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ABSTRACT 

Cardiovascular disease (CVD) continues to be a major global health concern, contributing significantly to morbidity and 

mortality rates. Early and accurate diagnosis of heart disease is crucial for timely intervention and improved patient outcomes. 

In this study, we present a robust machine learning framework enhanced through systematic hyperparameter tuning for the 

identification of heart disease. The well-known Cleveland Heart Disease dataset from the UCI Machine Learning Repository 

is employed as the primary dataset for model development and evaluation. The proposed methodology begins with the 

preprocessing of the dataset, followed by the extraction of relevant features essential for classification. These features are 

then supplied to multiple machine learning classifiers, where the performance of each model is refined using advanced 

hyperparameter tuning techniques. Specifically, four prominent tuning strategies are explored: Grid Search, Random Search, 

Halving Grid Search, and Halving Random Search. These techniques are applied to optimize the hyperparameters of various 

classifiers, with the objective of maximizing prediction accuracy. 

Through extensive experimentation, the Random Forest classifier optimized via Random Search emerged as the most 

effective model, achieving an impressive accuracy of 92.45% in detecting heart disease. This significant result highlights 

the impact of appropriate hyperparameter tuning on the performance of machine learning algorithms, particularly in medical 

data classification tasks. The findings of this study demonstrate that incorporating systematic hyperparameter optimization 

into the machine learning pipeline not only enhances diagnostic accuracy but also improves the generalizability and reliability 

of predictive models in healthcare. The proposed framework shows promise as a decision-support tool that can aid medical 

professionals in the early and accurate detection of cardiovascular diseases 

 

Keywords: Cardiovascular Disease, Hyper parameters, Machine learning algorithms, Cleveland dataset, Grid Search, 

Random Search, Halving Grid Search, and Halving Random Search. 

1. INTRODUCTION 

Non-communicable diseases (NCDs) account for nearly 70% of all deaths globally, with cardiovascular diseases (CVDs) 

being one of the most prominent contributors, alongside conditions such as stroke, cancer, diabetes, and chronic respiratory 

diseases [1]. Often progressing without overt symptoms, CVDs silently affect the heart and blood vessels, encompassing a 

range of conditions including coronary artery disease, cerebrovascular disease, rheumatic heart disease, and others. 

Traditionally, the diagnosis of such diseases relies on routine medical evaluations and clinical expertise. However, timely 

and accurate detection remains a significant challenge due to the complex and multifactorial nature of these conditions. This 

has driven considerable research interest in the development of computational models, particularly those based on machine 

learning (ML), to assist in the early prediction and diagnosis of cardiovascular diseases [2][3]. In the context of machine 

learning, parameters are internal to the model and are learned from the data during training. In contrast, hyperparameters are  
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external configuration settings that govern the learning process itself such as the number of trees in a random forest, learning 

rate in gradient boosting, or kernel type in support vector machines. These values are not learned from the data but must be 

specified prior to training. The performance of an ML model is significantly influenced by the selection of appropriate 

hyperparameter values. Thus, hyperparameter tuning is the process of systematically identifying the most effective 

combination of hyperparameter values to maximize model performance within a reasonable computational time [4]. 

In recent years, machine learning has revolutionized healthcare diagnostics by enabling automated systems to recognize 

patterns in complex datasets, offering promising results in areas such as radiology, oncology, and cardiology. Specifically, 

in cardiovascular disease prediction, ML models have shown the ability to outperform traditional statistical techniques by 

capturing nonlinear relationships and interactions between clinical features. However, the accuracy and reliability of these 

models are heavily dependent on how well they are configured. Without proper tuning, even powerful algorithms like 

Random Forest, XGBoost, or Support Vector Machines may fail to deliver optimal results, leading to underperformance or 

misleading predictions that can have critical consequences in a clinical setting [5]. Hyperparameter tuning addresses several 

key challenges in CVD prediction models, including overfitting, underfitting, and model generalization. Manual tuning, 

while intuitive, becomes impractical as the dimensionality of hyperparameter space increases. Therefore, automated methods 

such as Grid Search, Random Search, Halving Grid Search, Bayesian Optimization, and others are employed to 

systematically explore and evaluate combinations of hyperparameters. These methods help identify the configuration that 

maximizes accuracy while maintaining computational efficiency. Moreover, some techniques, such as Bayesian 

Optimization and Tree-structured Parzen Estimators (TPE), leverage probabilistic models to intelligently guide the search, 

making them more efficient than exhaustive search methods [6][7]. In healthcare applications where accuracy, speed, and 

interpretability are critical, such optimization techniques are not only beneficial but essential. While many machine learning 

algorithms come with default hyperparameter values, these defaults do not guarantee optimal performance across diverse 

datasets or problem domains. Therefore, tuning hyperparameters is essential, particularly in sensitive applications like 

medical diagnosis, where accuracy can directly impact patient outcomes. Effective hyperparameter tuning not only improves 

predictive accuracy but also enhances the robustness and generalization capabilities of the model. This underscores the 

importance of incorporating tuning mechanisms into the design and deployment of ML models for cardiovascular disease 

detection and similar healthcare challenges  

2. RELATED WORKS 

Jinny et al. [8] developed a hybrid prediction model that integrates genetic algorithms (GAs), hyperparameter tuning, and 

various machine learning methods. Their model, tested on coronary heart disease data, demonstrated notable improvements 

in accuracy by leveraging evolutionary search techniques to optimize model parameters. Similarly, Asif et al. [9] performed 

a detailed comparative analysis of popular machine learning algorithms including logistic regression, decision trees, SVMs, 

and random forests evaluating them on metrics such as accuracy, precision, recall, and F1-score. Their findings underscored 

that model performance varies significantly depending on the choice of algorithm and feature selection strategy, highlighting 

the need for model-specific tuning. Hashi and Zaman [10, 11] proposed a structured machine learning pipeline that 

emphasized the importance of hyperparameter tuning in boosting the classification performance of predictive models. They 

showed that tuning parameters such as learning rate, tree depth, and kernel functions significantly impacts the predictive 

power of algorithms like random forest and SVM. Firdaus et al. [12] extended this work by applying deep neural networks 

(DNNs) combined with hyperparameter optimization, illustrating how deep learning models, when properly tuned, 

outperform traditional algorithms in detecting complex patterns associated with heart disease. Their use of advanced 

architectures and tuning strategies demonstrated the growing relevance of deep learning in medical analytics. 

Further studies introduced optimization methods that enhance ensemble learning. Sonth et al. [13] optimized the random 

forest algorithm using a combination of ensemble techniques and hyperparameter tuning. Their study concluded that tuning 

ensemble models can mitigate issues like overfitting and bias, particularly in datasets with class imbalance or noise. 

Valarmathi and Sheela [14] proposed a systematic framework for heart disease prediction that incorporates Hyperparameter 

Optimization (HPO) strategies like grid search and random search. They emphasized that careful calibration of model 

parameters can yield significant performance gains, especially when combined with proper feature engineering. El-Shafiey 

et al. [15] introduced a hybrid approach involving Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) to 

optimize the random forest model. Their work demonstrated that combining metaheuristic optimization techniques can 

effectively navigate complex hyperparameter spaces and yield high-accuracy models. Finally, Bergstra et al. [16] provided 

a foundational study on scalable hyperparameter optimization methods, introducing random search and demonstrating its 

superiority over grid search in high-dimensional settings. Their work laid the groundwork for many of the hyperparameter 

tuning techniques applied in later medical and healthcare prediction systems. 

3. PROPOSED METHODOLOGY 

The proposed study comprises three major phases: data preprocessing, classification using hyperparameter-tuned machine 

learning models, and performance evaluation. These phases are designed to systematically process the dataset, build 

optimized predictive models, and rigorously assess their effectiveness in identifying heart disease. Figure 1 depicts the 
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various stages of the proposed model. 

 

Figure 1. The block diagram of the proposed model 

In the data preprocessing stage, the Cleveland Heart Disease dataset [17] is utilized, which consists of 14 key attributes. 

These features are comprehensively listed in Table 1, which outlines the complete schema of the dataset. The dataset 

comprises a total of 14 attributes, including the target variable labelled as NUM. This target feature is binary, where a value 

of 1 indicates the presence of heart disease, and 0 denotes the absence of the condition. The dataset contains 303 patient 

records, with 164 instances classified as heart disease positive (sick) and 139 as heart disease negative (normal). Among the 

14 attributes, 8 are categorical, and 6 are numerical, providing a balanced mix of qualitative and quantitative data for model 

training and evaluation. This carefully structured dataset forms the basis for building and evaluating predictive models aimed 

at early and accurate detection of cardiovascular conditions. The consistent use of these 13 features across studies underscores 

their diagnostic relevance and suitability for machine learning applications in the medical domain. 

Table 1. Features of Cleveland Heart Disease Dataset 

Sl. No. Features Description Range 

1 Age Age in years Age in year [29-77]  

2 Sex Patient sex (Male or Female) 0 for female and 1 for male 

3 cp Chest pain type Chest pain type (1 = typical angina, 2 = 

atypical angina, 3 = non-anginal pain, 4 

= asymptomatic) 

4 trestbps Resting blood pressure Resting blood sugar in mm Hg on 

admission to the hospital [94,200]  

5 chol Serum cholesterol Serum cholesterol in mg/dl [126,564]  

6 fbs Fasting blood sugar Fasting blood sugar > 120 mg/dl:  

1 = true 0 = false 

7 Restecg Resting electrocardiographic 

results 

The results (0 = normal, 1 = having ST-T 

wave abnormality, 2 = left ventricular 

hypertrophy 

8 thalach Maximum heart rate achieved Maximum heart rate achieved [71,202]  
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9 exang Exercise induced angina Exercise induced angina values [0=no 

1=yes]  

10 oldpeak ST depression induced by exercise 

relative to rest 

The values are [0,6.2]  

 

11 slope  The slope of the peak exercise ST 

segment 

The slope of the peak exercise segment: 

(1 = up sloping,2 = flat, 3 = down 

sloping) 

12 ca Number of major vessels colored 

by fluoroscopy 

Color of fluoroscopy [0-3]  

 

13 thal Exercise thallium scintigraphy Heart condition: 

3 = normal, 6= fixed defect, 7=reversible 

defect 

14 num Response: diagnosis of HD Class (0 = healthy, 1 = have HD) 

 

Let the dataset be represented as: 

𝐷 = {(𝑥(𝑖),𝑦(𝑖))}
𝑖=1

𝑛
         (1) 

Where, 𝑥(𝑖) = [𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥13
(𝑖)

]𝜖 𝑅13 is the feature vector for the 𝑖𝑡ℎ patient, 𝑦(𝑖)𝜖{0,1} is the corresponding label indicating 

absence (0) or presence (1) of heart disease, and n=303 is the total number of instances. 

Prior to model training, the dataset is split into training and testing subsets in an 80:20 ratio, ensuring that the model is 

evaluated on unseen data. This split is performed using the train_test_split function from the Scikit-learn (sklearn) library, a 

widely used toolkit in the machine learning domain. 

An important step in preprocessing is feature standardization, which ensures that all input features contribute equally to the 

model's learning process. Since the dataset contains features with varying units and scales, raw data may introduce bias or 

imbalance during model training. To address this, standardization is applied using the StandardScaler from sklearn. This 

transformation centers the features by removing the mean and scaling them to unit variance, thereby enabling the learning 

algorithms to operate more effectively and converge faster. The standardized value 𝑥̂𝑗 is computed as: 

𝑥̂𝑗 =
𝑥𝑗−𝜇𝑗

𝜎𝑗
          (2) 

Where, 𝜇𝑗 =
1

𝑛
∑ 𝑥𝑗

(𝑖)𝑛
𝑖=1  is the mean of the 𝑗𝑡ℎ feature, 𝜎𝑗 = √1

𝑛
∑ (𝑥𝑗

(𝑖)
− 𝜇𝑗)

2
𝑛
𝑖=1  is the standard deviation. This ensures each 

feature has zero mean and unit variance, improving the performance of gradient-based algorithms and distance-based 

classifiers. 

Following preprocessing, the standardized training and testing datasets are used to develop classification models. The key 

innovation in this study lies in the application of hyperparameter tuning techniques to enhance model performance. By 

integrating these tuning methods with widely used machine learning classifiers, such as Random Forest (RF), Support Vector 

Machine (SVM), and others, the study aims to develop a robust and highly accurate predictive model for heart disease 

identification. The impact of hyperparameter tuning is quantitatively evaluated using standard performance metrics, ensuring 

a comprehensive analysis of each model’s diagnostic capability. 

3.1 Hyperparameter Tuning Process 

Hyperparameter tuning is a critical step in optimizing machine learning models. Unlike model parameters, which are learned 

during training, hyperparameters are set before training begins and guide the learning process—such as the number of trees 

in a Random Forest, the regularization parameter in logistic regression, or the kernel type in Support Vector Machines. 

Selecting the right combination of hyperparameters can dramatically affect a model’s predictive performance. This process 

is typically treated as an optimization problem over a defined search space of hyperparameter values. The objective is to 

find the optimal hyperparameter configuration ⋋∗ 𝜖 ∧, where ∧ denotes the search space, that maximizes a model evaluation 

metric ℳ. 

⋋∗= argmax
⋋𝜖∧

ℳ(𝑓(𝑥; ⋋), 𝐷𝑣𝑎𝑙)       (3) 
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Where, 𝑓(𝑥;⋋) is the model trained using hyperparameters ⋋, 𝐷𝑣𝑎𝑙  is validation dataset, and ℳ is chosen performance 

metric. 

3.1.1 Grid Search 

Grid Search is a brute-force technique where the hyperparameter space ∧ is discretized into a finite grid ∧𝑔 ⊂ ∧. The model 

is trained and evaluated for every combination in this grid. Let ⋋= (⋋1,⋋2, … ,⋋𝑘) be a vector of  𝑘 hyperparameters. 

Suppose each ⋋𝑖  has 𝑛𝑖 discrete values. The total number of configurations is: 

|∧𝑔| = ∏ 𝑛𝑖
𝑘
𝑖=1          (4) 

For each combination ⋋𝑗 𝜖 ∧𝑔, the model is evaluated using k-fold cross-validation: 

𝑀𝑐𝑣(⋋𝑗) =
1

𝑘
∑ 𝑀(𝑓(𝑖)(𝑥;⋋),𝑘

𝑖=1 𝐷𝑣𝑎𝑙
(𝑖)

)      (5) 

Where 𝑓(𝑖) is the model trained on the 𝑖𝑡ℎ fold of the training data. The best configuration is: 

⋋∗= 𝑎𝑟𝑔 max
⋋𝑗𝜖∧𝑔

𝑀𝑐𝑣 (⋋𝑗)        (6) 

Although exhaustive, Grid Search is computationally expensive, especially as the number of hyperparameters increases. 

3.1.2 Random Search 

Random Search is a more efficient alternative where instead of evaluating all points in ∧𝑔, a random subset ∧𝑟⊂∧𝑔 is 

sampled uniformly. Let 𝑚 be the number of sampled configurations 𝑚 ≪ |∧𝑔|. Then, ∧𝑟= (⋋1,⋋2, … ,⋋𝑚), where, 

⋋𝑖 ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(∧𝑔). The same cross-validation procedure is used for evaluation: 

𝑀𝑐𝑣(⋋𝑖) =
1

𝑘
∑ 𝑀(𝑓(𝑗)(𝑥;⋋𝑖),𝑘

𝑗=1 𝐷𝑣𝑎𝑙
(𝑗)

)      (7) 

And the optimal hyperparameters are selected as:  

⋋∗= 𝑎𝑟𝑔 max
⋋𝑖𝜖∧𝑟

𝑀𝑐𝑣 (⋋𝑖)        (8) 

Random Search often finds a good configuration much faster than Grid Search, especially when only a few hyperparameters 

are influential. 

3.1.3 Halving Grid Search and Halving Randomized Search 

These methods fall under the category of successive halving algorithms, which progressively allocate more computational 

resources to promising hyperparameter configurations while discarding underperforming ones. Let ∧𝑠 ⊂ ∧ be the initial set 

of 𝑠 sampled hyperparameter combinations. Each configuration is evaluated using an increasing amount of resources across 

𝑟 rounds. 

Halving Strategy: 

• Round 1: Evaluate all 𝑠 configurations using 𝑟1 resources. 

• Round 2: Retain the top 
𝑠

𝜂
 configurations, increase resources to 𝑟2 

• ∙∙∙∙ 

• Round 𝑡: Retain 
𝑠

𝜂𝑡−1 configurations and evaluate with 𝑟𝑡 resources. 

Where,  𝜂 > 1 is the halving factor,   𝑟𝑡 = 𝜂𝑡−1 ∙ 𝑟1  defines resource scaling. 

In Halving Grid Search, the configurations come from a fixed grid ∧𝑔. In Halving Random Search, the configurations are 

randomly sampled from ∧ at each round. The best hyperparameter configuration is: 

⋋∗= 𝑎𝑟𝑔 max
⋋𝑖𝜖∧𝑠

𝑀𝑟𝑡
(⋋𝑖)        (9) 

Where, 𝑀𝑟𝑡
 is the performance metric evaluated using the largest resource allocation. 

3.2 Machine Learning Algorithms 

Machine learning (ML) algorithms are the backbone of predictive modelling in data science and artificial intelligence. These 

algorithms learn patterns from data and make informed decisions or predictions without explicit programming. In supervised 

learning, a model is trained on a labeled dataset consisting of input features 𝑋 and corresponding output labels 𝑦. The goal 

is to learn a function 𝑓: 𝑋 → 𝑦 that maps new, unseen inputs to the correct output class with high accuracy. For this study, 

five key supervised learning algorithms Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), 
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Random Forest (RF), and K-Nearest Neighbors (KNN) are employed to classify heart disease presence based on the 

Cleveland dataset. Each algorithm is optimized using hyperparameter tuning methods to enhance diagnostic performance. 

3.2.1 Logistic Regression 

Logistic Regression is a statistical learning method used for binary and multiclass classification problems. It models the 

probability that a given input 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) belongs to a particular class using a logistic function. In binary 

classification, the probability is given by: 

𝑃 (𝑦 =
1

𝑥
) = 𝜎(𝑤𝑥 + 𝑏) =

1

1+𝑒−(𝑤𝑇𝑥+𝑏)
      (10) 

Where, 𝑤 weight vector, 𝑏 bias term, and 𝜎(𝑧) sigmoid activation function.  

The model is trained by minimizing the binary cross-entropy loss: 

ℒ(𝑤, 𝑏) = −
1

𝑚
∑ [𝑦(𝑖)𝑙𝑜𝑔𝑦̂(𝑖) + (1 − 𝑦(𝑖)) log(1 − 𝑦̂(𝑖))]𝑚

𝑖=1    (11) 

3.2.2 Support Vector Machine 

SVM is a powerful classification technique that aims to find the optimal hyperplane that separates data points of different 

classes with the maximum margin. For a binary classification problem, the decision boundary is defined as: 

𝑓(𝑥) = 𝑤𝑥 + 𝑏 = 0         (12) 

The objective is to maximize the margin 
2

‖𝑤‖
 while ensuring correct classification: 

𝑦(𝑖)(𝑤𝑥(𝑖) + 𝑏) ≧ 1         (13) 

The optimization problem is: 

min
𝑤,𝑏

1

2
‖𝑤‖2, subject to 𝑦(𝑖)(𝑤𝑥(𝑖) + 𝑏) ≧ 1      (14) 

3.2.3 Decision Tree 

A Decision Tree is a tree-structured classifier where internal nodes represent feature tests, branches represent outcomes, and 

leaf nodes represent final class labels. The tree partitions the data based on the feature that provides the maximum information 

gain. 

Gini Impurity is computed as: 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1         (15) 

Where, 𝑝𝑖  proportion of class 𝑖 instances in dataset 𝐷, 𝐶 number of classes. 

The tree splits the dataset 𝐷 at a feature 𝐴 to minimize the weighted impurity: 

𝐺𝑎𝑖𝑛(𝐷, 𝐴) = 𝐺𝑖𝑛𝑖(𝐷) − ∑
|𝐷𝑣|

𝐷
𝐺𝑖𝑛𝑖(𝐷𝑣)𝑣 𝜖 𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)     (16) 

The process continues recursively until a stopping criterion is met. 

3.2.4 Random Forest 

Random Forest is an ensemble method that builds multiple decision trees and merges their outputs to improve predictive 

performance and control overfitting. It follows the bagging approach bootstrap aggregation where each tree is trained on a 

random subset of the data and features. Prediction is done by majority voting: 

𝑦̂𝑓𝑖𝑛𝑎𝑙 = 𝑚𝑜𝑑𝑒(𝑦̂1, 𝑦̂2, … . , 𝑦̂𝑁)       (17) 

Where, 𝑦̂𝑖 is the prediction from the 𝑖𝑡ℎ tree and 𝑁 is the total number of trees. Random Forest reduces variance and improves 

generalization by aggregating diverse tree models. 

3.2.5 K-Nearest Neighbors 

KNN is a non-parametric, instance-based learning algorithm used for classification and regression. It classifies a new data 

point based on a majority vote of the 𝑘 nearest data points in the feature space using a distance metric. 

𝑑(𝑥, 𝑥′) = √∑ (𝑥𝑖 − 𝑥𝑖
′)2𝑛

𝑖=1         (18) 

The class label is determined by: 

𝑦̂ = 𝑎𝑟𝑔 max
𝑐 𝜖 𝐶

∑ 1(𝑦(𝑖)
𝑖 𝜖 𝑁𝑘(𝑥) = 𝑐)       (19) 

Where, 𝑁𝑘(𝑥) set of 𝑘 nearest neighbors, 1(. ) indicator function. The choice of 𝑘 affects model bias-variance. A small 𝑘 
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can lead to overfitting, while a large 𝑘 increases bias. 

Table 2 below presents and explains the various hyperparameters utilized in the implementation of machine learning 

algorithms. These hyperparameters are fine-tuned using hyperparameter optimization techniques to achieve the highest 

classification accuracy for heart disease detection using the Cleveland Heart Disease dataset. The table also highlights the 

optimal estimated values for each hyperparameter. 

Table 2. Algorithms and Tuned Hyperparameters 

Algorithm Key Hyperparameters Tuned Using 

Logistic Regression Regularization strength (C), Solver Grid Search, Random Search 

SVM Kernel type, C, Gamma Grid Search, Random Search 

Decision Tree Max depth, Min samples split Grid Search 

Random Forest Number of trees, Max features Halving Grid/Random Search 

KNN Number of neighbors (k), Distance metric Grid Search, Random Search 

4. RESULTS AND DISCUSSIONS 

The experimental results obtained from the implementation phase are comprehensively summarized in Table 3. These results 

demonstrate the effectiveness of various machine learning algorithms when integrated with different hyperparameter tuning 

strategies. The models were evaluated based on their classification accuracy in identifying heart disease using the Cleveland 

Heart Disease dataset. To ensure consistency and reliability, each algorithm underwent tuning through four optimization 

techniques: Grid Search, Random Search, Halving Grid Search, and Halving Randomized Search. These tuning methods 

helped in identifying the optimal set of hyperparameters for each model, contributing to variations in their final predictive 

performance. 

Figure 2 visually illustrates the comparative performance of each machine learning model under the different hyperparameter 

tuning strategies. It is evident from both the table and figure that the Random Forest classifier, when tuned using Random 

Search, achieved the highest accuracy of 92.45%, making it the most effective model among those evaluated. On the other 

hand, the K-Nearest Neighbors (KNN) algorithm yielded the lowest accuracy of 64%, highlighting its sensitivity to parameter 

settings and possibly the influence of data distribution in the feature space. This comparison underscores the critical 

importance of selecting appropriate algorithms and tuning methods to maximize predictive performance in medical diagnosis 

applications. 

Table 3. Accuracy comparison of ML algorithms - with and without      hyperparameters tuning 

 

 

Classifiers 

Without Hyper-

Parameter 

Tuning 

Hyper-Parameter Tuning 

Grid 

Search 

Random 

search 

Halving 

Grid 

Halving 

Random 

Accuracy Accuracy Accuracy Accuracy Accuracy 

RF 83% 88% 92.45% 81% 83% 

SVM 67% 87% 87% 81% 75% 

DT 78% 82% 79% 75% 78% 

Logistic 

Regression 

75% 82% 85% 74% 75% 

KNN 65% 67% 64% 76% 74% 
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Figure 2. Performance of ML models with various hyperparameter tuning methods 

5. CONCLUSION 

The proposed framework significantly improves the predictive performance of machine learning algorithms by incorporating 

advanced hyperparameter tuning techniques. For experimental validation, the Cleveland Heart Disease dataset from the UCI 

Machine Learning Repository was employed. A range of machine learning classifiers namely Support Vector Machine 

(SVM), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Artificial Neural Network (ANN) were 

utilized to detect the presence of heart disease. Each of these models was optimized using various hyperparameter tuning 

methods, including Grid Search, Random Search, Halving Grid Search, and Halving Randomized Search. 

Comprehensive experimental analysis reveals that the combination of Random Search (RS) tuning with the Random Forest 

(RF) classifier delivers the most accurate and robust results. Among all the tested configurations, this hybrid approach RS+RF 

achieved the highest classification accuracy of 92.45%, outperforming all other model and tuning method combinations. 

These findings underscore the effectiveness of strategic hyperparameter optimization in enhancing the diagnostic capability 

of machine learning models in medical applications 
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