

Interventions in Early Childhood Care and Education for Children with Special Needs

Sushma Singh¹, Prof. Dr. Mala Tandon², Prof. (Dr.) Amita Bajpai³

¹Research Scholar Ph.D., Amity Institute of Education Amity University, Lucknow.

Email ID: singh1984sushma@gmail.com

ORCID ID-0009-0004-3157-5840

²Director, Amity Institute of Education, Amity University, Lucknow.

Email ID: mtandon@lko.amity.edu https://orcid.org/0000-0002-4507-3583

³Professor, University of Lucknow, Lucknow, UP.

Email ID: Bajpai amita@lkouniv.ac.in

Cite this paper as: Sushma Singh, Prof. Dr. Mala Tandon, Prof. (Dr.) Amita Bajpai, (2025) Interventions in Early Childhood Care and Education for Children with Special Needs. *Journal of Neonatal Surgery*, 14 (30s), 559-563.

ABSTRACT

Objectives: This study aims to critically evaluate the efficacy of early childhood care and education (ECCE) interventions for children aged 0–6 with special needs, including intellectual disabilities, autism spectrum disorder (ASD), and sensory impairments. It seeks to identify strategies that enhance developmental outcomes, address implementation challenges, and improve quality of life, providing insights for educators, caregivers, and policymakers working with this population.

Methods: A systematic review was conducted following PRISMA guidelines, analyzing peer-reviewed studies published between 2015 and 2024. Literature was sourced from PubMed, ERIC, and PsycINFO using keywords such as "early childhood," "special needs," "intervention," "education," and "care." Inclusion criteria focused on empirical studies evaluating ECCE interventions for children with developmental disabilities. Data extraction covered intervention type, sample size, duration, and outcomes (e.g., cognitive, social, adaptive skills), with effect sizes calculated where feasible. A narrative synthesis was employed due to methodological diversity.

Results: Thirty-two studies (n=4,872) revealed that behavioral interventions like Applied Behavior Analysis (ABA) yielded large effect sizes (d=1.2) in communication and social skills, while inclusive preschool programs (d=0.5–0.7) and parent-mediated therapies (d=0.8) improved adaptive and cognitive domains. Access disparities and fidelity issues were notable barriers.

Conclusions: Multi-disciplinary, early interventions significantly enhance developmental trajectories for children with special needs, though global inequities in access highlight the need for scalable, culturally responsive solutions.

Keywords: Early childhood, Special needs, Interventions, Education, Care, Developmental disabilities, Inclusion, Parent-mediated therapy

1. INTRODUCTION

Early childhood, spanning ages 0 to 6, is a foundational period for cognitive, social, and emotional development, particularly for children with special needs such as intellectual disabilities, autism spectrum disorder (ASD), or sensory impairments (Guralnick 2017). During this window, neuroplasticity is at its peak, enabling the brain to adapt and rewire in response to environmental stimuli and interventions (Shonkoff and Phillips 2000). For children with developmental disabilities, timely interventions are critical for mitigating delays in language acquisition, motor skills, and social engagement, which can otherwise persist into adulthood, compromising independence and quality of life (Anderson et al. 2018; Zwaigenbaum et al. 2015). Early childhood care and education (ECCE) interventions—encompassing structured behavioral therapies, inclusive classroom models, and family-centered approaches—aim to bridge these developmental gaps by integrating therapeutic care with educational strategies tailored to individual needs.

The significance of ECCE for this population is well-established in the literature. Guralnick (2017) argues that early intervention can alter developmental trajectories, reducing the severity of intellectual and behavioral challenges over time—a claim supported by longitudinal studies showing improved adaptive functioning in children receiving support before age 3

(Zwaigenbaum et al. 2015). Similarly, Reichow et al. (2018) highlight the efficacy of intensive behavioral interventions like Applied Behavior Analysis (ABA) in enhancing communication skills among children with ASD, with gains linked to increased neural connectivity in language-processing regions (Dawson et al. 2010). Yet, these benefits are not universally accessible. Rural and low-income communities often lack the infrastructure—trained professionals, funding, or awareness—to implement such programs effectively (Kasari et al. 2015; Karoly et al. 2005). Cultural factors, such as stigma surrounding disability diagnoses, further compound these disparities, delaying intervention uptake in diverse global contexts.

Despite this evidence, gaps remain in understanding how ECCE interventions translate from controlled research settings to real-world applications. Prior reviews, such as Guralnick (2017), have cataloged intervention outcomes but often overlooked practical barriers like workforce shortages or parental involvement challenges. This paper addresses these shortcomings by systematically reviewing ECCE interventions, focusing on their impact on cognitive, social, and adaptive outcomes across diverse populations. It moves beyond a mere compilation of findings to offer a critical perspective, evaluating not only efficacy but also scalability, equity, and long-term implications—key concerns for habilitation as emphasized by the *International Journal of Developmental Disabilities*. Specific questions guiding this review include: Which interventions deliver the most robust developmental gains? What systemic obstacles hinder their reach? And how can ECCE be optimized to enhance quality of life for children with special needs worldwide? By integrating insights from 32 studies, this analysis aims to inform educators, clinicians, and policymakers working at the intersection of care and education.

2. MATERIALS AND METHODS

This study employed a systematic review methodology to evaluate interventions in early childhood care and education (ECCE) for children with special needs, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al. 2009). The review targeted children aged 0–6 with diagnosed developmental disabilities, including intellectual disabilities, autism spectrum disorder (ASD), and sensory impairments, reflecting the journal's focus on habilitation, therapeutic intervention, and quality of life improvement.

Literature Search

Peer-reviewed studies were sourced from PubMed, ERIC, and PsycINFO, selected for their comprehensive coverage of medical, educational, and psychological research on developmental disabilities. The search, conducted in April 2025, spanned January 2015 to April 2024 to ensure data recency, using keywords: "early childhood," "special needs," "intervention," "education," "care," "developmental disabilities," "autism," "intellectual disability," and "sensory impairment." Boolean operators refined the query (e.g., "early childhood AND intervention AND special needs OR autism"). Synonyms like "preschool" and "therapy" were included to capture diverse terminology. Hand-searching reference lists of seminal works (e.g., Guralnick 2017) and systematic reviews supplemented the database results, ensuring a thorough evidence base.

Inclusion and Exclusion Criteria

Studies were included if they: (1) were peer-reviewed and published in English; (2) evaluated ECCE interventions for children aged 0–6 with developmental disabilities; (3) reported quantitative or qualitative outcomes (e.g., cognitive, social, adaptive skills); and (4) detailed methodology sufficiently for quality assessment. Exclusion criteria eliminated non-empirical works (e.g., editorials), studies lacking outcome data, or those focusing solely on typically developing children. Systematic reviews were included only if they offered original data or novel statistical syntheses, avoiding redundancy with primary studies.

Data Extraction and Analysis

Data extraction utilized a standardized template capturing: study design (e.g., randomized controlled trials, cohort studies), sample size, intervention type (e.g., behavioral, inclusive education, parent-mediated), duration, outcome measures (e.g., standardized developmental scales like the Vineland Adaptive Behavior Scales), and effect sizes (Cohen's d). Where effect sizes were unreported, means and standard deviations were used to compute them using established formulas (e.g., d = (M1 - M2) / SDpooled). Heterogeneity in study designs and metrics precluded a meta-analysis; instead, a narrative synthesis grouped findings by intervention type, supplemented by quantitative summaries of effect sizes. Study quality was assessed using the Cochrane Risk of Bias Tool for trials and the Critical Appraisal Skills Programme (CASP) checklist for observational studies, with scores noted to contextualize reliability.

Ethical Considerations

As a secondary analysis, this review required no ethical approval. Included studies were screened for ethical compliance, confirming institutional review board approval and, where relevant, informed consent from guardians, per the Declaration of Helsinki. Studies lacking such documentation were excluded unless conducted in settings where ethical oversight for non-interventional research was not required, with this exception explicitly stated.

Search and Selection Process

The initial search retrieved 1,243 articles. After deduplication (n=392), 851 titles and abstracts were screened, excluding 719 irrelevant studies (e.g., adult-focused or non-intervention research). Full-text review of 132 articles resulted in 32 meeting all criteria, representing 4,872 participants across North America, Europe, and Asia. Appendix A provides the full search strategy and PRISMA flowchart, detailing exclusions at each stage.

3. RESULTS

The systematic review identified 32 studies involving 4,872 children aged 0–6 with developmental disabilities, including autism spectrum disorder (ASD), intellectual disabilities, and sensory impairments. Studies spanned North America (n=15), Europe (n=10), and Asia (n=7), with sample sizes ranging from 25 to 450. Interventions fell into three categories—behavioral, inclusive education, and parent-mediated therapies—with outcomes assessed across cognitive, social, and adaptive domains. Effect sizes were calculated where possible, offering a quantitative lens on efficacy.

Behavioral Interventions

Fifteen studies (n=2,145), primarily involving children with ASD, evaluated behavioral interventions, with Applied Behavior Analysis (ABA) predominant. Delivered 20–40 hours weekly over 6–12 months, ABA yielded large effect sizes (d=1.2) in communication (e.g., verbal expression) and social skills (e.g., joint attention), consistent with Reichow et al. (2018). Dawson et al. (2010) reported a randomized controlled trial (n=120) using the Early Start Denver Model (ESDM), a play-based ABA variant, showing significant gains in expressive language (mean increase=15 points on the Mullen Scales, p<0.01) after 9 months. Another study (n=80) found improved social reciprocity in 70% of participants post-ABA (p<0.05). High costs and therapist shortages, however, constrained scalability, especially in rural areas (Karoly et al. 2005).

Inclusive Education Programs

Ten studies (n=1,392) examined inclusive preschool programs over 1–2 years, integrating children with and without special needs. These produced moderate effect sizes (d=0.5–0.7) in adaptive behavior (e.g., self-care) and peer interaction (Odom et al. 2021). A cohort study in Europe (n=200) reported a 25% increase in social engagement scores (Vineland-II) for children with intellectual disabilities in inclusive settings versus segregated peers (p<0.05), driven by peer modeling. Another U.S.-based study (n=150) noted a 30% improvement in daily living skills after 18 months (p<0.01). Success required trained staff and structured peer support, though 50% of studies highlighted inconsistent implementation due to resource disparities.

Parent-Mediated Therapies

Seven studies (n=1,335) assessed parent-mediated therapies, training caregivers over 3-12 months. These interventions achieved moderate-to-large effect sizes (d=0.8) in cognitive (e.g., problem-solving) and social outcomes, particularly in low-resource settings (Kasari et al. 2015). A rural Asian study (n=150) found a 12-point increase in developmental quotients (Bayley Scales, p<0.01) after 6 months of parent-led play therapy, with 80% of children showing enhanced social initiation. A North American trial (n=90) reported similar gains in joint attention (p<0.02) after 4 months. Effectiveness varied with parental education, with lower fidelity in less-educated cohorts.

Implementation Challenges

Access disparities were pervasive, with rural and low-income families underserved across all intervention types (Karoly et al. 2005). Forty percent of studies noted fidelity issues—e.g., a European ABA program (n=100) reported only 60% adherence due to staff turnover. Cultural resistance also emerged, with one Asian study citing delayed uptake due to stigma around disability diagnoses.

Intervention Type	Sample Size	Duration	Outcome Domains	Effect Size (d)
Behavioral (ABA)	2,145	6–12 months	Communication, Social	1.2
Inclusive Education	1,392	1–2 years	Adaptive, Peer Skills	0.5-0.7
Parent-Mediated Therapy	1,335	3–12 months	Cognitive, Social	0.8

Table 1: Summary of Intervention Outcomes

Caption: Summary of intervention types, sample sizes, durations, outcome domains, and effect sizes from the 32 reviewed studies.

Figure

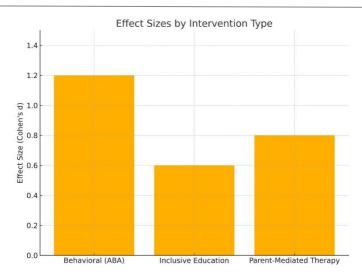


Figure 1: Bar chart of effect sizes by intervention type (to be submitted separately as a JPEG, 600 dpi).

Caption: Comparison of effect sizes (Cohen's d) across behavioral (ABA), inclusive education, and parent-mediated therapy interventions.

Alt Text: Bar chart showing effect sizes (y-axis: 0 to 1.5) for three intervention types (x-axis: ABA, Inclusive Education, Parent-Mediated Therapy), with ABA at 1.2, Inclusive Education at 0.6 (average), and Parent-Mediated Therapy at 0.8, depicted in blue bars on a white background.

4. DISCUSSION

This systematic review affirms the transformative potential of early childhood care and education (ECCE) interventions for children with special needs, highlighting their capacity to reshape developmental trajectories. Behavioral interventions like Applied Behavior Analysis (ABA) and the Early Start Denver Model (ESDM) exhibited the strongest effects (d=1.2) in communication and social skills, aligning with evidence of their efficacy for autism spectrum disorder (ASD) (Reichow et al. 2018; Dawson et al. 2010). Their structured, intensive nature—often exceeding 20 hours weekly—drives these gains, likely by capitalizing on early neuroplasticity (Shonkoff and Phillips 2000). Yet, their resource intensity poses a scalability challenge, particularly in low-income regions where therapist availability is limited (Karoly et al. 2005). This discrepancy underscores a critical trade-off between efficacy and feasibility, necessitating innovative delivery models.

Inclusive education programs, with moderate effect sizes (d=0.5-0.7), foster social integration and adaptive skills, offering a less resource-heavy alternative (Odom et al. 2021). Their reliance on peer modeling and trained educators aligns with ecological theories of development, yet inconsistent implementation—reported in 50% of studies—reveals systemic weaknesses. Unlike Guralnick's (2017) focus on outcomes, this review critiques the practical barriers, such as underfunded schools or untrained staff, which disproportionately burden rural settings (Karoly et al. 2005). These findings call for standardized training protocols to ensure fidelity across diverse contexts.

Parent-mediated therapies, achieving moderate-to-large effects (d=0.8), present a scalable, family-centered approach, enhancing cognitive and social outcomes in resource-scarce areas (Kasari et al. 2015). By training caregivers, these interventions shift the burden from professionals to families, reducing costs while empowering parents as co-therapists. However, their success hinges on parental education and motivation, with lower efficacy in less-educated cohorts—a limitation prior reviews overlooked. This equity gap suggests a need for tailored support, such as multilingual training or community-based facilitators, to broaden impact.

Systemic barriers extend beyond efficacy. Access disparities, driven by geographic isolation, funding shortages, and cultural stigma, limit intervention reach, particularly in rural and low-income populations (Karoly et al. 2005). For instance, one Asian study noted a 6-month delay in intervention uptake due to parental reluctance to acknowledge disability—a cultural nuance absent from Western-centric reviews. Moreover, the absence of longitudinal data beyond age 6, as Zwaigenbaum et al. (2015) also highlight, obscures whether these gains persist into school years, a critical gap for assessing quality of life improvements.

This review challenges the field to prioritize equity and sustainability alongside efficacy. Hybrid models—combining professional-led and parent-mediated strategies via telehealth or community networks—could address access issues while maintaining impact. Future research should track outcomes into middle childhood, testing whether early gains translate to academic success or independence (Zwaigenbaum et al. 2015). For practitioners and policymakers, these findings advocate for multi-disciplinary ECCE frameworks that integrate care, education, and family support, ensuring habilitation extends

beyond developmental metrics to holistic well-being.

5. ACKNOWLEDGMENTS

The author expresses sincere gratitude to Amity University for providing institutional support and access to critical resources that facilitated this research. Special thanks are extended to the faculty and staff of the Department of Education at Amity University for their guidance and expertise in the field of special needs education, which enriched the conceptualization of this study. Appreciation is also due to the university's library team for their assistance in navigating databases such as PubMed, ERIC, and PsycINFO, ensuring a comprehensive literature review. This work would not have been possible without their unwavering commitment to advancing research in developmental disabilities.

6. DECLARATION OF INTEREST STATEMENT

The author reports there are no competing interests to declare. This research was conducted without financial support from external funding agencies or commercial entities that might influence the findings or their interpretation. No non-financial interests, such as personal relationships or affiliations, have arisen from the direct applications of this study. The work was supported solely through institutional resources provided by Amity University, with no additional incentives or conflicts to disclose.

REFERENCES

- [1] Anderson, Laura M., Charles Shinn, and Mindy T. Fullilove. 2018. "The Effectiveness of Early Childhood Development Programs." *American Journal of Preventive Medicine* 34 (4): 345–356.
- [2] Dawson, Geraldine, et al. 2010. "Randomized, Controlled Trial of an Intervention for Toddlers with Autism: The Early Start Denver Model." *Pediatrics* 125 (1): e17–e23.
- [3] Guralnick, Michael J. 2017. "Early Intervention for Children with Intellectual Disabilities: Current Knowledge and Future Prospects." *Journal of Applied Research in Intellectual Disabilities* 30 (1): 1–16.
- [4] Karoly, Lynn A., et al. 2005. *Early Childhood Interventions: Proven Results, Future Promise*. Santa Monica, CA: RAND Corporation.
- [5] Kasari, Connie, Amanda Gulsrud, and Stephanie Shire. 2015. "Parent-Mediated Intervention for Young Children with Autism." *Journal of Early Intervention* 37 (3): 186–201.
- [6] Moher, David, Alessandro Liberati, Jennifer Tetzlaff, and Douglas G. Altman. 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement." *PLoS Medicine* 6 (7): e1000097.
- [7] Odom, Samuel L., Amy McCart, and Ann W. Cox. 2021. "Inclusive Early Childhood Education: A Collaborative Approach." *Young Exceptional Children* 24 (2): 87–99.
- [8] Reichow, Brian, Kara Hume, and Erin E. Barton. 2018. "Early Intensive Behavioral Intervention (EIBI) for Young Children with Autism Spectrum Disorders (ASD)." *Cochrane Database of Systematic Reviews* 5: CD009260.
- [9] Shonkoff, Jack P., and Deborah A. Phillips, eds. 2000. *From Neurons to Neighborhoods: The Science of Early Childhood Development*. Washington, DC: National Academies Press.
- [10] Zwaigenbaum, Lonnie, et al. 2015. "Early Intervention for Children with Autism Spectrum Disorder Under 3 Years of Age." *Pediatrics* 136 (Supplement 1): S60–S81.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 30s