provide deeper 

in- sights into model performance and ensure alignment with clinical priorities, such as minimizing false negatives in HF 

detection. Overall, the findings emphasize the potential of XAI-enhanced models to not only improve pre- dictive accuracy 

but also enhance clinical utility by offering interpretable and actionable insights, paving the way for more personalized and 

effective HF management strategies. 

The result of the ensemble models like Random Forest and XGBoost stand out, achieving the highest test accuracy (87.5% 

and 88.59%, respec- tively) and balanced metrics, making them the most effective for both classes. XGBoost, in particular, 

achieves the best F1-scores (0.87 for Normal and 0.9 for HeartFailure), indicating its robustness. Simpler models like Logistic 

Regression and KNN also perform well, offering competitive accuracy and interpretability. Gradient Boost and AdaBoost 

show similar performance to KNN but slightly lower accuracy than Random Forest and XGBoost. SVM, however, struggles 

with overfitting, achieving high training accuracy (99%) but poor test accuracy (59%), and fails to generalize effectively. 

Overall, the results highlight the superiority of ensemble methods for accurate and reli- able heart failure prediction, while 

simpler models provide a balance between performance and interpretability. 
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