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ABSTRACT 

Aim: The aim of this study is to enhance the antimicrobial effectiveness of conventional Gutta percha(GP) by modifying its 

surface with selenium nanoparticles(SeNPs). 

Materials And Methods: SeNPs were synthesized using a chemical reduction method by dissolving 0.2 g of selenous acid 

in 100 mL distilled water, followed by mixing with 0.5 g sodium borohydride dissolved in 100 mL water. The resulting 

SeNPs sol was stirred and stored in a brown glass container. Sterilized GP cones  (size 40, Dentsply Maillefer, Switzerland)  

were immersed in the SeNPs solution for 24 hours to allow uniform nanoparticle deposition. This in vitro study compared 

the antimicrobial efficacy of  SeNPs coated GP (Group 1) and conventional GP (Group 2) against Enterococcus faecalis and 

Staphylococcus aureus. Using the Direct Contact Test on Mueller-Hinton agar, zones of inhibition (ZOI) were measured 

after 24-hour incubation at 37°C. Standard bacterial strains were cultured and standardized to 0.5 McFarland before lawn 

inoculation. GP cones (10 mm) were placed on the plates, and antimicrobial activity was assessed by measuring ZOI 

diameters in triplicate.  

Results: The antimicrobial efficacy of SeNPs-coated GP was assessed against S. aureus and E. faecalis by measuring ZOI  

on agar plates, with uncoated GP as a control. Against S. aureus, uncoated GP produced a mean ZOI of 27.22 mm, while 

SeNPs coated samples measured 28.40 mm (20 µL) and 29.19 mm (30 µL). For E. faecalis, the corresponding values were 

23.37 mm, 24.37 mm, and 25.14 mm. These results demonstrate a clear dose-dependent increase in antimicrobial activity 

with higher SeNPs volumes. The SeNPs coating’s redox activity and ROS generation likely underpin this enhanced 

bactericidal effect. Thus, SeNPs coated GP shows significantly greater antibacterial properties compared to conventional 

GP, suggesting potential benefits for endodontic disinfection. 

Conclusion: Within the limitations of the study, surface modified GP  with  SeNPs exhibited excellent antimicrobial 

properties, effectively inhibiting key microorganisms associated with root canal failure such as E.faecalis and S.aureus. 
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1. INTRODUCTION 

Endodontic treatment targets the infected pulp of a tooth, with the goal of eliminating the infection and preventing its 

recurrence. Once the infected pulp tissue is removed, the root canal system is thoroughly cleaned, shaped, and filled with a 

core root filling material.[1] The success of endodontic treatment relies heavily on meticulous biomechanical preparation 

and effective irrigation of the root canal system. The purpose of root canal filling is to preserve the aseptic conditions 

established during the earlier stages of treatment. Gutta-percha (GP) cones are the most widely used core root filling 

materials, valued for their biocompatibility, cost-effectiveness, long-standing clinical use, and potential antimicrobial  
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properties primarily attributed to their zinc oxide (ZnO) content.[2] Disinfectants may not effectively reach bacteria located 

in complex areas of the root canal system, such as isthmuses, dentinal tubules, and canal ramifications.[3] Endodontic 

infections involve a diverse range of microorganisms. Therefore, after thorough chemo-mechanical preparation, it is essential 

to achieve proper three-dimensional obturation to create a fluid-tight seal and block the entry of any microorganisms.[4] 

Endodontic treatment can fail due to persistent or secondary infections within the root canal system. Among the various 

microorganisms implicated, Enterococcus faecalis (E. faecalis) is particularly noteworthy for its resistance to antimicrobial 

measures and its frequent presence in cases of endodontic failure.[5] Although GP cones are manufactured under aseptic 

conditions, several studies have reported microbial contamination in freshly opened boxes. This contamination risk 

significantly increases with improper storage, exposure to aerosols during dental procedures, and repeated handling without 

appropriate aseptic techniques. Staphylococcus species are among the most commonly identified contaminants in GP cones 

subjected to inadequate handling practices. Moreover, contaminated GP cones can serve as a vehicle for introducing 

microorganisms directly into the root canal system, potentially compromising the aseptic chain established during chemo-

mechanical preparation.[6] Various physicochemical strategies have been explored to enhance the antimicrobial properties 

of GP cones while preserving their essential filling characteristics.[7, 8] These approaches include incorporating 

antimicrobial agents such as chlorhexidine, calcium hydroxide, and bioactive phosphate glasses. Additionally, advanced 

nano-scale techniques, such as the development of nanodiamond-reinforced GP composites, have been investigated to further 

improve their antimicrobial effectiveness.[9] 

Selenium is an essential micronutrient in biological systems. Owing to its antimicrobial, anticancer, and antioxidant 

properties, Selenium nanoparticles (SeNPs) have numerous applications in nanomedicine. Moreover, they exhibit lower 

cytotoxicity compared to many commonly used silver nanoparticles.[10][11] While SeNPs have been utilized in various 

biomedical applications, their antimicrobial potential in the field of endodontics remains largely unexplored. Chemically, 

SeNPs are typically synthesized through the reduction of selenite or selenous acid using reducing agents such as glutathione 

(GSH), hydrazine, sodium borohydride (NaBH₄), stannous chloride (SnCl₂), L-cysteine, ascorbic acid, sodium thiosulfate 

(Na₂S₂O₃), and sodium dodecyl sulfate (SDS).[12] Surface coating GP with SeNPs represents a promising approach to 

enhance its antimicrobial effectiveness. This strategy aims to inhibit microbial colonization without altering the core physical 

and mechanical properties of GP, thereby maintaining its suitability as a root canal filling material. The aim of this study is 

to enhance the antimicrobial effectiveness of conventional GP by modifying its surface with SeNPs. 

2. MATERIALS AND METHODS 

Surface Modification of Gutta Percha 

GP cones (size 40, Dentsply Maillefer, Switzerland) from freshly opened GP boxes were firstly sterilized in the laminar air 

flow chamber for 30 mins. The synthesis of SeNPs was conducted using the chemical reduction method.[13] The chemical 

reduction method involved reducing selenous acid (H₂SeO₃) to elemental SeNPs. Before coating, the surface of GP was 

activated to improve adhesion. This can involve physical or chemical treatments to make the surface more reactive or rougher, 

enhancing the interaction with the nanoparticles. 0.2 g of selenous acid (H₂SeO₃) (Sigma Aldrich, United states) was 

dissolved in 100mL of  distilled water and stirred until complete dissolution for 30 minutes at room temperature. Next, a 

reducing agent solution was prepared by dissolving 0.5 g of sodium borohydride (Sigma Aldrich, United states) in 100mL 

of water. After the complete dissolution of the substances, both solutions were mixed with vigorous stirring. The resulting 

sol of SeNPs was stirred for 15 minutes. The resulting mixture was poured into an opaque brown glass container. The 

activated GP was immersed in the SeNPs solution. The nanoparticles, which are now in a colloidal state due to the reduction 

reaction, are attracted to and adhere to the surface of the GP. As the GP remains in the solution for 24 hrs, SeNPs deposit 

onto its surface. Stabilizing agents in the solution help prevent aggregation of the nanoparticles, ensuring a uniform coating. 

After coating, the GP was rinsed to remove any unbound nanoparticles and then dried (Figure 1). This ensured that only 

nanoparticles firmly attached to the surface remain, providing a stable coating.  

 

Figure 1 : Selenium  nanoparticles coated Gutta Percha 
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Antimicrobial activity 

This in vitro experimental study was conducted to evaluate and compare the antimicrobial efficacy of  SeNPs coated GP 

(Group 1) and conventional GP cones (Group 2) against two common endodontic pathogens: E.faecalis and S.aureus. The 

antimicrobial activity was assessed using the Direct Contact Test and effectiveness was determined by measuring the zone 

of inhibition (ZOI) on Mueller-Hinton agar (MHA) plates. The test microorganisms included standard strains of E. faecalis 

(ATCC 29212) and S. aureus (ATCC 25923), which were obtained from a recognized microbiological culture collection and 

revived in Brain Heart Infusion (BHI) broth under appropriate conditions. All cones were sectioned into standardized 10 mm 

lengths using sterile scissors. SeNPs were synthesized and applied to Group 1 cones using a previously established coating 

protocol, and the coated cones were air-dried under sterile conditions. MHA was prepared as the culture medium according 

to the manufacturer's instructions, sterilized by autoclaving, poured into sterile 90 mm Petri dishes (approximately 25 mL 

per plate), and allowed to solidify. Plates were incubated at 37°C for 24 hours to ensure sterility before use. Fresh bacterial 

suspensions were prepared and adjusted to a 0.5 McFarland standard (~1.5 × 10⁸ CFU/mL), and lawn cultures were created 

on MHA plates using sterile cotton swabs. Once the surfaces dried slightly, GP specimens from both groups were aseptically 

placed at the center of each plate. Four experimental setups were established to test both groups against each microorganism: 

Group 1 with E. faecalis, Group 1 with S. aureus, Group 2 with E. faecalis, and Group 2 with S. aureus (Figure 2). All plates 

were incubated aerobically at 37°C for 24 hours. Following incubation, antimicrobial activity was evaluated by measuring 

the diameter of the ZOI (including the GP cone) in millimeters using a digital Vernier caliper. Each sample was tested in 

triplicate to ensure consistency, and the mean ZOI was calculated for statistical analysis. 

 

Figure 2: Antimicrobial activity of gutta-percha cones tested against S. aureus and E.faecalis using Mueller-Hinton 

Agar (MHA) 

 

3. RESULTS 

The antimicrobial efficacy of SeNPs coated GP was evaluated against  S. aureus and E. faecalis through zone of inhibition 

(ZOI) analysis, compared with uncoated GP specimens. As shown in the agar diffusion assay, the SeNPs coated samples 

demonstrated larger ZOI for both microorganisms, indicating enhanced antibacterial properties. Specifically, against S. 

aureus, the ZOI measured 29 mm (30 µL) and 28 mm (20 µL), while against E. faecalis, the ZOI was 25 mm (30 µL) and 

24 mm (20 µL). These values are markedly higher than typically observed for standard GP, which is known to possess limited 

intrinsic antimicrobial activity.[14] SeNPs well-documented redox activity and ability to generate reactive oxygen species 

contribute significantly to this enhanced bactericidal effect.[15, 16] 
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Figure 3 : Antibacterial activity of SeNP-coated gutta-percha against S. aureus(A) and E. faecalis(B) , showing dose-

dependent zones of inhibition. 

                                                                                  

 

Graph 1 : Mean zone of inhibition (mm) of E. faecalis around uncoated and SeNPs coated GP, demonstrating a 

slight dose-dependent increase in antimicrobial activity. 

 

The Graph 1 illustrates the mean ZOI (in millimeters) exhibited by E.faecalis in response to three types of GP: uncoated GP, 

20 µL SeNPs coated GP, and 30 µL SeNPs coated GP. The antimicrobial efficacy was assessed by measuring the diameter 

of the inhibition zones, with error bars representing 95% confidence intervals. Among the tested groups, the uncoated GP 

demonstrated the lowest antimicrobial activity, with a mean inhibition zone of 23.37 mm. The 20 µL SeNPs coated GP 

exhibited a modest increase in antimicrobial effect, showing a mean inhibition zone of 24.37 mm. The 30 µL SeNPs coated 

GP group presented the highest antimicrobial activity, with a mean ZOI of 25.14 mm. This progressive increase in zone 

diameter with increasing SeNPs volume suggests a dose-dependent enhancement of antimicrobial properties. Although the 

differences in means among the groups appear relatively small, the consistent upward trend in inhibition zone sizes with 

higher SeNPs concentrations implies that  coating enhances the antibacterial efficacy of GP against E. faecalis. 
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Graph 2 : Mean zone of inhibition (mm) of S.aureus around uncoated and SeNPs coated GP cones, showing a dose-

dependent increase in antimicrobial activity. 

 

The Graph 2  illustrates the mean zone of inhibition of S. aureus exhibited by uncoated and SeNPs coated GP. The uncoated 

GP showed a mean ZOI of 27.22 mm, whereas GP coated with 20 µL and 30 µL of SeNPs demonstrated larger zones of 

28.40 mm and 29.19 mm, respectively. These findings indicate a dose-dependent improvement in antimicrobial activity with 

increasing concentrations of SeNPs. The enhanced ZOI suggests that surface modification of GP with SeNPs may effectively 

increase its antibacterial efficacy against S. aureus, supporting its potential use in endodontic applications to reduce the risk 

of microbial persistence. 

4. DISCUSSION 

Ensuring a three-dimensional seal of the root canal system is essential for the success of root canal treatment, as it prevents 

both coronal and apical leakage.[17] Endodontic treatment failure may result from microorganisms that withstand the 

chemical and mechanical cleaning of the root canal, as well as those that remain within the filling materials.[18] To address 

this challenge, this work explored a novel approach to enhance the antimicrobial efficacy of commercial GP cones. 

Immersing GP cones in sodium hypochlorite (NaOCl), a commonly used chairside disinfection method, causes notable 

surface changes, including irregular topography from component loss, increased variation in particle or grain size, and the 

presence of numerous surface deposits (Rico D. Short et al ., 2003.[19] These findings align with previous studies indicating 

that such disinfection can alter the physical and mechanical properties of GP points, potentially compromising the quality of 

the obturation seal and increasing vulnerability to biofilm formation. [20] 

The antibacterial activity of the modified GP cones was tested against E. faecalis and S. aureus due to the high percentages 

of recovery from infected canals in endodontic failures and following the cones' storage and handling, respectively. [21, 22] 

GP cones coated with the SeNPs deposited directly on its surface presented higher antibacterial activity compared with the 

control cones. Several nanoparticles, including chitosan, bioactive glass, silver, zinc oxide, and quaternary ammonium 

polyethyleneimine, have been explored in endodontics for their antibacterial potential. [23, 18]. Silver and zinc oxide 

nanoparticles (AgNPs and ZnONPs) have been tested against E. faecalis biofilms, with studies showing that 1% AgNPs and 

26% ZnONPs exhibit comparable antibiofilm efficacy to conventional irrigating solutions.[24] 

Selenium, an essential trace element, has demonstrated strong antibacterial and anticancer properties when in its nano-sized 

form.[25] Biosynthesized SeNPs, in comparison to other synthesis methods, exhibit lower cytotoxicity towards normal cell 

lines, making them a preferred material for human studies.[26]. However, the antibacterial and antibiofilm effectiveness of 

SeNPs against E. faecalis for potential use as a disinfectant in endodontics has not yet been explored. Therefore, this study 

utilized SeNPs to evaluate their efficacy. The antibacterial activity of these nanoparticles is attributed to their generation of 

reactive oxygen species (ROS), depletion of intracellular ATP, and disruption of membrane potential, ultimately resulting in 

bacterial cell death. [27] 

One  study found the MIC₈₀ of SeNPs against E. faecalis to be 25 μg/ml, a concentration notably lower than that reported by 

Alam et al. in their cytotoxicity assessments.[28] The low MIC₈₀ value observed in the present study suggests minimal or no 

potential toxicity to human or animal cells. The MIC₈₀ of 25 μg/ml reported here is comparable to that of the commercial 

antibiotic gentamicin, which has an MIC₈₀ of 17 μg/ml. The antimicrobial effect of nanoparticles is due to various 
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mechanisms, including creating leaks in the cell membrane, releasing toxic ions that affect the metabolism system, producing 

reactive oxygen species (ROS) that damage the cell membrane, and inhibiting bacterial reproduction by breaking the DNA 

strands ( Dalal M. Ridha et al ., 2024). SeNPs exhibit 4 to 6 times lower toxicity compared to selenium oxyanions like SeO₃²⁻ 

and SeO₄²⁻[29]. Severe toxicity from SeNPs is observed only at high doses. The median lethal dose (LD₅₀) for SeNPs is 

92.1 mg Se/kg, which is significantly higher than the concentration used in this study (1 mg/ml).[29] Additionally, SeNPs 

have demonstrated remarkable anticancer and free radical scavenging properties. 

Furthermore, the systematic review by Silva et al. (2020) highlighted that the biocompatibility of root canal sealers can vary 

based on composition and setting conditions, emphasizing the importance of evaluating new materials like SeNPs coated 

GP.[30]  Collectively, these findings suggest that SeNPs coated GP is a promising material for endodontic applications, 

combining antimicrobial efficacy with favorable biocompatibility. Selenium is an essential trace element that plays a crucial 

role in cellular defense mechanisms through its incorporation into selenoproteins, which help neutralize reactive oxygen 

species (ROS) and reduce oxidative stress. When used in nanoparticle form, selenium exhibits enhanced bioavailability and 

stability, while maintaining low toxicity to mammalian cells.[31, 32, 33]. 

Modified GP, enhanced with various antimicrobial and bioactive agents, has shown significant promise in improving the 

outcomes of root canal therapy by overcoming the limitations of conventional GP, such as poor adhesion and limited 

antimicrobial activity. Incorporation of materials like zinc oxide (ZnO) improves antibacterial efficacy and radiopacity, 

cetylpyridinium chloride (CPC) provides sustained antimicrobial action, glass ionomer cement (GIC) enhances adhesion to 

dentin and reduces microleakage, silver nanoparticles (AgNPs) offer broad-spectrum antimicrobial effects, and 

nanocurcumin contributes anti-inflammatory and antibacterial benefits with low cytotoxicity. [2,34]. Among these, the 

addition of SeNPs has gained attention due to selenium’s potent antimicrobial, antioxidant, and anti-inflammatory properties, 

effectively inhibiting biofilm formation by resistant organisms like E. faecalis. These modifications collectively improve 

disinfection, sealing ability, biocompatibility, and long-term success of endodontic treatment. 

5. CONCLUSION 

Within the limitations of the study, surface modified GP  with  SeNPs exhibited excellent antimicrobial properties, effectively 

inhibiting key microorganisms associated with root canal failure such as E. faecalis and S. aureus. Further ex vivo and in 

vivo studies, including animal models and tooth-based assessments, are required to substantiate the antimicrobial efficacy of 

SeNPs GP. Clinical trials are essential to evaluate its biocompatibility and therapeutic potential in endodontic practice. 
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