Transcriptomic Insights into Differential Gene Expression in Acinetobacter baumannii Isolates from Colistin-Treated Patients Using Illumina Sequencing ## Janakiram Bobbillapati^{1,3}, Naveena Lavanya Latha Jeevigunta², AS Smiline Girija^{*1} ¹Department of Microbiology, Saveetha University, Chennai-600077, Tamil Nadu, ### *Corresponding author: *Naveena Lavanya Latha Jeevigunta, Email ID: jnlavanyalatha@yahoo.co.in *AS Smiline Girija Email ID: smilinejames25@gmail.com .Cite this paper as: Janakiram Bobbillapati, Naveena Lavanya Latha Jeevigunta, AS Smiline Girija, (2025) Transcriptomic Insights into Differential Gene Expression in Acinetobacter baumannii Isolates from Colistin-Treated Patients Using Illumina Sequencing. *Journal of Neonatal Surgery*, 14 (32s), 2211-2235. ### **ABSTRACT** The rise of multidrug-resistant (MDR) *Acinetobacter baumannii* presents a critical threat to global health due to its remarkable antibiotic resistance. To explore its stress response mechanisms, RNA sequencing (RNA-seq) was conducted to compare the transcriptomes of *A. baumannii* ATCC19606 and a clinical isolate from a colistin-treated patient. Analysis identified 118 differentially expressed genes (DEGs) with thresholds of log2 fold change (Log2FC) > 1 or < -1 and FDR < 0.05. Upregulated genes included those encoding twitching motility protein, p-aminobenzoate synthetase, pilin-like competence factor, and D-methionine-binding lipoprotein MetQ, with a 2-4 fold increase. Conversely, downregulated genes, such as ferredoxin, molecular chaperones GroES/GroL, and class C beta-lactamase ADC-158, suggested reduced metabolic activity. These DEGs are implicated in stress response and metabolic transport pathways, providing critical insights into A. baumannii's adaptive mechanisms and potential vulnerabilities for therapeutic targeting. Keywords: A. baumannii, transcriptome sequencing, differential gene expression, down regulation, upregulation, illumina #### 1. INTRODUCTION Acinetobacter baumannii is a strictly aerobic, Gram-negative coccobacillus that has become a significant global pathogen, especially since the 1980s (Towner, 2009). This bacterium can cause opportunistic infections in the skin, urinary tract, lungs, and bloodstream, posing a serious threat to critically ill and immunocompromised patients and often being involved in hospital outbreaks. Notably, carbapenem-resistant A. baumannii is a critical concern, earning a priority 1 (critical) status on the WHO priority pathogens list for research and development of new antibiotics (Ashokan et al., 2019). Antepartum hemorrhage (APH) has been a leading cause of maternal mortality worldwide, especially in developing countries like India. Its early diagnosis and timely management can APH is defined as bleeding from the genital tract after 28 weeks of gestation to delivery of the baby. 1,2 Members of the *Acinetobacter* genus, which are part of the Moraxellaceae family, include glucose non-fermenting, non-motile, non-fastidious, catalase-positive, and oxidase-negative bacteria (Howard et al., 2012). This genus comprises 59 species within the Gamma proteo bacteria class. The *Acinetobacter* calcoaceticus-*Acinetobacter baumannii* complex (ACB complex) includes *A. calcoaceticus*, *A. baumannii*, *A. pittii*, *A. nosocomialis*, *A. seifertii*, and *A. dijkshoorniae*, which are phenotypically similar (Mancilla-Rojano, 2020). Of these, *A. baumannii*, *A. pittii*, *A. nosocomialis*, *A. seifertii*, and *A. dijkshoorniae* are pathogenic to humans, whereas *A. calcoaceticus* has not been reported as an infectious agent (Nocera et al., 2021). ²Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh ³Center for clinical genomics, National reference laboratory, Trustlab diagnostics pvt Ltd A. baumannii is highly resilient to various environmental conditions, capable of surviving for up to 100 days on dry surfaces (Shi et al., 2024). Some strains have developed genetic mechanisms that enhance catalase gene expression, increasing tolerance to oxidative stressors like hydrogen peroxide. Additionally, A. baumannii resists chlorhexidine due to the expression of efflux proteins that expel this chemical from the cell. Ethanol has also been reported to promote its growth and virulence. The bacterium can quickly adapt to changes in temperature and nutrient availability and has simple nutritional requirements (Shi et al., 2024). Its ability to form biofilms is a significant virulence factor, enhancing survival on various surfaces and persistence in hospital settings. A major public health issue with A. baumannii is its ability to develop resistance to multiple antibiotic classes. This multidrug resistance involves several mechanisms, including aminoglycoside modification, β -lactamase production, modifying enzymes, permeability defects, target site alterations, and the upregulation of multidrug efflux pumps (Pagdepanichkit et al., 2016). The strain ATCC19606 is one of the best-characterized strains of *A. baumannii*, which is widely used to study antimicrobial resistance and other stress (Zhu et al., 2020; Guo et al., 2022; Hui et al., 2021). It is resistant to sulfonamide but susceptible to a variety of other antibiotics, including β-lactams, aminoglycosides, quinolones, tetracyclines, and colistin (Hamidian & Hall, 2017; Yang et al., 2015). In the present study, to learn the adaptive response of *A. baumannii* to antibiotics, the transcriptome of ATCC19606 cells exposed to a subinhibitory concentration of minocycline was analyzed. Our results revealed differentially expressed genes involved in the ferredoxin, 50S ribosomal protein, Rhodonase domain-containing protein, DNA binding protein HU beta, translation initiation factor, UPF0391 membrane protein BDGL_002899, rubredoxin, probable Fe(²⁺) trafficking protein, molecular chaperone GroES, chaperonin GroL, class C beta-lactamase ADC-158, amino acid ABC transporter permease, and APC family permease, along with proteins conferring tolerance to group A colicins involved in acute regulation in response to colistin. These findings provide a basis for coistin resistance and target genes for potential therapies. Figure 1: Work flow for NEBNext® Ultra $^{\text{TM}}$ II Directional RNA Library Preparation Kit ### 2. MATERIALS AND METHODS ## 2.1 Isolation and identification of Acinetobacter baumannii In this study, we isolated the *A. baumannii* strain SO_10770_1 from an endotracheal aspirate of a patient in the critical care unit at NRI Medical College, Andhra Pradesh, India, in 2023. The bacterial strain was cultured on 5% sheep blood agar, chocolate agar, and MacConkey agar (all prepared by HI Media, India) and incubated for 18–24 hours at 35°C. The strain was then identified through 16S rRNA Sanger sequencing. ### 2.2 Antimicrobial susceptibility testing Antimicrobial susceptibility testing was performed using the BioMérieux Vitek 2 Automated Microbiology System (BioMérieux, France) with the Vitek 2 GN ID Test kit and Vitek 2 AST 407 Critical Care commercial test kit, following the manufacturer's guidelines. Minimum inhibitory concentration (MIC) breakpoints were determined according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (M100, 27th Ed.). The antimicrobials tested included ticarcillin/clavulanic acid, ceftazidime, doripenem, cefepime, imipenem, meropenem, cefoperazone/sulbactam, ciprofloxacin, levofloxacin, gentamicin, piperacillin/tazobactam, trimethoprim/sulfamethoxazole, tigecycline, minocycline, and colistin. ### 2.3 RNA Extraction and Quality Control RNA was extracted from bacterial cells using Qiagen RNeasy mini kit (Cat No.74106). The lysate was thoroughly mixed with half volume of absolute alcohol, and loaded into RNeasy spin column placed in 2 ml collection tube. The tubes were centrifuged at 10,000 rpm for 1 min and flow through discarded. On column DNase I (Cat No.79254) treatment and subsequent column washes were performed according to manufacturer's instruction. RNA was eluted from the column using nuclease free water. The purity and concentration of RNA was quantified using the Nanodrop Spectrophotometer (Thermo Scientific; 2000). The integrity of the samples was assessed on Tapestation (Agilent). RNA concentration was quantified using Qubit RNA HS assay kit (Q32855). ### 2.4 Library Preparation RNA sequencing libraries were prepared with Illumina-compatible NEBNext® Ultra™ II Directional RNA Library Prep Kit (New England BioLabs, MA, USA) at Genotypic Technology Pvt. Ltd., Bangalore, India. 200 - 500 ng of Qubit-quantified total RNA was used for rRNA removal using the NEBNext rRNA Depletion Kit (BACTERIA) (Cat# E7850L). Ribodepletion was performed by following manufacturer's instructions. Briefly, hybridization of RNA to biotinylated rRNA-specific probes (DNA-based) was carried out at 95°C 2 minutes, followed by ramping down the complexes to 22°C, and then followed by RNAse H and DNase I digestion. Further the samples were subjected to 1.8X cleanup and eluted in 7ul NFW. The rRNA-free and cleaned-up RNA was quantified on Qubit fluorimeter. The enriched RNA was subjected to fragmentation, first strand synthesis followed by second strand synthesis. The double stranded cDNA was purified with NEBNext purification beads (NEBNext, Cat # E7767S). The cDNA was end-repaired, adenylated and ligated to Illumina multiplex barcode adapters as per NEBNext® Ultra™ II Directional RNA Library Prep protocol followed by second strand excision using USER enzyme at 37 °C for 15mins. The adapters used in the study were Illumina Universal Adapter: - $5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC\ TTCCGATCT-3'\ and\ Index\ Adapter:\ 5'-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC\ [INDEX]\ ATCTCGTAT\ GCCGTCTTCTGCTTG-3'.\ GCCGTCTTCTG-3'.\ GCCGTCTTCTTG-3'.\ [INDEX]\ ATCTCGTAT\ GCCGTCTTCTTG-3'.\ [INDEX]\ ATCTCGTAT\ GCCGTCTTTCTTG-3'.\ [INDEX]\ ATCTCGTAT\ GCCGTCTTTG-3'.\ [INDEX]\ ATC$ - Unique sequence to
identify sample-specific sequencing data (Table 1) **Table 1: Estimated RNA Concentration and Purity** ## RNA Concentration and Purity of samples estimated using Nanodrop Spectrophotometer and Qubit Flurometer | | NanoDrop QC | | | | | | | |------|---|-------|--------|---------|-------------|------------|--| | S.No | Sample | Ng/ml | 260/80 | 260/230 | Volume (μl) | Yield (ng) | | | 1 | Control | 1293 | 2.05 | 2.74 | 25 | 32325 | | | 2 | Clinical isolate from
Colistin treated | 1134 | 2.13 | 1.23 | 25 | 28350 | | | | patient | | | | | | | | Qubit | Qubit QC | | | | | | | | |-------|--|--------------------|-------------|------------|--|--|--|--| | S.No | Sample | Qubit Conc (ng/μl) | Volume (μl) | Yield (ng) | | | | | | 1 | Control | 1200 | 25 | 30000 | | | | | | 2 | Clinical isolate from Colistin treated patient | 1146 | 25 | 28650 | | | | | | Sample | Sample Quality Control | | | | | | | | | |--------|---|---------------------|-------------|--------------------|------------|--|--|--|--| | S.No | Sample | ND Purity
Ratios | Qubit Yield | Tape RNA Integrity | Tape # RIN | | | | | | 1 | Control | Optimal | Optimal | Optimal | 9.1 | | | | | | 2 | Clinical isolate from
Colistin treated patient | Optimal | Optimal | Optimal | 9.2 | | | | | Adapter ligated cDNA was purified using NEBNext purification beads and was subjected to 12 cycles for Indexing- (98°C for 30 sec, cycling (98°C for 10sec, 65°C for 75sec) and 65°C for 5min) to enrich the adapter-ligated fragments. Final PCR product (sequencing library) was purified with NEBNext purification beads, followed by library quality control check. Illumina-compatible sequencing libraries were quantified by Qubit fluorometer (Thermo Fisher Scientific, MA, USA) and its fragment size distribution was analyzed on Agilent 2200 Tape station. ### 2.5 Illumina Sequencing The libraries were sequenced on NovaSeq 6000 using PE150 read length and sequencing chemistry. ## 2.6 Data Analysis Transcriptome analysis was performed by processing the raw data for removal of low quality reads and adapter sequences. The high quality reads were considered for alignment with reference genome and expression analysis was performed. The expression data was further used for downstream analysis such as GO annotation and pathway analysis to understand the functional role of each expressed transcript (Figure 2). Figure 2: Transcriptome data analysis workflow ### 3. RESULTS ### 3.1 RNA Quality Control The samples that passed quality assessment with optimal yield and concentration were deemed suitable for Illumina library preparation (Figure-3 and Table 1). Figure-3: Determining the RNA purity through Agarose Electrophoresis ## 3.2 Library Preparation The Illumina-compatible sequencing libraries showed an average fragment length of 416 bp and sufficient concentration to obtain the desired amount of sequencing data. Table 2 lists the concentration of libraries obtained and indices used. Figure 4 is a TapeStation profile of a representative sequencing library A. baumannii treated with colistin A. baumannii (control) Figure 4a: TapeStation Profiles of A. baumannii sps **Table 2: Description of Libraries** | Sl.No. | Sample ID | Qubit Conc. | Vol (ul) | Yield | Barcode | Index Sequence | |--------|---|--------------------|----------|-------|---------|----------------| | | | (ng/ul) | | (ng) | ID | | | 1 | Control | 4.96 | 10 | 49.6 | NEB46 | TCCCGA | | 2 | Clinical isolate from
Colistin treated patient | 1.18 | 10 | 11.8 | NEB45 | TCATTC | ## 3.3 Primary Analysis ## 3.3.1 Illumina Sequencing The data obtained from the sequencing run was de-multiplexed using Bcl2fastq software v2.20 and Fastq files were generated based on the unique dual barcode sequences. The sequencing quality was assessed using FastQC v0.11.8 software. The adapter sequences were trimmed and bases above q30 were considered. Low quality bases were filtered off during read preprocessing and used for downstream analysis. ### 3.3.2 Raw Data QC The raw data sequencing quality was assessed. The adapter sequences were trimmed and low quality bases were filtered off during read pre-processing. The reads with Phred score >q30 were used in downstream analysis. Representative quality scores at each base position along the length of read were plotted and the graphs are shown below (figure 5). Quality scores across all bases (Sanger / Illumina 1.9 encoding) 34 32 30 28 26 24 22 20 18 16 12 10 8 6 4 1 2 3 4 5 6 7 8 9 15-19 30-34 45-49 60-64 75-79 90-94 105-109 120-124 135-139 150 Position in read (bp) Figure 5: Average base quality R1: Figure 5: Average base quality: The position in the read is plotted on the x- axis and the q-score is plotted on the y-axis. The red line is the median value q-score. The dark blue line is the mean value q-score. A q-score above 30 (>99.9% correct base called) is considered as high quality data. ### 3.3.3 Data Statistics Using Illumina sequencing technology, we generated an average of 19.05 million paired end raw data where an average of 18.62 million paired end reads were retained as high quality (>q30) data. Nearly 97.87% (Table 3) of total reads were retained as high quality (>q30) data. Sample name Raw_Read Count Processed_Count % of high quality data Control 21482441 20182283 93.95 Clinical isolate from Colistin 16048465 15802089 98.46 treated patient Table 3: Illumina paired-end read statistics **Note:** Read count mentioned is for R1 only, equal number of reads will be there in R2. Total reads generated are: R1 Count * 2 ### 3.3.4 Genome Mapping Reference genome: Acinetobacter baumannii reference genome downloaded from NCBI database. [https://www.ncbi.nlm.nih.gov/datasets/genomes/?acc=GCF_002116925.1,GCF_00211692 5.1&utm_source=gquery] On aligning all processed reads to the *Acinetobacter baumannii* reference, an average of 85.06% of the reads showed complete mappability to the reference [Table 4]. In a typical experiment, it is possible to see alignment percent in the range of 70-95% to the reference genome. However, the number depends on multiple factors like sample quality, RNA quality, coverage of genome, and relatedness of the genome and alignment parameters. The alignment (BAM) files can be viewed and inspected in any standard genome viewer such as the IGV browser (Robinson et al., 2011) and (Thorvaldsdóttir et al., 2012) can be downloaded from : Table 4: Sample wise alignment statistics to reference genome | I | % Alignment [<i>Acinetobacter
baumannii</i> reference] | % Rfam Alignment | |--|---|------------------| | Control | 80.61% | 9.08% | | Clinical isolate from Colistin treated patient | 88.64% | 11.16% | Link: https://software.broadinstitute.org/software/igv/ ## 3.4 Secondary Analysis ### 3.4.1 Expression analysis DESeq normalized expression values were used to calculate fold change for a given transcript/gene. The regulation for each transcript/gene was assigned based on log2fold change. The transcripts /genes that show log2fold change less than -1 are represented as down regulated, the values greater than 1 are represented as up regulated and in between -1 to 1 are termed as neutrally regulated. An example DGE transcript and interpretation is given in (Table 5). Heatmap was generated for top 20 transcripts expressed (Figure 6). Table 5: Up and down regulated transcripts Genes upregulated in Clinical isolate from Colistin treated patient in comparision to control | Transcript_ID | Protein names | Gene names | Pathway | Molecular Function | Fold
Change | |----------------------------|---|-------------------------|---|--|----------------| | cds-
WP_000355489. | Twitching motility protein | pilT
BDGL_00016
1 | Bacterial
motility
proteins
[02035];
Secretion
system
[02044] | GO:0005524~ATP binding | 2.2397525 | | cds-
WP_100223356. | p-aminobenzoate
synthetase (EC
4.1.3.) | pabB
ABSDF2837 | Folate
biosynthesi
s [00790] | GO:0016829~lyase activity | 2.0307353 | | cds-
WP_001046417. | Pilin like competence factor | comE
BDGL_00263
0 | Bacterial
motility
proteins
[02035];
Secretion
system
[02044] | NA | 2.0389904 | | cds-
WP_000079421.
1 | D-methionine-
binding lipoprotein
MetQ | BDGL_00086
8 | ABC
transporters
[02010];
Transporter
s [02000] | NA | 2.0269253 | | cds-
WP_000094278. | Uncharacterized protein | ABSDF1794 | NA | NA | 2.5879493
7 | | cds-
WP_001140931. | Uncharacterized protein | ABSDF0868 | NA | GO:0003824~catalytic activity;GO:0046872~metal ion binding | 2.1174131 | | cds-
WP_000792951. | HTH tetR-type
domain-containing
protein | BDGL_00272
7 | NA | GO:0003677~DNA binding | 2.258574 | | cds-
WP_000048916. | Transcriptional regulator | B9T35_08140 | NA | GO:0003677~DNA binding | 2.258574 | | cds-
WP_000995631. | Hydrolase | B9T35_11080 | NA | GO:0016787~hydrolase activity | 2.6663720
8 | |-----------------------|--|--------------------|----|---|----------------| | cds-
WP_001030690. | Putative
Phosphopantethein
e binding protein | ppsA
BDGL_00304 | NA | GO:0031177~phosphopantethei
ne binding | 3.76429 | | cds-
WP_000835166. | Uncharacterized protein | ABSDF1807 | NA | NA | 3.0584856 | | cds-
WP_000770268. | Uncharacterized protein | BDGL_00128 | NA | NA | 3.5290218
7 | | cds-
WP_002135133. | SASA domain-
containing
protein | A8B73_17770 | NA | GO:0016787~hydrolase activity | 2.3526812 | | cds-
WP_002017921. | NA | NA | NA | NA | 4.2348262
5 | | cds-
WP_000864073. | Adenylylsulfate
reductase, beta
subunit | BDGL_00108 | NA | NA | 4.2348262
5 | | cds-
WP_000041515. | Cation efflux
system permease,
putative | Ajs_3474 | NA | GO:0008324~cation
transmembrane transporter
activity; GO:0046872~metal ion
binding | 2.8232175 | | cds-
WP_001133073. | HTH tetR-type
domain-containing
protein | BDGL_00069 | NA | GO:0003677~DNA binding | 2.8232175 | | cds-
WP_000729387. | Uncharacterized protein | F945_00937 | NA | NA | 4.7053625 | ## Genes down regulated in Clinical isolate from Colistin treated patient in comparision to control | Transcript
_ID | Protein names | Gene names | Pathway | Molecular Function | FoldCh
ange | |----------------------------|--|-------------|---------|---------------------------|-----------------| | cds-
WP_000457
358.1 | GtrA
domain-
containing
protein | ABSDF0864 | NA | NA | 0.11763
4062 | | cds-
WP_001129
188.1 | Uncharacte rized protein | BDGL_001429 | NA | NA | 0.14478
0385 | | cds-
WP_002134
788.1 | Uncharacte rized protein | ABSDF1792 | NA | NA | 0.15684
5417 | | cds-
WP_001180
453.1 | HTH tetR-
type
domain-
containing | BDGL_001292 | NA | GO:0003677~DNA
binding | 0.18821
45 | | | protein | | | | | |----------------------------|---|-------------------|------------------------------------|---|-----------------| | cds-
WP_000934
372.1 | Uncharacte rized protein | BDGL_000707 | NA | NA | 0.23526
8125 | | cds-
WP_000100
162.1 | DUF559
domain-
containing
protein | ABSDF1332 | NA | NA | 0.23526
8125 | | cds-
WP_001034
582.1 | Putative
pilus
assembly
protein
(FilF) | ABSDF2830 | NA | NA | 0.23526
8125 | | cds-
A4U85_RS
03690 | NA | NA | NA | NA | 0.24731
9722 | | cds-
WP_000013
652.1 | 30S
ribosomal
protein S20 | rpsT
ABSDF1833 | Ribosome [03011]; Ribosome [03010] | GO:0003735~structural constituent of ribosome; GO:0019843~rRNA binding | 0.27287
6041 | | cds-
WP_000830
584.1 | Alpha/beta
hydrolase | BEN71_12875 | NA | GO:0004806~triglyceride
lipase activity;
GO:0008236~serine-type
peptidase activity | 0.28232
175 | | cds-
WP_000289
091.1 | Putative regulatory or redox component complexin g with Bfr, in iron storage and mobility (Bfd) | ABSDF0318 | Others [99994] | NA | 0.28794
0093 | | cds-
WP_000011
679.1 | Uncharacte rized protein | BDGL_000914 | NA | NA | 0.29564
667 | | cds-
WP_000462
893.1 | Uncharacte rized protein | ABSDF0483 | NA | NA | 0.30581
4808 | | cds-
WP_000524
488.1 | NA | NA | NA | NA | 0.31369
0833 | | cds-
WP_001019
739.1 | PG_bindin
g_3
domain-
containing
protein | ABSDF2454 | NA | NA | 0.31369
0833 | | cds-
WP_002011 | NA | NA | NA | NA | 0.31369
0833 | | 867.1 | | | | | | |----------------------------|---|----------------------------|--|--|-----------------| | cds-
WP_000192
619.1 | Uncharacte rized protein | ABSDF2123 | NA | NA | 0.31996
465 | | cds-
WP_000401
163.1 | Uncharacte rized protein | BJI46_03165
F4V57_01075 | NA | NA | 0.33214
3235 | | cds-
WP_000061
134.1 | Uncharacte rized protein | BDGL_000197 | NA | NA | 0.33214
3235 | | cds-
WP_001049
818.1 | Uncharacte rized protein | ABSDF1711 | NA | NA | 0.33609
7321 | | cds-
WP_001025
680.1 | Uncharacte rized protein | BDGL_000778 | Function unknown [99997] | NA | 0.33751
0815 | | cds-
WP_000949
688.1 | Uncharacte rized protein | F967_01270 | NA | NA | 0.33884
5287 | | cds-
WP_000761
577.1 | Uncharacte rized protein | BDGL_000211 | NA | NA | 0.34437
798 | | cds-
WP_000108
365.1 | NA | NA | NA | NA | 0.34578
3123 | | cds-
WP_000138
830.1 | Glutaredox
in domain-
containing
protein | ABSDF2089 | Chaperones and folding catalysts [03110]; Mitochondrial biogenesis [03029] | GO:0046872~metal ion binding;
GO:0051536~iron-sulfur cluster binding;
GO:0097573~glutathione oxidoreductase activity | 0.34737
5755 | | cds-
WP_000490
267.1 | UPF0391
membrane
protein
BDGL_00
2899 | BDGL_002899 | NA | NA | 0.34860
0783 | | cds-
WP_000564
581.1 | Uncharacte rized protein | ABSDF1906 | NA | NA | 0.34931
5783 | | cds-
WP_001133
277.1 | HTH tetR-
type
domain-
containing
protein | BDGL_000698 | NA | GO:0003677~DNA
binding | 0.35290
2187 | | cds-
WP_001094
391.1 | Uncharacte rized protein | BDGL_000505 | NA | NA | 0.36037
1017 | | cds-
WP_000575 | Uncharacte rized | BDGL_000916 | NA | NA | 0.36195 | | 823.1 | protein | | | | 0961 | |----------------------------|--|---------------------|---|---|-----------------| | cds-
WP_001984
826.1 | Bacteriolyt
ic
lipoprotein
entericidin
B | ecnB
ABSDF0648 | Transporters [02000] | NA | 0.36305
335 | | cds-
WP_000897
685.1 | NA | NA | NA | NA | 0.37019
1344 | | cds-
WP_086223
981.1 | NA | NA | NA | NA | 0.37642
9 | | cds-
WP_000760
495.1 | Rubredoxi
n | rubA
BDGL_000276 | NA | GO:0005506~iron ion binding;
GO:0009055~electron carrier activity | 0.37968
3429 | | cds-
WP_000859
008.1 | Uncharacte rized protein | BDGL_001671 | NA | NA | 0.37996
8432 | | cds-
WP_001284
370.1 | Translation initiation factor IF-1 | infA
CDG61_15075 | Translation factors [03012] | GO:0003743~translation
initiation factor activity;
GO:0019843~rRNA
binding;
GO:0043022~ribosome | 0.38073
359 | | cds-
WP_000420
545.1 | Uncharacte rized protein | ABSDF1646 | NA | binding
NA | 0.38391
0329 | | cds-
WP_000735
804.1 | Uncharacte rized protein | ABSDF2687 | NA | NA | 0.38721
2122 | | cds-
WP_000277
448.1 | Putative
bacteriopha
ge protein | ABSDF1805 | NA | NA | 0.39211
3542 | | cds-
WP_001043
034.1 | DNA-
binding
protein
HU-beta | hup
BDGL_001006 | DNA repair and recombination proteins [03400]; Chromosome and associated proteins [03036]; DNA replication proteins [03032] | GO:0003677~DNA
binding | 0.39331
6344 | | cds-
WP_085916
973.1 | Uncharacte rized protein | BDGL_001982 | NA | NA | 0.39814
6058 | | cds-
WP_001205
031.1 | 50S
ribosomal
protein L33 | rpmG
CDG61_14930 | Ribosome [03010]; Ribosome [03011] | GO:0003735~structural constituent of ribosome | 0.40161
9324 | | cds-
WP_000736 | Uncharacte rized | ABSDF2168 | NA | NA | 0.40685
4652 | | 703.1 | protein | | | | | |----------------------------|---|---------------------|------------------------------------|---|-----------------| | cds-
WP_000993
415.1 | Uncharacte rized protein | BDGL_001779 | NA | NA | 0.40838
9953 | | cds-
WP_001218
560.1 | Uncharacte rized protein | ABSDF2558 | NA | NA | 0.40916
1956 | | cds-
WP_000738
603.1 | Uncharacte rized protein | ABSDF3239 | NA | NA | 0.41883
8599 | | cds-
WP_000269
732.1 | Uncharacte rized protein | ABSDF3675 | NA | NA | 0.41966
7466 | | cds-
WP_000831
329.1 | 50S
ribosomal
protein L34 | rpmH
CDG61_17410 | Ribosome [03010]; Ribosome [03011] | GO:0003735~structural constituent of ribosome | 0.42077
5029 | | cds-
WP_000616
034.1 | Uncharacte rized protein | ABSDF2084 | NA | NA | 0.42248
1484 | | cds-
WP_000749
814.1 | Uncharacte rized protein | BDGL_000817 | NA | NA | 0.42320
4201 | | cds-
WP_000047
695.1 | Uncharacte rized protein | BDGL_001028 | NA | NA | 0.42348
2625 | | cds-
WP_001232
531.1 | Uncharacte rized protein | ABSDF1620 | NA | NA | 0.42871
0805 | | cds-
WP_000251
637.1 | NA | NA | NA | NA | 0.43132
4896 | | cds-
WP_000724
539.1 | Uncharacte rized protein | ABSDF0041 | Transport [99977] | NA | 0.43387
1087 | | cds-
WP_002010
078.1 | Uncharacte rized protein | ABSDF2215 | NA | NA | 0.43402
9127 | | cds-
WP_000244
900.1 | DUF2061
domain-
containing
protein | C3941_30215 | NA | NA | 0.43434
1154 | | cds-
A4U85_RS
19115 | Uncharacte rized protein | BDGL_002639 | NA | NA | 0.43434
1154 | | cds-
WP_000201
632.1 | 50S
ribosomal
protein L27 | rpmA
ABSDF0744 | Ribosome [03010]; Ribosome [03011] | GO:0003735~structural constituent of ribosome | 0.43602
7552 | | cds-
WP_000135
049.1 | DNA-directed RNA polymerase subunit omega (RNAP omega subunit) (EC 2.7.7.6) (RNA polymerase omega subunit) (Transcript ase subunit omega) | rpoZ
ABSDF0321 | RNA polymerase [03020]; Transcription machinery [03021]; DNA repair and recombination proteins [03400] | GO:0003677~DNA binding; GO:0003899~DNA-directed RNA polymerase activity | 0.43724
3591 | |----------------------------|---|---------------------
--|---|-----------------| | cds-
WP_001279
871.1 | Acyl
carrier
protein
(ACP) | acpP
BDGL_000089 | PATHWAY: Glycolipid biosynthesis; KDO(2)-lipid A biosynthesis. {ECO:0000256 ARBA:ARB A00024328}.; PATHWAY: Lipid metabolism; fatty acid biosynthesis. {ECO:0000256 HAMAP-Rule:MF_01217, ECO:0000256 RuleBase:RU0 03545}.; Fatty acid biosynthesis [00061]; Biosynthesis of various secondary metabolites - part 2[00998] | GO:0000036~ACP phosphopantetheine attachment site binding involved in fatty acid biosynthetic process | 0.43938
2023 | | cds-
WP_000138
016.1 | Arsenate reductase (EC 1.20.4.1) | arsC
BDGL_000835 | Enzymes with EC numbers[99980] | GO:0008794~arsenate
reductase (glutaredoxin)
activity | 0.44532
8951 | | cds-
WP_001280
161.1 | Putative 3-methyladen ine DNA glycosylase (EC 3.2.2) | ABSDF0617 | Base excision repair [03410]; DNA repair and recombination proteins [03400] | GO:0003677~DNA
binding;GO:0003905~alky
lbase DNA N-glycosylase
activity | 0.44799
5591 | | cds-
WP_000867
907.1 | Deleted. | NA | Ribosome [03011]; Ribosome [03010] | NA | 0.45332
4814 | | cds-
WP_000619
820.1 | Rhodanese
domain-
containing
protein | ABSDF0504 | NA | NA | 0.45388
8765 | | cds-
WP_000927
115.1 | Uncharacte rized protein | BDGL_000221 | NA | NA | 0.45431
0862 | | cds-
WP_000182
506.1 | Uncharacte rized protein | ABSDF1204 | NA | NA | 0.45485
1708 | |----------------------------|---|------------------------|--|---|-----------------| | cds-
WP_001170
994.1 | Outer
membrane
protein
assembly
factor
BamE | smpA bamE
ABSDF2539 | Transporters [02000] | NA | 0.45502
4066 | | cds-
WP_000800
035.1 | Tolerance to group A colicins, single- stranded filamentou s DNA phage, required for OM integrity | tolA
BDGL_001562 | NA | NA | 0.45559
8591 | | cds-
WP_001097
630.1 | Uncharacte rized protein | ABSDF3650 | NA | NA | 0.45583
1992 | | cds-
WP_001047
855.1 | Uncharacte rized protein | ABSDF2717 | NA | NA | 0.46345
1639 | | cds-
WP_000089
996.1 | Probable
Fe(2+)-
trafficking
protein | BDGL_003169 | NA | GO:0005506~iron ion binding | 0.46613
8715 | | cds-
WP_000913
165.1 | Uncharacte rized protein | ABSDF3482 | NA | NA | 0.47053
625 | | cds-
WP_001288
210.1 | FAD
assembly
factor SdhE | ABSDF0452 | Prokaryotic defense system [02048] | NA | 0.47053
625 | | cds-
WP_001288
624.1 | NA | NA | NA | NA | 0.47053
625 | | cds-
WP_000097
955.1 | Putative
pseudourid
ylate
synthase
(EC
4.2.1.70) | ABSDF1621 | Transfer RNA biogenesis [03016]; Ribosome biogenesis [03009] | GO:0003723~RNA
binding;GO:0004730~pse
udouridylate synthase
activity;GO:0009982~pse
udouridine synthase
activity | 0.47053
625 | | cds-
WP_000656
405.1 | Uncharacte rized protein | ABSDF2508 | NA | NA | 0.47053
625 | | cds-
WP_000756
788.1 | Haloacid
dehalogena
se | CL42_12145 | General function prediction only [99996] | GO:0016787~hydrolase activity | 0.47053
625 | | cds-
WP_000368
364.1 | Putative
bacteriopha
ge protein | ABSDF1806 | NA | NA | 0.47053
625 | |----------------------------|--|-------------------|--|--|-----------------| | cds-
WP_001090
544.1 | DUF1989
domain-
containing
protein | BDGL_000611 | Function unknown [99997] NA | | 0.47053
625 | | cds-
WP_001077
693.1 | HTH cro/C1-type domain-containing protein | CL42_06435 | NA | GO:0003677~DNA
binding | 0.47053
625 | | cds-
WP_000774
579.1 | Uncharacte rized protein | ABSDF2226 | NA | NA | 0.47053
625 | | cds-
WP_000540
685.1 | Uncharacte rized protein | BKE30_13730 | NA | NA | 0.47053
625 | | cds-
WP_000114
563.1 | NA | NA | NA | NA | 0.47053
625 | | cds-
WP_085940
424.1 | Uncharacte
rized
protein | BDGL_002695 | NA | NA | 0.47053
625 | | cds-
WP_000018
791.1 | NA | NA | NA | NA | 0.47053
625 | | cds-
WP_000042
163.1 | MarR
family
transcriptio
nal
regulator | B9T35_07270 | Transcription factors [03000] | GO:0003700~sequence-
specific DNA binding
transcription factor activity | 0.47053
625 | | cds-
WP_000784
267.1 | Uncharacte rized protein | ABSDF0550 | Chaperones and folding catalysts [03110] | NA | 0.47588
3253 | | cds-
WP_000678
928.1 | Uncharacte rized protein | ABSDF0646 | NA | NA | 0.48123
0255 | | cds-
WP_000144
889.1 | Ferredoxin | fdxA
ABSDF1115 | Energy metabolism[99982] | GO:0009055~electron carrier activity;GO:0046872~met al ion binding;GO:0051538~3 iron, 4 sulfur cluster binding;GO:0051539~4 iron, 4 sulfur cluster binding | 0.48190
186 | | cds-
WP_000161 | Uncharacte rized | BDGL_001552 | NA | NA | 0.48201
2744 | | 254.1 | protein | | | | | |----------------------------|---|-----------------------|---|---|-----------------| | cds-
WP_000379
022.1 | Diacylglyc
erol kinase
(EC
2.7.1.107) | dgkA
ABSDF0819 | Glycerolipid metabolism [00561]; Glycerophospholipid metabolism [00564] | GO:0004143~diacylglycer
ol kinase
activity;GO:0005524~AT
P
binding;GO:0046872~met
al ion binding | 0.48325
3446 | | cds-
WP_000524
329.1 | Uncharacte rized protein | BDGL_003409 | NA | NA | 0.48616
8683 | | cds-
WP_000795
915.1 | Uncharacte rized protein | BDGL_000771 | NA | NA | 0.49225
3307 | | cds-
WP_000609
117.1 | Diamine N-
acetyltransf
erase | SAMN0544416
5_1312 | Arginine and proline metabolism [00330] | GO:0008080~N-acetyltransferase activity | 0.49294
2738 | | cds-
WP_000733
015.1 | Uncharacte rized protein | BDGL_002399 | NA | NA | 0.49404
5776 | | cds-
WP_001274
776.1 | NA | NA | NA | NA | 0.49406
3062 | | cds-
WP_000490
937.1 | Uncharacte rized protein | ABSDF0667 | NA | NA | 0.49868
7991 | | cds-
WP_000024
050.1 | KTSC
domain-
containing
protein | BDGL_000456 | NA | NA | 0.49922
7485 | | cds-
WP_000887
099.1 | Uncharacte rized protein | ABSDF0760 | Function unknown[99997] | NA | 0.49952
6635 | | cds-
WP_000039
916.1 | Putative
nitrate
transport
protein
(NasF) | nasF
BDGL_001495 | Two-component system [02022] | NA | 0.49994
4765 | . ## Genes not expressed/silenced in Clinical isolate | Transcript
_ID | Sample_3
_397
Expressio
n | Protein
names | Gene
names | Pathway | Molecular Function | Biological
Process | |----------------------------|------------------------------------|---|-------------------------|---|---|---| | cds-
WP_000183
811.1 | 2.9156369
96 | Site-specific DNA-methyltrans ferase (adenine-specific) (EC 2.1.1.72) | BEN71_0
5830 | Prokaryoti
c defense
system
[02048] | GO:0003677~DNA
binding;GO:0008170~N-
methyltransferase
activity;GO:0009007~site-
specific DNA-
methyltransferase (adenine-
specific) activity | GO:0009307~DN
A restriction-
modification
system | | cds-
WP_001243
392.1 | 2.9156369
96 | Uncharacter ized protein | ABSDF33
58 | NA | NA | NA | | cds-
WP_000679
991.1 | 1.4578184
98 | DNA
polymerase
V | F945_013
86 | DNA
repair and
recombina
tion
proteins
[03400] | GO:0003684~damaged
DNA binding | GO:0006281~DN
A repair | | cds-
WP_000470
079.1 | 1.4578184
98 | Vanillate O-
demethylas
e oxygenase
subunit (4-
hydroxy-3-
methoxyben
zoate
demethylas
e) | vanA
BDGL_00
0396 | Aminoben
zoate
degradatio
n [00627] | GO:0005506~iron ion binding;GO:0008168~meth yltransferase activity;GO:0016491~oxido reductase activity;GO:0051537~2 iron, 2 sulfur cluster binding | GO:0032259~met
hylation | | cds-
WP_001098
394.1 | 1.4578184
98 | Uncharacter ized protein | DJ533_00
885 | NA | NA | NA | ## New Genes expressed in clinical isolate | Transcript
_ID | 3A_397
T
Express
ion | Protein
names | Gene
names | Pathway | Molecular Function | Biological Process | |----------------------------|-------------------------------|--|-----------------|---------|------------------------|--------------------| | cds-
WP_10074
3362.1 | 2.05786
9347 | NA | NA | NA | NA | NA | | cds-
A4U85_RS
13025 | 6.17360
804 | ISL3 family
transposase
(Fragment) | EF099_2
0305 | NA | NA | NA | |
cds-
WP_00206
1576.1 | 0.68595
6449 | Putative
transcriptio
nal
regulator | ABSDF2
741 | NA | GO:0003677~DNA binding | NA | | | | (TetR
family) | | | | | |----------------------------|-----------------|--|--------------------------|--------------------------------------|--|--| | cds-
WP_00043
8219.1 | 1.37191
2898 | Aldehyde
dehydrogen
ase | calB
BDGL_0
00375 | Enzymes with
EC
numbers[99980] | GO:0016620~oxidor
eductase activity,
acting on the
aldehyde or oxo
group of donors,
NAD or NADP as
acceptor | GO:0006081~cellular
aldehyde metabolic
process | | cds-
WP_00198
3635.1 | 1.37191
2898 | Two-
component
system
sensor
protein | colS
BDGL_0
01704 | NA | GO:0000155~phosp
horelay sensor kinase
activity | NA | | cds-
WP_00070
1381.1 | 1.37191
2898 | Integrase
catalytic
domain-
containing
protein | P256_002
33 | NA | GO:0003676~nuclei c acid binding | GO:0015074~DNA integration | | cds-
WP_00101
7483.1 | 1.37191
2898 | Uncharacter ized protein | ABSDF3
352 | NA | NA | NA | | cds-
WP_00093
8194.1 | 0.68595
6449 | Uncharacter ized protein | AMD27_
12655 | NA | NA | NA | | cds-
WP_00004
1313.1 | 2.05786
9347 | Uncharacter ized protein | BDGL_0
00387 | NA | NA | NA | | cds-
WP_00121
9640.1 | 0.68595
6449 | MerR
family
transcriptio
nal
regulator | AGRI_13
945 | NA | GO:0003677~DNA
binding;GO:0003700
~sequence-specific
DNA binding
transcription factor
activity;GO:0046872
~metal ion binding | GO:0045893~positive
regulation of
transcription, DNA-
templated | | cds-
WP_00198
4959.1 | 0.68595
6449 | PG_binding _3 domain- containing protein | ABSDF2
454 | NA | NA | NA | | cds-
WP_00019
0710.1 | 0.68595
6449 | Short chain
dehydrogen
ase | dhrS4
BDGL_0
01300 | NA | GO:0016491~oxidor eductase activity | NA | | cds-
WP_00099
0621.1 | 0.68595
6449 | Putative
transcriptio
nal
regulator
(TetR
family) | ABSDF2
195 | NA | GO:0003677~DNA
binding | NA | | cds-
WP_00015
4590.1 | 1.37191
2898 | FAD
dependent
oxidoreduct
ase | choB
BDGL_0
00403 | Steroid
degradation[009
84] | GO:0016614~oxidor
eductase activity,
acting on CH-OH
group of
donors;GO:0050660
~flavin adenine
dinucleotide binding | NA | |----------------------------|-----------------|---|-------------------------|--|--|---| | cds-
WP_00080
0799.1 | 1.37191
2898 | Putative
outer
membrane
protein | ABSDF0
898 | NA | NA | NA | | cds-
WP_00213
4769.1 | 1.37191
2898 | Uncharacter ized protein | BJL95_2
2590 | Cationic antimicrobial peptide (CAMP) resistance [01503]; Peptidases and inhibitors [01002] | GO:0005509~calciu
m ion binding | NA | | cds-
WP_00016
3911.1 | 0.68595
6449 | Tyr
recombinas
e domain-
containing
protein | BOW53_
10210 | NA | GO:0003677~DNA
binding | GO:0006310~DNA
recombination;GO:00
15074~DNA
integration | | cds-
WP_00111
0159.1 | 1.37191
2898 | Uncharacter ized protein | F945_032
89 | NA | NA | NA | | cds-
WP_00056
4784.1 | 2.05786
9347 | Glutamine
scyllo-
inositol
transaminas
e | degT
BDGL_0
02974 | Amino acid related enzymes [01007]; Amino sugar and nucleotide sugar metabolism [00520]; O-Antigen nucleotide sugar biosynthesis [00541] | GO:0003824~catalyt ic activity | NA | | cds-
WP_00102
2433.1 | 1.37191
2898 | DUF927
domain-
containing
protein | AMQ28_
04300 | Replication and repair[99976] | NA | NA | | cds-
WP_00213
4405.1 | 0.68595
6449 | ATP-
binding
protein | DJ533_03
325 | NA | GO:0005524~ATP binding | NA | | cds-
WP_00112
6090.1 | 1.37191
2898 | Helix-turn-
helix
protein,
CopG | copG
BDGL_0
00618 | Transcription factors [03000] | NA | GO:0006355~regulati
on of transcription,
DNA-templated | | cds-
WP_00108
9573.1 | 0.68595
6449 | SMI1_KNR
4 domain-
containing | KPC_239
0 | NA | NA | NA | | | | protein | | | | | |----------------------------|-----------------|---|------------------|---|---|--------------------------------| | cds-
WP_00058
9668.1 | 0.68595
6449 | Hydrolase
or metal-
binding
protein | CDG61_0
5810 | NA | GO:0016787~hydrol ase activity | NA | | cds-
WP_00108
7992.1 | 1.37191
2898 | LysR
family
transcriptio
nal
regulator | L861_137
20 | Transcription factors [03000] | GO:0003700~sequen
ce-specific DNA
binding transcription
factor activity | NA | | cds-
WP_00075
9831.1 | 0.68595
6449 | Uncharacter ized protein | KPC_305 | NA | NA | NA | | cds-
WP_00090
5420.1 | 1.37191
2898 | Lipoprotein signal peptidase (EC 3.4.23.36) (Prolipoprot ein signal peptidase) (Signal peptidase II) (SPase II) | lspA
Ajs_3473 | PATHWAY: Protein modification; lipoprotein biosynthesis (signal peptide cleavage). {ECO:0000256 HAMAP- Rule:MF_00161 }.; Peptidases and inhibitors [01002]; Protein export [03060] | GO:0004190~asparti
c-type endopeptidase
activity | NA | | cds-
WP_08594
0550.1 | 6.17360
804 | Uncharacter ized protein | BDGL_0
00271 | NA | NA | NA | | cds-
WP_00091
7503.1 | 0.68595
6449 | Uncharacter ized protein | BDGL_0
02720 | NA | NA | NA | | cds-
WP_00000
8459.1 | 2.74382
5796 | Uncharacter ized protein | BFG52_0
7515 | NA | NA | NA | | cds-
WP_00104
6789.1 | 1.37191
2898 | Type I site-
specific
deoxyribon
uclease (EC
3.1.21.3) | BEN71_0
5840 | Prokaryotic
defense system
[02048] | GO:0003677~DNA
binding;GO:0009035
~Type I site-specific
deoxyribonuclease
activity | GO:0006304~DNA
modification | | cds-
WP_00116
6630.1 | 3.42978
2245 | Deleted. | NA | Transcription factors [03000] | NA | NA | | cds-
WP_00198
4934.1 | 1.37191
2898 | Putative
transcrition
al regulator | ABSDF1
415 | NA | GO:0003700~sequen
ce-specific DNA
binding transcription
factor
activity;GO:0043565
~sequence-specific
DNA binding | NA | **Declaration:** Studies involving human subjects adhered to ethical guidelines, with informed consent obtained from all participants. **Conflict of Interest:** None of the authors have conflict of interest. Figure 6: Read statistics (raw and processed reads) **Figure 6:** Read statistics (raw and processed reads) representing the total number of reads generated (in blue color) and high quality reads used for downstream analysis (in orange color). An average of 97.87% of high quality reads were retained for the downstream analysis. Transcript cds-WP_000085212.1 is 1.70 times up regulated in 6A sample [Treated] compared to Sample_3_397 sample [Control]. Similarly, Transcript cds-WP_000863328.1 is 1.71 times down regulated in 6A sample [Treated] compared to Sample_3_397 sample [Control]. The sample wise expression values at transcript/gene level were obtained after normalization between control and treatment samples. These normalized values were further used for log2FC calculations. The details have been provided in the DGE reports. Normalized expression of a given transcript/gene may change across different comparisons depending on the size factor for all DGE combinations. Fold changes are calculated based on "Expression of test sample / Expression of control sample". Below mentioned tool can be used for heatmap generation for your data of interest. The sample-wise normalized (RPKM) values provided in expression matrix "GT_SO_10857_A_Read_Count_Matrix.xlsx [RPKM_Matrix]" are not same as the normalized values provided in DGE reports. Clustvis: https://bio.tools/clustvis ## 3.4.2 Gene ontology (GO) and pathway analysis Transcripts/Genes were assigned with a homolog protein (Uniprot) from other organisms with known functions, if the match was found at e-value less than e⁻⁵ and minimum similarity greater than 30%. For pathway analysis, the representative reference organism [Acinetobacter baumannii] was considered as reference for pathway identification. Compiled pathways per transcript/gene were mapped to the DE genes. ## 3.4.3 Functional Annotation of Differentially Expressed Genes A COG (clusters of orthologous groups of proteins) analysis was carried out to evaluate the functional categorization. The results showed that the differentially expressed genes were classified into 11 COG categories. The 18 upregulated genes were involved in secondary metabolite biosynthesis, transport and catabolism, translation, ribosomal structure and biogenesis, lipid transport and metabolism, energy production and conversion, inorganic ion transport and metabolism, function unknown, and general function prediction. The 100 downregulated genes were involved
in post-translational modification, protein turnover, chaperones, defense mechanisms, amino acid transport and metabolism, cell wall/membrane/envelope biogenesis, lipid transport and metabolism, general function prediction, energy production and conversion, and inorganic ion transport and metabolism (Figure 2). Figure 7: Heatmap representing up and down regulated genes Figure 7: Heatmap representing up and down regulated genes for in A. baumannii control sps and A. baumannii treated with colistin. Note: For heatmap generation log2fold change is sorted in descending order. Expression values of both A. baumannii control sps and A. baumannii treated with colistin samples are considered along with the corresponding gene names. The dendrogram on y-axis of the heatmap represents the relatedness or how similar 2/more transcripts are to each other. The transcripts that cluster together are similar to each other based on expression values. ### 4. DISCUSSION The widespread use of antibiotics in both human and veterinary medicine has led to the detection of subinhibitory concentrations of antibiotics in various environments, including hospital effluent, municipal sewage, sewage treatment plant effluent, surface water, and groundwater (Kümmerer, 2003; Brady and Jamal, 2013). This exposure to low levels of antibiotics is believed to accelerate the evolution of bacteria, contributing to the development of resistant strains. Colistin has been extensively used since the middle of the last century in animals, particularly in swine, for the control of enteric infections. Colistin is presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer *Enterobacterales*, *Acinetobacter baumanni*, and *Pseudomonas aeruginosa* (Andrade et al., 2020). This study investigates the rapid response of A. baumannii to minocycline exposure by conducting RNA-seq analysis when the bacterium was exposed to half the minimum inhibitory concentration (MIC) of 2mg/ml colistin. The down regulated genes and their expressed proteins are- GtrA domain-containing protein, HTH tetR-type domain-containing protein, DUF559 domain-containing protein, Putative pilus assembly protein (FilF), 30S ribosomal protein S20, Alpha/beta hydrolase, Putative regulatory or redox component complexing with Bfr, in iron storage and mobility (Bfd), PG_binding_3 domain-containing protein, Glutaredoxin domain-containing protein, UPF0391 membrane protein BDGL_002899, Bacteriolytic lipoprotein entericidin B, Rubredoxin, Translation initiation factor IF-1, Putative bacteriophage protein, DNA-binding protein HU-beta, DUF2061 domain-containing protein, DNA-directed RNA polymerase subunit omega (RNAP omega subunit) (EC 2.7.7.6) (RNA polymerase omega subunit) (Transcriptase subunit omega), Acyl carrier protein (ACP), Arsenate reductase (EC 1.20.4.1), Putative 3-methyladenine DNA glycosylase (EC 3.2.2.-), Rhodanese domain-containing protein, Outer membrane protein assembly factor BamE, Tolerance to group A colicins, single-stranded filamentous DNA phage, required for OM integrity, Probable Fe²⁺-trafficking protein, FAD assembly factor SdhE, Putative pseudouridylate synthase (EC 4.2.1.70), Haloacid dehalogenase, Putative bacteriophage protein, DUF1989 domain-containing protein, HTH cro/C1-type domain-containing protein, MarR family transcriptional regulator, Ferredoxin, Diacylglycerol kinase (EC 2.7.1.107), Diamine N-acetyltransferase, KTSC domain-containing protein, Putative nitrate transport protein (NasF). Of the 18 upregulated genes, the following proteins are known to exist: Twitching motility protein, p-aminobenzoate synthetase (EC 4.1.3.-), Pilin like competence factor, D-methionine-binding lipoprotein MetQ, HTH tetR-type domain-containing protein, Transcriptional regulator, Hydrolase, Putative Phosphopantetheine binding protein, SASA domain-containing protein, Adenylylsulfate reductase, beta subunit, Cation efflux system permease, putative, HTH tetR-type domain-containing protein. Further research is needed to explore the roles of the genes that were differentially expressed in the clinical isolate. #### 5. SUMMARY Transcriptome sequencing and analysis was carried out for 2 *Acinetobacter baumannii* samples. RNA sequencing libraries were prepared using NEBNext Ultra II Directional RNA library preparation reagents and workflow. The libraries were paired-end sequenced on Illumina NovaSeq 6000 sequencer for 150 cycles. The raw data were pre-processed by trimming adapters, and removing low-quality reads. The high quality reads obtained after pre-processing ranged from 15-20 million reads. The pre-processed data was aligned to *Acinetobacter baumannii* reference. The alignment percentage to the reference ranged from 80-88% for both the samples. Number of expressed transcripts ranged between 3213-3255 for both the samples. ### **REFERENCES** - [1] Altschul, S et al (1990). Basic local alignment search tool". Journal of MolecularBiology 215 (3): 403–410. doi:10.1016/S0022-2836(05)80360-2 - [2] Anders, S., & Huber, W. (2010). Differential expression analysis for sequencecount data. Genome biology, 11(10), R106. - [3] Andrade FF, Silva D, Rodrigues A, Pina-Vaz C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms. 2020 Nov 2;8(11):1716. doi: 10.3390/microorganisms8111716. PMID: 33147701; PMCID: PMC7692639. - [4] Asokan GV, Ramadhan T, Ahmed E, Sanad H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med J. 2019 May;34(3):184-193. doi: 10.5001/omj.2019.37. PMID: 31110624; PMCID: PMC6505350. - [5] Bcl2Fastq:https://sapac.support.illumina.com/sequencing/sequencing_software/ bcl2fastq-conversion-software.html - [6] Brady M.F., Jamal Z., Pervin N. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2022. Acinetobacter - [7] FastQC: Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data - [8] Garrido-Mesa N., Zarzuelo A., Gálvez J. Minocycline: Far beyond an antibiotic. *Br. J. Pharm.* 2013;169:337–352. doi: 10.1111/bph.12139 - [9] Guo T., Sun X., Li M., Wang Y., Jiao H., Li G. The Involvement of the csyl Gene in the Antimicrobial Resistance of *Acinetobacter baumannii*. Front. Med. 2022; 9:797104. doi: 10.3389/fmed.2022.797104 - [10] Hamidian M., Hall R.M. *Acinetobacter baumannii* ATCC 19606 Carries GIsul2 in a Genomic Island Located in the Chromosome. *Antimicrob. Agents Chemother.* 2017;61:e01991-16. doi: 10.1128/AAC.01991-16. - [11] Howard A, O'Donoghue M, Feeney A, Sleator RD. *Acinetobacter baumannii*: an emerging opportunistic pathogen. Virulence. 2012 May 1;3(3):243-50. doi: 10.4161/viru.19700. Epub 2012 May 1. PMID: 22546906; PMCID: PMC3442836. - [12] http://bowtie-bio.sourceforge.net/tutorial.shtml - [13] https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ - [14] Hui Z., Liu S., Cui R., Zhou B., Hu C., Zhang M., Deng Q., Cheng S., Luo Y., Chen H., et al. A small molecule interacts with pMAC-derived hydroperoxide reductase and enhances the activity of aminoglycosides. *J. Antibiot.* 2021;74:324–329. doi: 10.1038/s41429-020-00401-2. - [15] IGV browser Link:https://software.broadinstitute.org/software/igv/ - [16] Kümmerer K. Significance of antibiotics in the environment. *J. Antimicrob. Chemother.* 2003;52:5–7. doi: 10.1093/jac/dkg293. - [17] Mancilla-Rojano J, Ochoa SA, Reyes-Grajeda JP, Flores V, Medina-Contreras O, Espinosa-Mazariego K, Parra-Ortega I, Rosa-Zamboni D, Castellanos-Cruz MDC, Arellano-Galindo J, Cevallos MA, Hernández-Castro R, Xicohtencatl-Cortes J, Cruz-Córdova A. Molecular Epidemiology of *Acinetobacter calcoaceticus-Acinetobacter baumannii* Complex Isolated From Children at the Hospital Infantil de México Federico Gómez. Front Microbiol. 2020 Oct 15;11:576673. doi: 10.3389/fmicb.2020.576673. PMID: 33178158; PMCID: PMC7593844. - [18] Moriya, Yuki, et al(2007). "KAAS: an automatic genome annotation and pathwayreconstruction server." Nucleic acids research 35.suppl 2: W182-W185. - [19] Nocera FP, Attili AR, De Martino L. *Acinetobacter baumannii*: Its Clinical Significance in Human and Veterinary Medicine. Pathogens. 2021 Jan 27;10(2):127. doi: 10.3390/pathogens10020127. PMID: 33513701; PMCID: PMC7911418. - [20] Pagdepanichkit, S., Tribuddharat, C., and Chuanchuen, R. (2016). Distribution and expression of the Ade multidrug efflux systems in *Acinetobacter baumannii* clinical isolates. *Can. J. Microbiol.* 62, 794–801. doi: 10.1139/cjm-2015-0730 - [21] Rfam database Link: https://rfam.xfam.org/ - [22] Shi J, Cheng J, Liu S, Zhu Y and Zhu M (2024) *Acinetobacter baumannii*: an evolving and cunning opponent. *Front. Microbiol.* 15:1332108. doi: 10.3389/fmicb.2024.1332108 - [23] Towner K.J. Acinetobacter: An old friend, but a new enemy. J. Hosp. Infect. 2009;73:355-363. - [24] Yang H., Chen G., Hu L., Liu Y., Cheng J., Li H., Ye Y., Li J. In vivo activity of daptomycin/colistin combination therapy in a Galleria mellonella model of *Acinetobacter baumannii* infection. *Int. J. Antimicrob. Agents.* 2015; 45:188–191. doi: 10.1016/j.ijantimicag.2014.10.012. - [25] Yang Liao, Gordon K. Smyth, Wei Shi, featureCounts: an efficient general purposeprogram for assigning sequence reads to genomic features, *Bioinformatics*, Volume 30, Issue 7, 1 April 2014, Pages 923–930, https://doi.org/10.1093/bioinformatics/btt656 - [26] Zhu Y., Lu J., Zhao J., Zhang X., Yu H.H., Velkov T., Li J. Complete genome sequence and genome-scale metabolic modelling of *Acinetobacter baumannii* type strain ATCC 19606. *Int. J. Med. Microbiol.* 2020; 310:151412. doi: 10.1016/j.ijmm.2020.151412 Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s