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ABSTRACT 

Understanding Protein-Protein Interaction (PPI) networks is essential for comprehending intricate biological processes, 

such as disease development and cellular functions. Due to the dynamic and non-linear nature of these connections, 

modelling and analysing such complex networks is extremely challenging. Existing graph-based frameworks often fail to 

capture the stochastic behaviour and quantum-level uncertainty inherent in biological structures. This study enhances the 

dynamic assessment of PPI systems by introducing Quantum Graph-Based Differential Models (QGDM) to overcome 

these limitations. The proposed method incorporates quantitative transitions between states and probabilistic behaviour in 

biological systems while modelling time-evolving interactions using inequality equations and classical graph theory 

concepts. The process involves constructing quantum graphs to represent PPI systems and applying quantum linear 

equations to describe the structure of interactions. By integrating quantum effects, the model improves predictions of 

system shifts, leading to a better understanding of biological pathways and system responses. The goal is to provide a 

more accurate framework for identifying key proteins and predicting the impact of network modifications on functionality. 

The effectiveness of the proposed model is validated through experimental simulations using real PPI datasets 

demonstrating enhanced prediction accuracy and resilience compared to traditional methods. The findings indicate a 

significant improvement in identifying critical nodes and capturing dynamic transitions, paving the way for more effective 

pharmacological target selection and biomarker development. By addressing key shortcomings of conventional models, 

this innovative integration of quantum graph concepts and differential modelling offers approach to understanding and 

analysing biological systems. 

 

Keywords: Quantum Graph Theory, Protein-Protein Interaction Networks, Differential Equations, Dynamic Network 

Analysis, Quantum State Transitions, Biological Network Modeling, Molecular Pathways, System Dynamics, Biomarker 

Discovery, Drug Target Identification. 

1. INTRODUCTION 

The term "network" originates from common language used to describe a wide range of well-known and tangible 

structures. Artificial Neural Networks (ANN) such as roads, railways, air traffic systems, electrical grids, and interpersonal 

networks; biological systems such as metabolic pathways, blood circulation, and food webs tree-like networks with 

simpler characteristics such as hydrographic systems [1]. A network consists of a set V of N vertices are connected by a 

subset E of edges. These edges may have attributes such as weights, orientations, or signs. The network configuration is 

defined by the set (s̅(t)) = [sᵢ(t); i ∈ V] represents the instantaneous state sᵢ(t) of each node i. This state can be either discrete 

(e.g., a Boolean variable where sᵢ = 1 or 0) or continuous [2]. A graph is typically represented as G = (V, E), where E is a 
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specific subset of V × V. If neither (i, j) nor (j, i) belong simultaneously to E, the edges may be oriented even if they are 

unweighted (i.e., either present or absent). Any pairwise attribute or interaction within a group V of elements can be linked 

to a network structure: two elements i, j ∈ V that share a common property are connected, denoted as (i, j) ∈ E. Although 

this may seem like a simple reformulation of ensemble connections, it proves to be highly valuable. It enables the 

application of mathematical and geometric principles from graph theory, probabilistic and physics-based methodologies 

from complex network theory [3].  

A graph may or may not be directly connected to a physical space. For instance, the set V can represent discrete points in 

R³ (three-dimensional space) or R² (a plane) such as road or railway networks [4]. In these cases, the system inherits the 

spatial separation from the underlying space, assigning each pair (i, j) a distance rᵢⱼ. The concept of a graph extends beyond 

physical connections and includes abstract relationships. V is an arbitrary set of entities that do not inherently possess a 

linear or topological structure. Examples include social networks within an organization or school, World Wide Web 

connection strengths have little or no dependence on physical distances [5]. Networks offer a new topological architecture 

is closely linked to the functional significance of relationships and is often superimposed on an existing topological 

framework if one exists. The most complex systems arise when the organic structure that evolves over time coexists with 

the inherent structure of relationships. This interaction influenced by competition, dissatisfaction, or other selection 

mechanisms can lead to emergent behaviours. Food chains and neural networks are prime examples of such systems where 

both intrinsic organization and functional connectivity shape their dynamics [6]. 

One of the primary objectives of systems biology is to understand both the structure and function of biological systems. 

In its early stages, biological computation focused on investigating the unique properties of intracellular components and 

compiling this data into extensive databases. Biological systems are defined by the interactions among their constituent 

elements [7]. The advent of high-throughput technologies has further enabled the quantitative analysis of these complex 

structures. Gene networks nodes represent gene products and edges signify molecular interactions provide a framework 

for analysing biological functions by processing and evaluating high-throughput data [8]. Since multiple approaches exist 

for deriving networks from high-throughput data, network inference plays a crucial role in network biology. For instance, 

association networks can be constructed using the WGCNA program, while the minet package can infer relationships 

based on shared information. Additional methods for network inference using diverse visual representations are available 

in other packages [9]. Introduced the C3NET methodology and compared it with alternative approaches for identifying 

the conservative causal core of gene networks. Findings emphasize the importance of accurately constructing reliable and 

biologically meaningful networks. Structural analysis of biological systems can reveal hidden biological insights that may 

not be immediately apparent from raw data [10]. A key challenge in network analysis involves identifying topologically 

significant nodes and characterizing networks based on their organizational structure. To address this, the QuACN R 

package provides a diverse set of novel topological network descriptors numerically quantify the fundamental properties 

of a network. Topological network descriptors as measurements, indices, or graph invariants, highlighting their role in 

objectively describing network structures [11]. 

The complexity of network quantification has become a significant research challenge across multiple scientific 

disciplines over the past few decades. In mathematics and medicinal chemistry, particularly in drug design, topological 

network descriptors such as QSAR/QSPR have been employed to analyse and characterize the physical structures of 

chemical compounds [12]. In a more biologically driven study, researchers have utilized vertex degrees of PPI networks 

to correlate organismal and protein structure complexity with the underlying PPI network’s intricacy. Their findings 

indicate a strong correlation between PPI network vertex degrees and PPI domain coverage [13]. Explored the relationship 

between phylogeny and metabolic network complexity, linking organismal evolution to the arrangement and interactions 

of metabolic pathways using various network metrics. Their results suggest that phylogenetic distances can be accurately 

reconstructed using a small subset of network descriptors [14]. A comprehensive discussion of the numerous network 

metrics developed over time falls beyond the scope of this study. For further insights, an extensive review of network 

measurements, while offer a compelling summary of existing network descriptors, including information-theoretic 

metrics. Many aspects regarding the feasibility and characteristics of various descriptors remain unresolved [15].  
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Figure 1:  Structural analysis of microarray network data to biological validation 

 

QuACN offers a diverse range of topological network characteristics, providing a consistent and user-friendly approach 

to utilizing these indexes. This enables researchers to explore various biological applications using network-based 

methods [16]. Figure 1 illustrates a typical research framework for the structural analysis of biological systems depicting 

a generalized procedure for applying network methodologies with topological measurements to analyse microarray 

technology studies [17]. In general, quantitative network analysis is a complex task, requiring a deep understanding of the 

methodology to accurately interpret the results. This publication is intended for readers interested in structural network 

analysis aiming to help them effectively apply the techniques provided by QuACN [18]. This study does not address the 

challenge of constructing resilient and reliable networks, as it falls beyond its scope. It does not provide a detailed 

explanation of network metrics or guidance on interpreting topological network descriptor findings [19]. 

Graphs may be conveniently represented using the adjacency matrix A ∈ R|V|×|V|, which is defined as 

 

𝐴[𝑢, 𝑣] = 𝐴𝑢𝑣 = {
1 𝑖𝑓 (𝑢, 𝑣) ∈ 𝜀
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (1) 

 

In certain situations, it is essential to represent the strength of interactions between nodes. For example, in biology, it can 

be valuable to indicate how strongly two proteins interact with each other. Adjacency matrix shown in Figure 2 (a) and 

(b). The adjacency matrix of a weighted graph is defined in Figures 2 (a) – (d). This can be achieved by assigning weights 

to the edges, as illustrated in Figure 2 (e) and (f). A weighted edge is represented by the triplet(𝑢, 𝑣, 𝑤𝑢𝑣), where 𝑤𝑢𝑣 ∈ 

R∖{0} denotes the weight of the edge connecting nodes u and v. In this context, the set of edges E consists of all such 

triplets (𝑢, 𝑣, 𝑤𝑢𝑣) that define the weighted edges in the graph [20]. 

 

1. Microarray Experiment 2. Inferring Networks 3. Structural Analysis 

4. Biological Validation 

𝑋𝑓(𝐺) = − ෍
𝑓(𝑣𝑥)

σ 𝑓(𝑣𝑥)𝑘
𝑦=1

𝑙𝑜𝑔
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ቆ
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Figure 2: Example Adjacency matrices and its weights (Undirected graphs weighted and unweighted) 

𝐴[𝑢, 𝑣] = 𝐴𝑢𝑣 = {
𝑤𝑢𝑣 𝑖𝑓(𝑢, 𝑣, 𝑤𝑢𝑣) ∈ 𝜀
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

  (2) 

2. GRAPH PROPERTIES  

PPI networks with other complex networks such as biological systems, rely significantly on graph-based features. The 

adjacency matrix (A) represents the structural connections within the graph, while the degree of a vertex d(v) quantifies 

the number of edges incident to that vertex. Graph connectivity is assessed using the Laplacian matrix (L) is derived from 

both the degree and adjacency matrices. The spectral radius (ρ) calculated from the eigenvalues of the adjacency or 

Laplacian matrix provides insight into the network stability. The clustering coefficient C(v) measures the likelihood that 

a vertex’s neighbors form triangular connections. Betweenness centrality B(v) highlights critical nodes that frequently 

appear on shortest paths, while the average path length (L) evaluates the efficiency of information flow across the network. 

The graph diameter 𝑑𝑚𝑎𝑥indicates the length of the longest shortest path between any two nodes whereas graph density 

(D) reflects the overall level of connectivity within the network. Finally, graph entropy (H(G)) captures the complexity 

and structural information of the network. Collectively, these graph characteristics provide a comprehensive framework 

for analysing and understanding the architecture and behaviour of dynamic and biological systems. 

Definition 2.1: Degree d(v) - The degree of a vertex is the number of edges connected to it. In undirected graphs, it counts 

the number of neighbors.  

𝑑(𝑣) = σ 1𝑢∈𝑁(𝑣)    (3) 
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Where N(v) is the set of neighbors of vertex v.  

Definition 2.2: Adjacency Matrix (A) Square matrix of size 𝑛 × 𝑛, where n is the number of vertices. It records the 

presence or absence of edges between nodes. 

 

𝐴𝑥𝑦 = {
1 𝑖𝑓(𝑣𝑥 , 𝑣𝑦) ∈ 𝜀          

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 (4) 

 

Where E is the set of edges.  

 

Definition 2.3: Laplacian Matrix (L) It is used to represent the structural properties of a graph and is calculated as the 

difference between the degree matrix (D) and the adjacency matrix (A),  

L = D – A (5) 

 

Where: D is the degree matrix (diagonal matrix where 𝐷𝑥𝑥 = 𝑑(𝑣𝑥)). A is the adjacency matrix 

 

Definition 2.4: Eigenvalues and Spectral Radius The eigenvalues of the adjacency or Laplacian matrix offer valuable 

insights into key graph properties, such as connectivity and stability. 

Spectral Radius (𝜌): 𝜌(𝐺) = 𝑚𝑎𝑥{ȁ𝜆𝑥ȁ: 𝜆𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴}   (6) 

 

Definition 2.5:  Clustering Coefficient (C(v)) The clustering coefficient of a vertex quantifies the likelihood that its 

neighbors form a complete subgraph, such as a triangle.   

𝐶(𝑣) =
2𝑇(𝑣)

𝑑(𝑣)(𝑑(𝑣)−1)
  (7) 

 

Where 𝑇(𝑣) the number of triangles passing through vertex 𝑣.  

 

Definition 2.6: Average Path Length (L) Length between all pairs of nodes measures the efficiency of information flow 

in the network.  

𝐿 =
1

𝑛(𝑛−1)
σ 𝑑(𝑣𝑥 , 𝑣𝑦)𝑥≠𝑦  (8) 

 

Where 𝑑(𝑣𝑥 , 𝑣𝑦) is the shortest distance between vertices 𝑣𝑥 and 𝑣𝑦 

 

Definition 2.7: Betweenness Centrality (B(v)) Centrality measures the importance of a node by quantifying the 

proportion of shortest paths that pass through it. 

𝐵(𝑣) = σ
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡   (9) 

 

Where: 𝜎𝑠𝑡 is the total number of shortest paths between s and t.                                         

𝜎𝑠𝑡(𝑣) is the number of those paths passing through v.  

Definition 2.8: Graph Density (D) quantifies how densely the edges are distributed in the graph.  

𝐷 =
2ȁ𝐸ȁ

𝑛(𝑛−1)
   (10) 

 

Where: ȁ𝐸ȁ is the number of edges. n is the number of vertices.  
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Definition 2.9: Graph Diameter (𝑑𝑚𝑎𝑥) Centrality indicates a node's significance by measuring how often it lies on the 

shortest paths between other nodes. 

𝑑𝑚𝑎𝑥 = max
𝑥,𝑦∈𝑉

𝑑(𝑣𝑥 , 𝑣𝑦) (11) 

 

Where 𝑑(𝑣𝑥 , 𝑣𝑦) is the shortest distance between vertices 𝑣𝑥 and 𝑣𝑦 

 

Definition 2.10: Graph Entropy (H(G)) quantifies a graph’s structural complexity and the amount of information it 

contains.   

𝐻(𝐺) = − σ 𝑝(𝑣) log 𝑝(𝑣)𝑣∈𝑉   (12) 

 

Where: 𝑝(𝑣) =
𝑑(𝑣)

2ȁ𝐸ȁ
 representing the probability of selecting an edge attached to vertex v.  

 

These properties are crucial for analysing the structure, dynamics, and functional behaviour of complex biological and 

PPI networks. 

3. THEORETICAL FOUNDATIONS FOR QUANTUM GRAPH-BASED DIFFERENTIAL MODELS IN PPI 

NETWORKS 

The proposed Quantum Graph-Based Differential Models for PPI systems present a unique structure for analyzing 

dynamic biological relationships by utilizing equations of motion and quantum graph theory concepts. Antibodies and 

their relationships appear as nodes and edges, accordingly, in the method's quantum graph representation of the PPI 

system. A quantum state transition theory accurately forecasts modifications to networks by capturing time-evolving 

connections utilizing Schrödinger-like equations. The quantum graph Laplacian is used to examine the stability of these 

transitions, and eigenvalues reveal information about the resilience of the system. Furthermore, probability node influence 

identifies possible targets for drug development by quantifying the effect of perturbation on important nodes. By 

improving our knowledge of molecular processes, this integrated strategy guarantees more accurate forecasts and effective 

discovery of important proteins in intricate systems of biology. 
 

3.1 Line Graph of Cycle graph (𝑪𝒏)  

A cycle graph𝐶𝑛 is a simple graph of order n (where 𝑛 ≥ 3) with exactly n edges. Each edge forms a cycle of length n, 

and every vertex in the graph has a degree of two. The line graph of a cycle graph, denoted as L(G) is isomorphic to the 

original cycle graph G. In this line graph, the number of vertices remains the same, and two vertices in L(G) are adjacent 

if and only if their corresponding edges in G share a common vertex. 
 

Theorem 3.1.1. If G is a simple, connected cycle graph 𝐶𝑛 with n vertices, then the line graph L(G) is also a cycle graph 

with n vertices. 

i) 2 ≤ 𝛾𝑓(𝐺) + 𝛾𝑓(𝐿(𝐺)) ≤
2𝑛

3
    (13) 

ii) 1 ≤ 𝛾𝑓(𝐺) ∗ 𝛾𝑓(𝐿(𝐺)) ≤
𝑛2

9
    (14) 

iii) Γ𝑓(𝐺) + Γ𝑓(𝐿(𝐺)) = 𝑛   (15) 

iv) Γ𝑓(𝐺) ∗ Γ𝑓(𝐿(𝐺)) =
𝑛2

4
   (16) 

 

Proof: i) and ii) with the reference of previous chapter for cycle graph we have fractional domination number is 𝛾𝑓(𝐶𝑛) =
𝑛

3
 where n = 3, 4, 5…. The line graph of cycle graph is L(G) isomorphic to its cycle graph G with same vertex numbers 

and are adjacent in the provided graph if the corresponding edges share a common vertex. Therefore, for line graph L(G) 

the fractional dominating number is 𝛾𝑓(𝐿(𝐶𝑛)) =
𝑛

3
 For the sum 𝛾𝑓(𝐺) + 𝛾𝑓(𝐿(𝐺))lower bound is 2 and upper bound is 

2𝑛

3
 Therefore we have 

 

Proof: 

i) Established that for a cycle graph 𝐶𝑛 the fractional domination number is 
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𝛾𝑓(𝐶𝑛) =
𝑛

3
, where n=3,4,5,…    (17) 

ii) The line graph of a cycle graph, denoted L(G), is isomorphic to the original cycle graph G. This is because each edge 

in 𝐶𝑛 shares a common vertex with exactly two other edges, and in L(G), these edges become vertices connected by 

adjacency if their corresponding edges in G share a vertex. Therefore, 𝐿(𝐶𝑛)  ≅  𝐶𝑛 
 

Hence, the fractional domination number of the line graph is also: 

𝛾𝑓(𝐿(𝐶𝑛)) =
𝑛

3
   (18) 

 

For the sum of fractional domination numbers, get: 

𝛾𝑓(𝐺) + 𝛾𝑓(𝐿(𝐺)) =  
𝑛

3
   + 

𝑛

3
   = 

2𝑛

3
   (19) 

Since 𝑛 ≥ 3, we have: 
 

Following bounds for the fractional domination number of a cycle graph G=𝐶𝑛  and its line graph L(G): 

2 ≤ 𝛾𝑓(𝐺) + 𝛾𝑓(𝐿(𝐺)) ≤
2𝑛

3
 

1 ≤ 𝛾𝑓(𝐺) ∗ 𝛾𝑓(𝐿(𝐺)) ≤
𝑛2

9
, 𝑊ℎ𝑒𝑟𝑒 𝑛 = 3,4,5, … 

 

Thus, the lower bound for the sum is 2, and the upper bound is 
2𝑛

3
    

 

iii) and iv) The upper fractional domination number of the cycle graph 𝐶𝑛  is: 

Γ𝑓(𝐶𝑛) =
𝑛

2
 (20) 

 

This is observed by assigning a weight of (
1

2
)  to every vertex. The condition for the upper fractional domination number 

requires that for every vertex 𝑤 ∈ 𝑉, there exists a vertex 𝑤 ∈ 𝑁[𝑣] such that: 

σ 𝑓(𝑣) = 1 𝑣∈𝑁[𝑤]   (21) 

 

This condition is satisfied under the weight assignment mentioned above. 

Since 𝐿(𝐶𝑛)  ≅  𝐶𝑛 we also have: 

 

Γ𝑓(𝐺) + Γ𝑓(𝐿(𝐺)) = 𝑛 

Γ𝑓(𝐺) ∗ Γ𝑓(𝐿(𝐺)) =
𝑛2

4
 

 

Theorem 3.1.2: Let G be an r-regular graph of order n. Then, the upper fractional domination number of G satisfies 

Γ𝑓(𝐺) ≤
𝑛

𝑟
 

 

Proof 

If G is an r-regular graph of order n, then its fractional domination number satisfies 

𝛾𝑓(𝐺) ≤
𝑛

𝑟 + 1
 

 

This is achieved by assigning a weight of 
1

𝑟+1
 to each vertex in G results in a valid fractional dominating function 𝑓 of 

minimal total weight. 
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Similarly, for the upper fractional domination number Γ𝑓(𝐺), we consider a function 𝑓 that assigns a weight of 
1

𝑟
 to each 

vertex. This function yields the maximum total weight under the fractional domination condition: 

 

෍ 𝑓(𝑣) ≥ 1

𝑣∈𝑁[𝑣]

  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤 ∈ 𝑉(𝐺)   

 

Hence Γ𝑓(𝐺) 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 

Γ𝑓(𝐺) = max {ȁ𝑓ȁis minimal fractional dominating function of G}.   

 

Therefore, for an 𝑟-regular graph of order n, the upper fractional domination number satisfies: 

Γ𝑓(𝐺) ≤
𝑛

𝑟
. 

 

Theorem 3.1.3: Unitary Evolution of Quantum States in a Connected PPI Network  

Let G = (V, E) be a connected PPI network represented as a quantum graph, and let the system's state at time t be given 

by the quantum state vector Ψ(𝑡) evolving under the Schrödinger  equation  

 

xℏ
𝜕Ψ(𝑡)

𝜕𝑡
= HΨ(𝑡) (22) 

 

with Hamiltonian 𝐻 = −𝛾𝐿 where L is the Laplacian matrix of G and 𝛾 > 0 is a scaling parameter). Then the evolution 

operator  

𝑈(𝑡) = 𝑒−𝑥𝑥𝐻𝑡/ℏ (23) 

is unitary i.e, 

𝑈(𝑡)ϯ𝑈(𝑡) = 𝑋 (24) 

 

which guarantees that the total probability is preserved over time.  

 

Proof:  

1. By definition, the evolution operator is given by  

𝑈(𝑡) = 𝑒−𝑥𝑥𝐻𝑡/ℏ  (25) 

2. Since the Hamiltonian H is a Hermitian operator (which follows because L is symmetric for an undirected network and 

𝛾 is real), we have:  

𝐻 = 𝐻ϯ (26) 

3. It is a standard result in linear algebra that if H is Hermitian, then U(t) is unitary. To show this explicitly:  

𝑈(𝑡)ϯ = (𝑒−𝑥𝐻𝑡/ℏ)ϯ = 𝑒𝑥𝐻𝑡/ℏ (27) 

and thus,   

𝑈(𝑡)ϯ = (𝑒−𝑥𝐻𝑡/ℏ)ϯ = 𝑒𝑥𝐻𝑡/ℏ (28) 

4. Since U(t) is unitary, the norm of Ψ(𝑡) is preserved:  

ȁȁΨ(𝑡)ȁȁ2 = ȁȁ𝑈(𝑡)Ψ(0)ȁȁ2 = ȁȁΨ(0)ȁȁ2 (29) 

 

Thus, the evolution is unitary and preserves probability. 

 

3.2 Lemma: Zero Eigenvalue of the Laplacian for a Connected Graph  
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Statement:  

Let G = (V, E) be a connected graph. Then the Laplacian matrix 𝐿 = 𝐷 − 𝐴 has exactly one eigenvalue equal to zero, and 

the corresponding eigenvector is the constant vector 1 (up to normalization).  

 

Proof:  

The Laplacian L is defined as 𝐿𝑥𝑦 = {

𝑑𝑥 , 𝑖𝑓 𝑥 = 𝑦,                             

−1, 𝑖𝑓 𝑥 ≠ 𝑦 𝑎𝑛𝑑 (𝑥, 𝑦) ∈ 𝐸
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

   (30) 

Where 𝑑𝑥 = σ 𝐴𝑥𝑦𝑦  is the degree of node x. 

Consider the vector 1 = [ 1, 1 , . . . ,1]𝑇 . For each component,  

(𝐿1)𝑥 = 𝑑𝑥 − σ 1 = 𝑑𝑥 − 𝑑𝑥 = 0𝑦:(𝑥.𝑦)∈𝐸  (31) 

 

Hence, 𝐿1 = 0, means that 0 is an eigenvalue with eigenvector 1.  

For a connected graph, it is a well-known property that the zero eigenvalue is unique. 

 

3.3 Case Study: A Simple 3-Node PPI Network  

Consider a small PPI network with 3 proteins. Let the adjacency matrix be 

𝐴 = [
0 1 1
1 0 1
1 1 0

] 

 

The degree matrix is: 

𝐷 = [
2 0 0
0 2 0
0 0 2

] 

 

Thus, the Laplacian matrix is: 

𝐿 = 𝐷 − 𝐴 = [
2 −1 −1

−1 2 −1
−1 −1 2

] 

 

Eigenvalue Decomposition 

For this L, the eigenvalues can be computed to be: 𝜆1 = 0, 𝜆2 = 3, 𝜆3 = 3. 

 

The eigenvector corresponding to l𝜆1 = 0 proportional to 1 = [1, 1, 1]𝑇 confirming our lemma.  

 

Quantum State Evolution 

Assume the Hamiltonian is defined as: 𝐻 = −𝛾𝐿  

with 𝛾 = 1 (and setting  ℏ = 1 for simplicity). Then, 𝐻 = − [
2 −1 −1

−1 2 −1
−1 −1 2

] 

 

If the initial quantum state is uniformly distributed, 𝜓(0) =
1

√3
[
1
1
1

]  

the state at time t is given by:  𝜓(𝑡) = 𝑒−𝑥𝐻𝑡𝜓(0)  
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Using the spectral decomposition of H as: 𝜓(𝑡) = σ 𝑒−𝑥𝜆;𝑡3
𝑦=1 〈𝑣𝑦ȁ𝜓(0)〉𝑣𝑦  

where 𝜆1 = 0 (with eigenvector 𝑣1∞[1,1,1]𝑇 and 𝜆2 = 𝜆3 = −3. This shows that the network evolves according to the 

contributions from each Eigen mode and the unitary evolution guarantees that ȁȁ𝜓(𝑡)ȁȁ2 = 1 for all t.  

This simple example demonstrates how the quantum state evolves over time in a PPI network using our defined 

Hamiltonian and confirms the theoretical properties stated in the theorem and lemma. Such an approach can be extended 

to larger PPI networks, allowing for dynamic analysis of protein interactions in a probabilistic and quantum-mechanical 

framework.  This complete example-featuring a theorem with proof, a lemma, and a case study-illustrates the fundamental 

principles underlying QGDM for dynamic analysis of PPI networks. 

 

3.4 Graphs to model systems  

PPI, metabolic networks, and Gene Regulatory Networks (GRNs) are the three primary biological frameworks commonly 

used to characterize organisms. Drug-Drug Interaction (DDI) networks are included in this category due to their growing 

significance in modern healthcare research.  

 

3.4.1 PPI networks 

PPI networks represent the interactions between proteins. All cellular activities including transcription, translation, active 

transport, cytoskeleton formation, and the development of other structural components depend on these interactions. PPIs 

also include transient interactions, where protein complexes are easily formed and disassembled. In PPI networks, proteins 

are represented as nodes, while edges denote the interactions between connected proteins. A comprehensive graphical 

representation of PPIs would ideally include the type of interaction such as phosphorylation or binding but in practice, 

such detailed information is rarely documented. 

 

3.4.2 Gene Regulatory Networks  

Gene Regulatory Networks (GRNs) represent the intricate mechanisms that control gene expression and the sequence of 

events leading to protein production from DNA. Regulation occurs at multiple stages of protein synthesis, including 

transcription, translation, and splicing. These regulatory processes are complex and interconnected. From an intuitive 

perspective, regulators are both the cause and the consequence of gene expression, highlighting the dynamic and reciprocal 

nature of gene regulation. 

 

3.4.3 Metabolic networks 

Metabolic systems are commonly represented using graphs to illustrate metabolism, which comprises all the chemical 

reactions that occur within a living organism to maintain life. The metabolites are the intermediate and final products of 

these processes are known as metabolic components. Due to the complexity of these systems, metabolism is typically 

divided into metabolic pathways specific sets of chemical reactions dedicated to particular biological functions. In this 

graphical representation, nodes correspond to metabolites, while directed edges represent biochemical reactions, each 

annotated with the enzyme that facilitates the reaction 

 

3.4.4 Drug-drug interaction networks 

Drug–drug interaction (DDI) networks are designed to model the relationships between various pharmaceuticals. In these 

networks, drugs are represented as nodes, and edges indicate interactions between them. Unlike the previously mentioned 

networks, a DDI network does not illustrate a biological process directly. These examples highlight the effectiveness of 

graphs in modelling complex biological information. When utilizing such graphs, it's important to recognize their potential 

biases and limitations. For instance, research biases can lead to the underrepresentation of specific proteins, genes, or 

drugs. This often occurs because some biological entities are more costly or difficult to study, prompting researchers to 

focus on previously explored proteins, genes, or drugs. As a result, proteins with higher degrees in the network may appear 

to be more important than they truly are, simply because they have been studied more extensively. Certain types of 

interactions may be underrepresented because they are more difficult to detect or validate. Experimental noise may also 

be introduced through wet-lab experiments or computational predictions, which sometimes report false positives. One 

way to mitigate this is by considering interactions supported by multiple sources. For example, databases like STRING 

assign a confidence score to interactions, indicating the likelihood that the reported interaction is biologically meaningful. 

A protein's primary structure is composed of a sequence of amino acids that folds into a three-dimensional shape, enabling 

it to perform essential biological functions. This 3D structure is often represented using contact maps, which are matrices 

indicating the pairwise physical distances between amino acids. These contact maps can be readily converted into graph 
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representations, where nodes represent individual amino acids, and edges denote spatial proximity within a specified 

distance threshold. An example of this transformation for a specific protein is illustrated in Figure 3. 

 

 

Figure 3 (a) 3D structure of PPI (b) ConPlot map generated by PPI (c) Contact map obtained by adjacency 

matrix 

 

3.5 Dataset description 

The data set used for the research includes several features that characterize a PPI system. A Protein ID is assigned to 

each protein content, making identifying and cross-referencing easier. The dataset contains Interaction Pairs compose the 

network's edges and indicate links between two proteins (i, j). Every pair of interactions is given an Interaction Score, 

which ranges from 0 to 1 and reflects the interactions’ degree of certainty. While the Gene Name helps with the research 

of gene-protein relationships by connecting the protein's sequence to its encoding gene, the Biological Role explains how 

the proteins participate in different aspects of biology. While subcellular location identifies the cellular compartments in 

which the protein of interest is predominantly found, Pathway Data offers details on the biological processes in which the 

molecule is engaged shown in Table 1. The degree indicates the number of direct contacts (edges) that are associated with 

an individual protein, suggesting its position of importance within the structure, while the edge weight indicates the 

intensity or significance of the link between two proteins. Accurate estimation and evaluation of dynamic PPI systems are 

made possible by this extensive database. 

Table 1: Dataset Description 

Attribute Description Data Type 

Protein ID Unique identifier for each protein String 

Interaction Pair Pair of interacting proteins (i, j) Tuple 

Interaction Score Confidence score of interaction (range: 0 to 1) Float 

Biological Role Functional annotation describing the role of the protein String 

Gene Name Name of the gene encoding the protein String 

Experimental Evidence Indicates whether the interaction is experimentally validated Boolean 

Pathway Information Pathway where the protein is involved String 

Subcellular Location Cellular compartment where the protein is located String 

Edge Weight The weight assigned to the interaction for network analysis Float 

Degree Number of direct interactions a protein has Integer 

 

 

 

 

 

 

(a) (b) (c) 
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Table 2: Sample Data 

Protein 

ID 

Gene 

Name 

Interaction 

Pair (i, j) 

Interaction 

Score 

Biological 

Role 

Experimental 

Evidence 

Pathway 

Information 

Subcellular 

Location 

Edge 

Weight 

Degree 

P12345 TP53 (P12345, 

Q67890) 

0.95 Tumor 

Suppressor 

Yes Apoptosis 

Pathway 

Nucleus 0.85 12 

Q67890 MDM2 (Q67890, 

P12345) 

0.92 Oncogene Yes p53 Signaling 

Pathway 

Cytoplasm 0.80 8 

A45678 BRCA1 (A45678, 

B34567) 

0.88 DNA 

Repair 

Yes Homologous 

Recombination 

Nucleus 0.78 10 

B34567 RAD51 (B34567, 

A45678) 

0.90 DNA 

Repair 

Yes DNA Repair 

Pathway 

Nucleus 0.82 9 

C98765 AKT1 (C98765, 

D12345) 

0.89 Cell 

Survival 

No PI3K/AKT 

Signaling 

Cytoplasm 0.76 7 

D12345 PTEN (D12345, 

C98765) 

0.87 Tumor 

Suppressor 

Yes PI3K/AKT 

Signaling 

Cytoplasm 0.74 6 

 

To facilitate dynamic network representation and assessment, this sample highlights the biological relevance, pattern of 

interactions, and confidence ratings of protein pairings, illuminating the PPI dataset's salient features shown in Table 2.  

 

3.6 Spectral Analysis using Laplacian Matrix and Random Walks 

By integrating principles from graph theory and quantum physics, quantum graph-based differentiation simulations 

provide a sophisticated framework for analysing the dynamic evolution of PPI systems. A PPI system can be represented 

as an undirected graph G= (V, E), where the nodes V represent proteins and the edges E represent interactions between 

them. The evolution of the quantum state vector Ψ(t) describes the state of the network at any given time t governed by a 

Schrödinger-like equation that models the probabilistic changes in protein states. Dynamic analysis plays a crucial role in 

understanding the functional progression and time-dependent alterations in proteins within PPI networks (PPINs). These 

dynamic fluctuations are effectively captured using differentiated quantum graph frameworks incorporate quantum 

mechanical behavior into traditional graph-theoretical models. 

 

3.6.1 Quantum Graph Dynamics  

To simulate quantum dynamics on a graph, quantum states are assigned to its vertices. Let ψ(t) denote the quantum state 

of the system at time t, where ψ(t) is a vector residing in the Hilbert space linked to the graph. The evolution of this 

quantum state follows the Schrödinger equation:  

𝑥
𝑑

𝑑𝑡
𝜓(𝑡) =  𝐻𝜓(𝑡)  (32) 

 

Where H - Hamiltonian operator that governs the evolution of the system. Quantum graph model chosen as:  

𝐻 = −𝛾𝐿  (33) 

 

Where, 𝛾 is a constant related to the strength of interactions. This operator models the dynamics of protein interactions in 

the network 

 

3.6.2 Spectral Analysis of the Laplacian  

The spectral characteristics of the Laplacian matrix offer valuable insights into the structure and dynamic behavior of 

PPINs. The eigenvalues 𝜆𝑥 and corresponding eigenvectors 𝑣𝑥 of the Laplacian matrix L are obtained by solving the 

following eigenvalue problem: 

𝐿𝑣𝑥 = 𝜆𝑥𝑣𝑥  (34) 
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Where 𝜆𝑥  are the eigenvalues and 𝑣𝑥 are the corresponding eigenvectors. These eigenvalues reflect the connectivity and 

flow of information across the network. Smaller eigenvalues indicate highly connected nodes, while larger eigenvalues 

suggest less connectivity.  

 

The spectral decomposition of the Laplacian matrix L is given by:  

𝐿 = σ 𝜆𝑥𝑣𝑥𝑣𝑥
𝑇

𝑥   (35) 

 

Where 𝜆𝑥  are the eigenvalues and 𝑣𝑥 are the eigenvectors.  

 

3.6.3 Random Walk on the Graph  

To incorporate the concept of diffusion and information propagation across the network, we analyse random walks on the 

graph. The random walk transition matrix P for a graph is related to the normalized Laplacian tilde 𝐿̅ defined as:  

𝐿̅ = 𝐷−1/2𝐿𝐷−1/2 (36) 

where 𝐷−1/2 the inverse square root of the degree matrix. The random walk transition probability is then given by:  𝑃 =
𝑋 − 𝐿̅  (37) 

The random walk process on the graph models how information (such as protein interactions) diffuses through the network 

over time.  

 

3.6.4 Dynamic Quantum Walk  

For a more advanced analysis, consider the dynamic evolution of quantum walks on the graph. This can be modelled using 

the time-dependent Schrödinger equation for a quantum walk on a graph, where the Hamiltonian is modified to include 

time-dependent factors. The evolution equation becomes:  

𝑥
𝑑

𝑑𝑡
𝜓(𝑡) =  𝐻(𝑡)𝜓(𝑡) (38) 

Where H(t) incorporates dynamic interactions, such as changes in protein activity or environmental factors affecting the 

network. 

 

3.6.5 Derivation of Quantum Graph Dynamics  

To derive the quantum graph model, we start by discretizing the Schrödinger equation on the graph:  

𝑥
𝑑

𝑑𝑡
𝜓(𝑡) = −𝛾 σ 𝐿𝑥𝑦𝑦 𝜓𝑦(𝑡)  (39) 

 

Equation (39) describes how the quantum state at each vertex x evolves based on the interactions (edges) with other 

vertices y. The Laplacian matrix elements 𝐿𝑥𝑦define the interaction strength between vertices x and y. Output is shown in 

Equation (40).  

 

𝜓(𝑡) = 𝑒−𝑥𝛾𝐿𝑡𝜓(0)   (40) 

 

where 𝜓(0) the initial quantum state at time t = 0  

 

The QGDM provides a powerful framework for analysing dynamic protein-protein interactions in networks. The 

combination of spectral analysis, randorn walks, and quantum dynamics offers a comprehensive view of how protein 

interactions evolve over time, allowing for deeper insights into their functional roles in cellular processes. 

 

3.7 Implementation  

Everyone put into practice a few of the topological networking descriptors refer to the package vignette or other literature 

for a thorough explanation of every descriptor that has been incorporated in QGDM. The following groupings might be 

used to group the measures:  
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Descriptors based on distances in a graph 

This category comprises metrics that quantify the structural complexity of a system based on the distances between its 

nodes. A well-known and classic example is the Wiener index calculated by summing the shortest path distances between 

all pairs of nodes in the network.  

Descriptors based on other graph invariants  

The adjacency matrix and vertex count are used to compute the normalized edge complexity. An overview of the topology 

network characteristics that have been implemented in the Table 3. 

 

Table 3: Topology networks used in QGDM 

Descriptor Mathematical Representation Applications 

Degree Distribution 𝑃(𝑘) =
𝑁𝑘

𝑁
 (41) 

  

Analysis of node importance and network resilience 

Clustering Coefficient 𝐶𝑥 =
2𝑒𝑥

𝑘𝑥(𝑘𝑥−1)
  (42) 

 

Understanding local network cohesion and motifs 

Shortest Path Length d(u, v)  

 

Network efficiency, communication delay analysis 

Average Path Length 〈𝐿〉 =
1

𝑁(𝑁−1)
σ 𝑑(𝑥, 𝑦)𝑥𝑦∈𝑉   (43) Global network efficiency, communication cost 

Degree Centrality 𝐶𝐷(𝑥) =
𝑘𝑥

(𝑁−1)
   (44) 

 

Identifying influential nodes, network hubs 

Eigenvector 

Centrality 
𝐶𝐸(𝑥) =

1

𝜆
σ 𝐴𝑥𝑦𝑦 𝐶𝐸(𝑦)   (45) 

 

Identifying nodes with the highest global influence 

Assortativity 𝑟 =
σ 𝐴𝑥𝑦𝑘𝑥𝑘𝑦𝑥𝑦

σ 𝑘𝑥𝑘𝑦𝑥𝑦
  (46) 

 

Understanding degree correlation in networks (eg, social 

networks) 

Modularity 𝑄 =
1

2𝑚
σ (𝐴𝑥𝑦 −

𝑘𝑥𝑘𝑦

2𝑚
) 𝛿(𝑐𝑥 , 𝑐𝑦)𝑥𝑦  

(47) 

 

Community detection in networks 

Rich-Club Coefficient 𝜙(𝑘) =
𝑁𝑘

𝑁
  (48) 

 

Identifying core groupings in the network 

Local Efficiency 𝐸𝑥 =
1

𝑘𝑥(𝑘𝑥−1)
σ

1

𝑑(𝑦,𝑙)𝑦,𝑙∈𝑁(𝑥)   (49) Understanding the robustness and local efficiency of the 

network 

 

Note: 𝑵𝒌 − number of nodes with degree k; N - total number of nodes; 𝒆𝒙 - number of edges between the neighbors 

of node x; 𝒌𝒙 − degree of node x; A - adjacency matrix; 𝝀 - largest eigenvalue of the matrix; 𝒌𝒙 and 𝒌𝒚 - degrees of 

nodes x and y; 𝑨𝒙𝒚 is the adjacency matrix; m - number of edges; 𝜹 is the Kronecker delta function ;  

 

To analyse the dynamics and structure of complex networks such as PPINs, topological network descriptors are essential. 

These descriptors capture various aspects of connectivity, node importance, and overall network architecture. For instance, 

a node with a high degree may represent a protein involved in numerous interactions, indicating its potential importance. 

The clustering coefficient reflects the local cohesiveness of the network and helps understand how proteins with similar 

functions tend to cluster together. 

Betweenness centrality identifies nodes that act as bridges, facilitating communication between distant parts of the 

network. Eigenvector centrality highlights nodes that are connected to other important nodes signifying their overall 

influence within the network. Modularity measures the extent to which a network can be divided into communities or 
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functional clusters, offering insights into the organization of protein groups. Coefficient assesses whether high-degree 

nodes tend to be more interconnected, revealing a potential "core" of influential proteins. Local efficiency evaluates how 

effectively information is transferred within a node's immediate neighbourhood is critical for understanding localized 

processes within the broader system. These descriptors provide a comprehensive understanding of the underlying 

biological mechanisms, help identify key proteins, and reveal the structural characteristics of the PPIN. 

 

3.8 Linear Programing Problem Formulation of the Graph  

Let G = (V, E) be an undirected graph with V is set of vertices and E is set of edges. Decision variable 𝑓(𝑣)  =  𝑖𝑣 binary 

decision variable indicating whether vertex v is dominated.  

𝑓(𝑣)  =  𝑖𝑣 =  1 if vertex v is dominated and (𝑣) =  𝑖𝑣 =  0 otherwise.  

3.8.1 Objective function: Minimize the total number of vertices dominated so  

Minimize: σ 𝑖𝑣𝑣∈𝑉  

Constraints:  

i) Every vertex v must be dominated σ 𝑓(𝑣) ≥ 1𝑣∈𝑁[𝑣]  for all 𝑣 ∈ 𝑉(𝐺) where N[v] is closed neighborhood of vertex v it 

means set of vertices adjacent to v.  

ii) Binary decision variables 0 ≤ 𝑓(𝑣) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉(𝐺)  

With these definitions the LPP representation for the fractional domination number of graph 

Minimize: σ 𝑖𝑣𝑣∈𝑉  

Subject to i) σ 𝑓(𝑣) ≥ 1𝑣∈𝑁[𝑣]  for all 𝑣 ∈ 𝑉(𝐺) 

ii) 0 ≤ 𝑓(𝑣) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉(𝐺) 

 

This LPP formulation aims to minimize the total number of vertices that are dominated subject to the constraints that 

every vertex must be dominated and the decision variables must be binary. Solving this LPP provides the fractional 

dominating number of graph.  

 

3.8.2 Objective function: Minimize = 𝑐1𝑖1 + 𝑐2𝑖2 + ⋯ + 𝑐𝑛𝑖𝑛 , where 𝑐1, 𝑐2,...,𝑐𝑛 are the weights assigned to each node 

in the graph, and 𝑖1, 𝑖2,...,𝑖𝑛 are binary decision variables representing whether a node is included in the solution or not.  

Constraints: The constraints ensure that the solution represents a valid graph with no disconnected nodes and no cycles.  

Each node can only be included once 𝑖1 + 𝑖2 + ⋯ + 𝑖𝑛 = 1 if there is an edge between two nodes, they must both be 

included 𝑖𝑥 + 𝑖𝑦 ≥ 1 for all (x, y) pairs where 𝐴𝑥𝑦 =1 There can be no cycle in the solution 𝑖𝑥 + 𝑖𝑦 ≤ 1 for all (x, y) pairs 

where there is cycle in the solution.  

The decision variables 𝑖𝑥 are binary, taking the value of 1 if node x is included in the solution and 0 otherwise. The 

objective function Z is minimized by selecting the set of nodes that have the lowest weights while satisfying the 

constraints. The solution of this LPP will provide a valid graph with the minimum weight. 

 

3.9 Gene Regulatory Networks structure in Biological Systems 

Figure 4 illustration of a GRN genes are represented as nodes in this network, while regulatory interactions in which one 

gene controls the expression of another are represented by edges. To find important genes that together regulate a sizable 

section of the network, we shall use fractional domination. Examine the GRN depicted in Figures 5 (a) and (b) represents 

directed graph with GRN and Adjacency Matrix respectively. 
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Figure 4: GRN structure in Biological Systems 

 

Figure 5: (a) Directed Graph with GRN (b) Adjacency Matrix 

 

Utilize an algorithm to identify the network's dominant set. Consider a dominating function 𝑓 to be any 𝑓 in fractional 

domination: The function (𝐺) → [0, 1] of the following graph assigns values to each vertex 𝑣 ∈ (𝐺) in the unit interval 

[0,1].  

Apply an algorithm to identify the dominant set within a network. Consider a dominating function 𝑓 as a function in the 

framework of fractional domination, where 𝑓:V(G)→[0,1] assigns a value from the unit interval [0,1] to each vertex 𝑣 ∈ 

𝑉(𝐺) of a given graph G. The primary objective is to determine a group of nodes that collectively account for the full 

coverage of the network. This approach is guided by the fractional domination number serves as a quantitative indicator 

of network load and can be instrumental in designing more resilient and efficient systems. Using the principle of fractional 

domination, dominant sets can be identified. Suppose the dominant set {A, D, E} is found. This set of genes collectively 

regulates a significant portion of the network specifically, genes B, C, F and G in this scenario. Such a dominant set 

represents a group of genes that exert control over a large segment of the gene regulatory network. By modelling 

perturbations in this dominant set, one can assess the robustness of the network. For example, removing genes A, D and 

E from the dominant set allows researchers to study the downstream effects on the expression levels of B, C, F and G. 
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These dominant sets can also serve as targets for developing network control strategies. By modulating the activity of 

genes within the dominant set, such as A, D and E it may be possible to indirectly influence the expression of associated 

downstream genes. To enhance both the biological relevance and accuracy of these findings, it is beneficial to integrate 

percentage dominance assessments with transcriptomic or other omics data. This integration could include experimental 

validation to confirm the regulatory relationships predicted by the dominant sets. 

This concise example illustrates how fractional domination theory can be applied to the analysis of gene regulatory 

networks in mathematical biology, providing valuable insights into the mechanisms that govern gene expression and the 

stability of complex biological systems. 

 

3.10 Protein-Protein Interaction Networks structure in Biological Systems 

 

     

                                     (a)  Query a protein                                              (b) Query a list of interactions 

 

           

(c) Query a set of proteins                                          (d) Query two sets of proteins 

 

Figure 6: PPIN structure in Biological Systems 

 

QGDM based representation of a PPIN, where nodes denote proteins and edges represent their physical interactions shown 

in Figures 6 (a) to (d). By applying fractional dominance, one can identify a critical subset of proteins that collectively 

influence a substantial portion of the network. 
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Figure 7: (a) QGDM based PPIN (b) Adjacency Matrix 

 

The fractional domination number provides a quantitative measure of the burden of a network, and can be used to design 

more robust and efficient networks shown in Figure 7.. 

 

3.11 Algorithm: Quantum Graph-Based Differential Models for Dynamic Analysis of Protein-Protein Interaction 

(PPI) Networks 

Through the use of difference designs, spectrum graph theory, and quantum state changes, this program dynamically 

analyzes PPI-based networks in order to forecast connections and monitor network changes over time. 

 

Step 1: Input and Network Initialization  

Input: PPI Network G(V, E) where:  

V = Set of nodes representing proteins. 

E = Set of edges representing interactions between proteins. 

 

Define the adjacency matrix 𝐴 ∈ 𝑅𝑛×𝑛 where: 

 

𝐴𝑥𝑦 = {
1, if there is an interaction between nodes x and y 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        

 (50) 

 

Degree matrix D is defined as:  𝐷𝑥𝑥 = σ 𝐴𝑥𝑦𝑦   (51) 

Compute the Laplacian matrix L as:  𝐿 =  𝐷 −  𝐴   (52) 

 

Step 2: Quantum State Representation  

Encode the state of the PPI network in a quantum Hilbert space:  𝜓(𝑡) ∈ 𝐶𝑛 

The initial state is defined as:  𝜓(0) =
1

√𝑛
σ ȁ𝑣𝑥ȁ𝑛

𝑥=1  (53) 

 

Where ȁ𝑣𝑥ȁ rangle is the basis vector representing each protein. 

 

Step 3: Quantum State Evolution Using Schrödinger's Equation  
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Define the Hamiltonian H using the Laplacian:  𝐻 = − 
ℏ2

2𝑚
𝐿   (54) 

Quantum state evolution follows the Schrödinger equation:  𝑥ℏ
𝜕𝜓(𝑡)

𝜕𝑡
= 𝐻𝜓(𝑡)  (55) 

Solving the equation gives:  𝜓(𝑡) = 𝑒−
𝑥𝑅𝑡

ℏ
𝜓(0)

  (56) 

 

Step 4: Random Walk Model for Transition Probabilities  

Define the transition probability matrix using the normalized Laplacian: 𝑃 = 𝐷−1𝐴  (57) 

Random walk transition for state evolution:  𝜙(𝑡 + 1) = 𝑃𝜙(𝑡)   (58) 

Probability of transition from node x to node y is given by: 𝑃𝑥𝑦 =
𝐴𝑥𝑦

𝐷𝑥𝑥
  (59) 

 

Step 5: Differential Model for Dynamic Analysis  

Define the differential equation for dynamic change in interaction strength:  

𝑑𝜓(𝑡)

𝑑𝑡
= −𝛼𝐿𝜓(𝑡) + 𝛽𝑓(𝜓(𝑡)) (60) 

 

Where: 𝛼 and 𝛽 are model parameters. 𝑓(𝜓(𝑡)) is a nonlinear function representing biological interaction constraints.  

 

Step 6: Estimation of Quantum Entropy and Network Complexity  

Calculate von Neumann entropy to measure network complexity:  

 

𝑆(𝜌)  =  − 𝑇𝑟(𝜌 log 𝜌) (61) 

 

Where: 𝜌 = 𝜓(𝑡)𝜓(𝑡)ϯ is the density matrix. Higher entropy indicates greater interaction dynamics and network 

complexity.  

 

Step 7: Likelihood Estimation and Model Evaluation  

Estimate the likelihood ratio for model fitting: 𝐿 = ∏ 𝑃𝑥𝑦

𝐴𝑥𝑦(1 − 𝑃𝑥𝑦)1−𝐴𝑥𝑦
𝑥,𝑦  (62) 

Evaluate the performance of the model by calculating error rates and convergence over multiple permutations. 

 

Step 8: Output and Network Dynamics Analysis  

Output:  

Quantum state evolution 𝜓(𝑡) over time.  

Predicted interaction probabilities and transition matrix.  

Entropy and complexity scores for PPI network dynamics. 

Input: PPI Network G(V, E)  

Compute A, D, and L matrices  

Initialize quantum state (0)  

Compute Hamiltonian H-h²/2L  

For each time step t:  

Compute (t) = exp(-1Ht/h) ()  

Update transition probabilities using PDA  

Update network state with (+1) = P(t)  

Calculate von Neumann entropy $(p)  
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Estimate likelihood and assess model performance  

End For  

Output: Evolved states, transition matrix, entropy, and likelihood 

 

Using mathematical models and quantum state changes, this program efficiently simulates the dynamic behavior of PPI 

systems, offering insights into the interactions and development of proteins across time. 

4. RESULTS AND ANALYSIS 

PPIN are dynamically analyzed using QGDM in the experimental settings. This method combines ideas from random 

walk-based Laplacian simulations, quantum state changes, and spectral graph theory to reveal important details about the 

changing behavior of PPI systems. Preprocessing information, initializing quantum states, simulating state changes, and 

analyzing the system's reaction to perturbations are all done methodically by the setup eventually leads to a deeper 

comprehension of system dynamics shown in Table 4 

 

Table 4: Experimental Setup 

Stage Equations/Methods 

Data Collection and Pre-processing Raw data mapped to a graph G = (V, E), with adjacency matrix A. 

Graph Construction and Laplacian Matrix 

Definition 

Laplacian matrix 𝐿 = 𝐷 − 𝐴  

Random walk Laplacian: 𝐿𝑟𝑒𝑣 = 𝐷−1𝐿 

Quantum State Initialization 
𝜓(0) =

1

√𝑛
[1,1, … ,1]𝑇 

Hamiltonian Definition 𝐻 = −𝛾𝐿 where 𝛾 controls transition rates. 

Quantum State Evolution 𝜕𝜓(𝑡)

𝜕𝑡
= −𝑥𝐻𝜓(𝑡), 𝜓(𝑡) = 𝑒−𝑥𝐻𝑡𝜓(0) 

Perturbation and Stability Analysis 𝐻′ = 𝐻 + ∆𝐻 tracked eigenvalue shifts and transition 

probabilities. 

Spectral and Random Walk Analysis Stationary distribution 

𝜋𝑥 =
𝑑𝑥

σ 𝑑𝑦𝑦

 

Evaluation and Validation MSE, Cosine Similarity, and Eigenvector Centrality used for 

performance evaluation 

 

The study's setup, problems, and procedures utilized to analyze dynamic PPI systems utilizing a QGDM are compiled 

Table 5. 

 

Table 5: Different settings analysed by PPIN with QGDM 

Setting PPI Network Size 

(Nodes/Edges) 

Sample Size Permutation 

Time (s) 

LMM Time (s) Total Running Time 

(s) 

Setting 1 5,000 / 20,000 1,000 120 180 (120 + 180) 

permutations 

Setting 2 10,000 / 45,000 2,500 300 450 (300 + 450) 

permutations 

Setting 3 20,000 / 90,000 5,000 720 1,080 (720 + 1,080) 

permutations 

Setting 4 50,000 / 200,000 10,000 2,400 3,600 (2,400 + 3,600) 

permutations 
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Setting 5 100,000 / 500,000 25,000 8,100 12,150 (8,100 + 12,150) 

permutations 

 

Permutation Time is the amount of time needed to permute the network in a circular and degree-preserving manner. 

LMM Time is the amount of time needed to calculate the statistics for each neighborhood's likelihood ratio test. 

Total Running Time  

Total Running Time = (Permutation Time + LMM Time) x Total Number of Permutations. 

Hardware Specifications: Intel Xeon Gold 6254 CPU and 1TB of RAM was used for the research. 

The running time rises in direct proportion to the number of combinations in the worst-case situation, when every 

combination is executed consecutively. 

 

 

Figure 8: Comparison of SNR, RLN, and RCN for Proposed and Existing Systems 

 

Across important metrics including the Signal-to-Noise Ratio (SNR), Mixing Ratio of Linear to Non-Linear Signal (RLN), 

and Ratio of Causal Neighbors (RCN), the proposed method performs better. The proposed system's SNR of 2.0 shows 

that it can effectively separate real signals from background noise shown in Figure 8. PPI-Score trails with a low SNR of 

0.5, whereas NetworkGWAS and GraphLMM have moderate SNR values of 1.0, which is much lower than this. The 

proposed system outperforms all current systems with a maximum RLN of 0.5, with an RLN of 0.8, indicating a greater 

contribution from linear signals relative to non-linear signals. The majority of the current systems have lower RCN values 

between 0.1 and 0.3, but the proposed system retains a higher RCN of 0.5, indicating its capacity to capture causal 

neighbors more successfully. According to these findings, the proposed system outperforms the current methods in terms 

of sensitivity, intricate relationship simulation, and causal neighbor recognition. 
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Figure 9: Comparison of casual SNP of Proposed and Existing Systems 

 

The proposed method outperforms NetworkGWAS (0.40), GraphLMM (0.35), PPI-Score (0.25), and MRCE (0.30) in 

terms of capturing causal SNPs, as seen by its higher RC value of 0.65. This higher ratio implies that the proposed method 

finds pertinent SNPs causing phenotypic variances more successfully shown in Figure 9. 

 

Table 6: Comparison of casual NCG and Simulation Repetitions of Proposed and Existing Systems 

System Number of Causal Genes (NCG) Simulation Repetitions 

Proposed System 150 1000 

NetworkGWAS 120 500 

GraphLMM 100 400 

PPI-Score 90 300 

MRCE 110 350 

 

With 1000 simulation repeats, the proposed technique detects a higher ncg of 150, guaranteeing more reliable and precise 

results shown in Table 3. NetworkGWAS, GraphLMM, PPI-Score, and MRCE show lower values for both simulation 

repetitions and causative gene proof of identity, leading to less thorough analyses. 

 

Figure 10: Comparison of Number of permutations and total samples of Proposed and Existing Systems 
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With 10,000 permutations and 5,000 samples processed overall, the proposed method shows a strong assessment structure 

that makes use of more permutations to improve statistical accuracy and outcome dependability shown in Figure 10. 

Existing methods such as MRCE, GraphLMM, PPI-Score, and NetworkGWAS use smaller sample sizes (between 800 

and 2,000) and fewer permutations (between 2,000 and 5,000). This disparity implies that the proposed system may be 

able to provide greater depth and precision insights into the dynamic behavior of PPI systems because of its capacity to 

manage bigger datasets and more thorough permutation assessment would boost the validity of its statistical findings. 

 

Table 6: Comparison of MSE, LRT and Spectral Gap of Proposed and Existing Systems 

System Mean Squared Error (MSE) Likelihood Ratio Test (LRT) Spectral Gap 

Proposed System 0.012 18.5 0.75 

NetworkGWAS 0.025 15.2 0.55 

GraphLMM 0.032 14.8 0.50 

PPI-Score 0.045 12.3 0.40 

MRCE 0.037 13.5 0.48 

 

According to the table, the proposed system outperforms the others in terms of predicted precision, achieving the lowest 

MSE (0.012). It also returns the highest LRT statistic (18.5), indicating higher model goodness of fit shown in Table 6. 

The proposed system has the biggest spectral gap (0.75), suggesting faster convergence in dynamic state transitions and 

improved network stability. The proposed method performs better than the current approaches in capturing and simulating 

the dynamic behavior of PPI networks, as seen by the present systems' narrower spectral gaps, lower LRT values, and 

larger errors. 

 

 

Figure 11: Comparison of Sensitivity, scalability and Eigen value distribution score of Proposed and Existing 

Systems 

 

With a high Eigenvalue Distribution Score (0.90), the proposed system shows a more even distribution of eigenvalues, 

improving dynamic balance and network stability. The model is less susceptible to perturbations than the other approaches, 

as indicated by its Perturbation Sensitivities of 0.95 as determined by cosine similarity shown in Figure 11. Scalability 

Metric of 0.80 indicates improved performance as network bandwidth grows, in contrast to lower metrics (between 0.50 

and 0.60) in the existing technologies. 
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Figure 12: Global and local distance matrices 

Figure 12 illustrates the reduced variance in values produced by the locally confined diffusion kernel. This figure presents 

heat maps of distance matrices derived from the metabolic network using both global and locally confined diffusion 

kernels. In the global diffusion scenario, certain distances are extremely large, rendering others nearly invisible. In 

contrast, the locally confined kernel produces more uniform distances enhancing overall visibility and interpretability. 

 

Figure 13: Comparison of performance measures of Proposed and Existing Systems 

According to the Figure 13, the proposed system performs better than the existing systems on every criterion. It displays 

a high total rate of accurate predictions with a precision of 0.92. According to its accuracy (0.93) and recall (0.91), the 

system is efficient at avoiding false negatives and detecting pertinent positive instances. In comparison to lower results in 

the current structures, the balanced F1 Score (0.92) further illustrates how resilient the proposed method is in managing 

the changing dynamics of PPI systems. 
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(b) 

Figure 14: ROC curve (a) Metabolic Network (b) Proposed Network 

Figure 14 demonstrates that efficiency is comparatively stable for both network architectures over a broad range of 

diffusion variable β values. Locally restricted kernel performs better than the worldwide constrained kernel in every 

scenario.  

5. CONCLUSIONS 

One important development in capturing the changing actions of biological systems is research on QGDM for dynamic 

analysis of PPIN Systems. Proposed method combines spectral evaluation of the Laplacian matrix and random walk 

simulations with quantum transitions between states to provide an effective structure that efficiently detects important 

nodes and patterns of interactions while maintaining probability state development.  The proposed model performs better 

than current systems on several performance parameters, according to data collected from experiments. It accomplishes a 

higher Likelihood Ratio Test (LRT) statistic (18.5 versus 12.3–15.2), a larger spectral gap (0.75, indicating improved 

system security), and a lower Mean Squared Error (MSE of 0.012 compared to 0.025–0.045 in competing methods), all 

of which taken together result in superior predictive reliability and precision. Proposed model outperforms existing 

systems with accuracy, recall, and F1 scores (all around 0.92) that vary from 0.77 to 0.86. These findings highlight how 

QGDM might improve biomarker discovery in intricate biological networks enable more precise drug target identification 

and offer deeper insights into molecular interactions. To further improve the model's suitability for dynamic biological 

research, future efforts will concentrate on expanding the model to bigger datasets and improving the perturbation analysis. 
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