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ABSTRACT 

To develop an autonomous smart pest detection system, the utilization of Smart IoT devices and adoption of deep learning 

techniques along with generative artificial intelligence techniques is necessary. Specifically designed for farming 

applications, the proposed system inbuilds an array of sensors comprising of an Infrared Sensor for nocturnal insect 

movement observation, an acoustic sensor for capturing sounds generated by the pests and environmental sensors like 

temperature, humidity, and light sensors, image sensors as well. The temperature sensor signifies its role in identifying 

optimal breeding conditions for pests prevalent in agricultural settings. The humidity sensor measures the moisture levels as 

per the pest activity and breeding. The light sensor monitors quantifies the pest behavior during different times of the day. 

These sensors are fabricated managing the pest ecosystem in farming. By using the widely adaptive deep learning techniques, 

such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) with Long Short-Term Memory 

(LSTM), the collected data is trained on the smart system for precise pest identification. The use of GenAI technique, further 

enhances the system by introducing a Chabot capable of interpreting observed data and supporting the potential pest-related 

trends according to the dynamic environmental conditions. Several test cases are performed on the proposed detection 

system, providing the fabricated smart system as an efficient one. The results and performance of the proposed system is 

well-suited for deployment in agricultural settings, with the potential that improves both the quality and quantity of crops in 

farming practices  
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1. INTRODUCTION 

Insect monitoring plays a vital role to preserve biodiversity, sustainably cultivate crops and mitigate vectors of diseases 

having direct impact on humans and livestock. The traditional methods of insect trapping and identification seems to be a 

time-consuming process with high costs. In case of ignoring the pest detection, there may arise of scenarios with several 

diseases. Hence, controlling and effectively managing insect populations is significant to the farmers in maintaining the 

health their crops. 

From the recent studies, it is being understood the demand for IoT-based smart system in the agricultural sector. This signifies 

the need for an autonomous technique that efficiently detects the pests and performs the predictive analysis on pests.   

The smart IoT-based device incorporates predictive maintenance by embedding the deep learning model and GenAI 

technique. The IoT sensors captures the pest details and transfers the captured data to the deep learning model for further 

processing and even to perform the predictive analysis. 

 Moreover, the smart system comprising of IoT sensors can be used to collect the dynamic features of the pests in the real-

time agriculture lands. 

The deep learning techniques, especially the Convolutional Neural Networks is trained with visual data captured from smart 

IoT devices that are installed the agricultural or farm lands.   

The Recurrent Neural Network model with LSTM architecture focuses on temporal features that are dynamic in nature of 

the pests and retains contextual information pertaining to the pest behavior.   

Furthermore, the utilization of GenAI tools provides the independence and adaptive system. The Generative Adversarial 

Networks (GANs) supports in creation of synthetic data with several pest scenarios. This synthetic data is augmented to add  
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efficiency to the training process by addressing the diverse pest-related challenges. Additionally, realistic pest scenarios 

ensures the robustness of the autonomous and smart pest detection system. 

The implementation of CNNs, RNNs with LSTM and GenAI tools as a smart IoT device makes the farmers to work with an 

autonomous pest management device. This real-time product handles pest dynamics providing fast and dynamic responses 

to get enhanced crop yields. This smart pest detection strategy enforces sustainable agriculture. 

The significant areas incorporated in the proposed system are: 

1. Design and Implementation of an IoT-Based Pest Detection Model: 

 . A smart circuit with IoT sensors is designed and developed for pest detection in agricultural lands to 

enhance the quality and quantity of yields. 

2. Integration of Advanced Deep Learning Architecture: 

 . The proposed work implements the deep learning architecture, Convolutional Neural Networks (CNN). 

This system extracts most important features from images using YOLOv3 model. The extracted features 

are then classified using optimized parameters to improve accuracy. 

3. Utilization of Recurrent Neural Network with LSTM: 

 . To optimize the analysis of time-series data collected from IoT-connected sensors, the Long Short-Term 

Memory (LSTM)-based Recurrent Neural Network (RNN) is implemented in the smart system. This 

application enhances the performance of the model in handling sequential data pertinent to pest detection. 

4. Application of Generative Artificial Intelligence: 

 . The article employs generative artificial intelligence techniques to predict information related to pest 

detection based on environmental factors. This innovative approach aids in providing insightful predictions 

regarding pest presence and behavior. 

This flow of the paper includes: The second section offers an extensive background review encompassing various pest 

detection strategies. In Section 3, we delineate the methodologies developed in conjunction with the technologies employed 

for analyzing data sourced from smart IoT devices specifically utilized for pest detection. Then, Section 4 presents the prime 

findings and summarizes the obtained results. Finally, Section 5 provides the conclusion comprising of future research and 

scope 

2. THEORETICAL BACKGROUND 

Smart devices comprising of IoT sensors plays a vital role in farming. Especially to have a mention, the IoT-based agriculture 

framework by (Gao et al., 2020) ensures data acquisition and visualization encompassing data associated with pests and 

environmental conditions that seems to be dynamic. Similarly, it is also highlighted by (Farooq et al., 2020) that provides 

smart devices that ensures the quality of crop (Azfar et al., 2018). The acoustic technique (Mankin et al., 2011) used for 

specific sound-generating pests has limited scope.  

Commercial pest management systems enable farmers to remotely monitor and assess pest activity within their fields 

(Gaikwad et al., 2021). Additionally, the incorporation of passive infrared (PIR) sensing technology in pest traps facilitates 

the identification of target pests by analyzing emitted heat levels.  

The acoustic sound plays a vital role in prediction of type of pests (Warren et al., 2009) as it varies according to its location. 

The wingbeat frequency of the pests (Clements, 1999) produces the audibility in harmonics. Basically, digital signal theory 

is applied for audio feature extraction (Humphrey et al., 2013) and presented an efficient feature representation suitable for 

pest detection. 

The application of Artificial Intelligence (AI) techniques for pest prediction proves advantageous for farmers, minimizing 

pesticide usage (Magarey, 2015). Predictive analysis on pest threats ensures pest control and reducing crop losses.  

The Wi-Fi-connected image monitoring system (Rustia et al., 2017) utilized traps equipped with sensors and cameras 

positioned at an 80 mm distance. Captured images were transmitted to a remote server every 10 minutes for processing, 

enabling effective pest detection. 

The challenging task associated with publicly available datasets (Li et al., 2021) associated with deep learning model is 

labeling. 

There exist two limitations while using Convolutional Neural Network (CNN)-based pest detection. The first and the 

foremost limitation is the size and density distribution of pests as these two factors influence the training of the system (Ana 

Sanz-Aguilar et al., 2020). The next limitation is the data quantity imbalance in terms of pest types.   

The Long Short-Term Memory (LSTM) along with Recurrent Neural Network (RNN) is widely used for (Chen et al., 2020) 
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pest identification in farm lands. 

The combined technologies such as IoT, deep learning and GenAI in agriculture represents a positive hope in the national 

economy. And these cutting-edge technologies ensure the efficiency in pest detection and management. 

3. DATA AND METHODS 

This proposed smart system works on several datasets. More significantly the IP102 is associated with agricultural pest 

detection. The IP102 dataset comprises of 75,000 images with nearly 102 types of pests. The dataset exhibits real-world 

prevalence of insect pests. And 19,000 images are annotated related to pests. The dataset features focus on specific 

agricultural products. It also provides the relationships between different pest species and their respective host crops, offering 

significant information for agricultural research and pest management strategies. Figure 1.1 shows the sample images from 

IP102 dataset. 

Table 1.1 shows the images of pests on Datasets. 

Table 1.1 Category of species of pests 

ID Insect Categories Images per Taxa 

D1 Flies 11 Families 24 – 159 

D2 Beetles 14 Families 18 - 900 

D3 Beetles 3 Species 40 – 205 

D4 Stone Flies 9 Species 107 - 505 
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Figure 1.1 Sample Pest Images from IP102 Dataset 

The below shown figure (Figure 1.2) shows the architecture of IoT based smart agriculture farming in detecting pests and 

find whether the prevailing environmental conditions is suitable for farming. 
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Figure 1.2 Architecture of Smart IoT based Agriculture Farming for detecting Pests 

 

 

 

The architecture shows that the smart IoT device is built with Infrared sensors, Ultrasonic sensors, Image sensors, and 

environmental sensors such as temperature, humidity, and light sensors. The smart device generates the data continuously. 

The generated data is used for detection of pests in the farm. The convolutional neural network uses IP102 dataset to detect 

and recognize the pests. 

(i) Input Layer 

 The Input layer represents the raw image data. In the context of the IP102 dataset, each image would be fed into the 

network. Let X represents the input image.  

(ii) Convolutional Layer 
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Pest Classification using CNN 
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AI powered ChatBot 

 

 



Dr.S. Akila Rajini, Dr.K. Nandhini  

pg. 669 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s 

 

Convolutional layers extract significant features. Let F represent the filter, and ∗ denote the convolution operation. This layer 

produces.           

                                               H = F * X       (1.1)  

(iii) Activation Function (ReLU) 

To introduce non-linearity ReLU is used as:  

Hactivated=ReLU(H)      (1.2) 

(iv)  Pooling Layers 

The spatial dimensions are reduced as :  

Hpooled=P(Hactivated)Hpooled=P(Hactivated)    (1.3) 

(v) Flattening Layer 

This results in 1D vector.   

(vi)  Fully Connected Layers 

This layer provides the output as,  

O=W⋅flatten(Hpooled)+b      (1.4) 

(vii) Output Layer 

  Softmax activation is used in this layer. 

This architecture is then trained using the IP102 dataset. 

The algorithm for detection of pest is shown below: 

                   

The implementation of CNN for pest classification includes hyperparameters and several epochs as shown below: 

 

Algorithm :  Pest Detection on spectral features 

For each feature do 

For each class in Ci do 

Collect maximum N predictions, yi 

Collect corresponding inputs, Xi 

Forming a concatenation of 2D images with dimensions h1 × w1 

Collect Ns training samples and frame Xi, train 

Take average across patches and individual columns: 

 

 
 

Normalise by mean and standard deviation 

end for 

end for 

 



Dr.S. Akila Rajini, Dr.K. Nandhini  

pg. 670 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 29s 

 

CNN Layers  Output Shape Parameters 

First Conv layer (272, 363, 64) 1792 

Second ( 272, 363, 64) 36928 

Pooling (136, 181, 64) 0 

Conv layer (136, 181, 128) 73856 

Max Pooling (68, 90, 128) 0 

Conv (68, 90, 256) 295168 

Max Pooling (34, 45, 256) 0 

Conv (34, 45, 512) 1180160 

Max Pooling  (17, 22, 512) 0 

Conv (17, 22, 512) 2359808 

Max Pooling  (8, 11, 512) 0 

Flatten (45056) 0 

Dense (1024) 46138368 

Dense 1 (1024) 1049600 

Dense 2 ( 25) 25625 

Total parameters: 51,161,305 

Trainable parameters: 51,161,305 

Non-trainable parameters: 0 

 

The hyperparameters used in the CNN model is shown in Table 1.2 

Table 1.2 Hyperparameters of CNN Model 

Hyperparameter Value 

Optimizer Adam 

Momentum 0.98 

Epochs 60 

Batch Size 32 

Drop out Rate 0.5 

No. of Layers 9 

Learning Rate 0.01 

Loss Function Cross Entropy 

 

The RNN uses the acoustic information from the smart IoT device to identify the pests. 

(i) Input Layer 

  Let Xt represent the acoustic features collected at time t.   

(ii) LSTM Cell 
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  The LSTM cell addresses the vanishing gradient problem.   

The hidden state (ht) and cell state (ct) at time t are updated using the following equations: 

it = σ(Wii Xt  + bii + Whi ht−1 + bhi)   (1.5) 

ft = σ(Wif Xt + bif + Whf ht−1 + bhf)   (1.6) 

ot = σ(Wio Xt + bio + Who ht−1 + bho)   (1.7) 

gt = tanh(Wig Xt + big+Whght−1+bhg)   (1.8) 

ct = ft ⊙ ct – 1  + it ⊙ gt    (1.9) 

ht = ot ⊙ tanh(ct)     (1.10) 

 Here, σ represents the sigmoid activation function, ⊙ denotes element-wise multiplication, and W and b are weight 

matrices and biases, respectively. 

(iii) Output Layer 

The output Yt at each time step is : 

Yt = softmax(Woutht + bout)    (1.11) 

(iv)  Loss Function 

  The categorical cross-entropy is used as a loss function.  

(v) Training 

  The weights and biases are updated using Adam  algorithm to minimize the loss function. 

The GenAI technique is used to create a chatbot:  

(i) Data collection and preprocessing 

  Collected data is again trained with generative AI model.  

(ii) Model Training 

  Large language model (LLM), Llama is used for training. 

(iii) Fine Tuning the Model 

  The model gets fine-tuned with the contexts associated with pest features. 

(iv)  Natural Language Processing 

  The Llama model understands the context and prompts related to pests and agricultural conditions and provides the 

effective answers. 

(v) Predictive Analysis 

  Using the chatbot a predictive analysis can be done. Users can inquire about potential pest outbreaks, optimal 

planting times, or recommended preventive measures based on the historical and real-time data available from the IoT 

devices placed on agriculture farms. 

4. EXPERIMENTAL SETTINGS AND EVALUATION 

The results show that the detection performance of pests is improved when the fusion of CNN and RNN with LSTM is done. 

The average accuracy obtained in pest detection using IP102 is shown in Figure 1.3. 
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Figure 1.3 Performance in terms of accuracy in detection of pests on IP102 dataset 

The dataset split and accuracy attained using the above dataset by the CNN classifier is shown in table 1.3. 

Table 1.3 Dataset Split on IP102 dataset 

Dataset split 

(Train/Test) % 

Accuracy (%) 

10 Epochs 20 Epochs 30 Epochs 40 Epochs 50 Epochs 

80 – 20 92.11 96.85 96.5 97.85 98.75 

70 - 30 91.78 95.7 95.3 96.7 97.75 

60 - 40 90.04 94.2 95.01 96.50 96.50 

 

The above analysis is depicted in a graph as shown in Figure 1.4. The dataset split of 80-20 % is sufficient for efficient 

learning and avoids overfitting.  The testing and training data is selected in such a way that has direct impact over the model 

performance. Figure 1.4 Dataset split and its corresponding accuracy. 
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The wingbeat frequency of several insects observed is listed in Table 1.4 along with its effect of environmental factors. It 

varies according to the environmental factors like temperature, humidity, pressure etc. The acoustic activity density is shown 

as in Figure 1.5. 

Table 1.4 Frequency Range of Pests 

Pests 
Wingbeat Frequency 

Range 

Environmental Factors 

Temperature Humidity Pressure 

Cricket 3 to 6 hertz Wingbeat 

frequency 

increases with 

high 

temperature and 

decreases as 

temperature 

decreases 

Wingbeat 

frequency 

increases 

with high 

humidity 

and 

decreases 

with low 

humidity  

Wingbeat 

frequency 

increases 

with high 

pressure 

and 

decreases 

with low 

pressure 

Katydids 4 to 8 hertz 

Aedes aegypti 400 to 600 hertz 

Aedes albopictus 400 to 600 hertz 

Anopheles subpictus 450 to 550 hertz 

Anopheles gambiae 400 to 600 hertz 

 

 

Figure 1.5 Acoustic activity density per 2 hrs in an Agriculture Farm 

 The distribution was computed based on the frequency of detections recorded every half-hour interval over the periodical 

course. The acoustic activity density also signifies the result. The shaded region shows that of a dusk chorus.  The line style 

specifies the  frequency range, with solid lines representing high frequency, dashed lines indicating medium frequency, and 

dotted lines denoting low frequency. 

The frequency range per species is shown in Figure 1.6. 
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Figure 1.6 Frequency range per species 

The average values are estimated for every 10,000 iterations. The relationships among the environmental observations with 

respect to acoustic detections are shown in Figure 1.7. 

 

Figure 1.7 Relationship between temperature and acoustic detections 

The process of pest detection is evaluated through the estimation of F1 score and precision– recall area. The incorrect 

detection deviates on precision–recall curve areas.  Wavelet coefficients represent the strength of the signal at different scales 

and time points after wavelet decomposition. These coefficients capture information about the frequency content of the signal 

at various resolutions. This model of pest detection using RNN with LSTM is compared with CNN and SVM with the hold 

out of dataset split of 50% on training and 50% on test data. The evaluation of comparison is shown in Table 1.5.  
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Table 1.5 Experimental Evaluation and Comparison of Pest Detection using acoustic data 

Classifier Methods Used Features Performance F1 

Score 

The PR Area 

SVM 
Acoustic features 

(Wavelet) 

0.897 ± 0.020 0.934 ± 0.015 

CNN 0.913 ± 0.020 0.960 ± 0.015 

RNN with LSTM 0.922 ± 0.020 0.985 ± 0.015 

 

The comparative analysis is shown as a graph below (Figure 1.8).  

 

Figure 1.8 Comparative analysis on evaluation of pest detection   

The graph at Figure 1.9 shows the comparison of normalized feature coefficient against wavelet coefficient. 

 

Figure 1.9 Plot of normalised feature coefficient against wavelet frequency Four different experiments were 

conducted. 

Experimental Setting 1: Fine Labels 

The classification efficacy and resilience is assessed by Signal-to-Noise Ratio (SNR) levels. This manipulation spans the 

spectrum from the threshold of detection to a distinctly audible level, involving a meticulous exploration of 8 discrete steps. 

In the pursuit of robustness, we conduct 40 iterations for each SNR setting. These iterations incorporate variations in both 

the temporal placement of injected signals. This experiment is done using Linear Discriminant Analysis (LDA) that uses 
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linear combination of features, Gaussian Naive Bayes (GNB) follows an assumption that features are independent of given 

class, Support Vector Machine (SVM) that works on high-dimensional feature space, Random Forest (RF) that improves 

accuracy and controls overfitting, Multi Layer Perceptron (MLP) that uses regression, and Kernel Density Estimation (KDE) 

that can be used for anamoly detection. 

The below figure 1.10 shows the evaluation of experiment 1 with fine labels. The noteworthy observation emerges as the 

machine learning models exhibit comparable performance, albeit with a slight yet meaningful competitive advantage 

demonstrated by the Gaussian Naive Bayes (GNB) model. The F1 score demonstrates a gradual increase, aligning with 

expectations, as the transition from the threshold of detection to more perceptible Signal-to-Noise Ratios (SNRs).   In these 

challenging conditions, the test may fail based on selection. This sheds light on the nuanced challenges encountered when 

dealing with lower SNRs and emphasizes the importance of robust feature selection methodologies in maintaining model 

effectiveness. 

 

Figure 1.10 Experiment evaluation and comparative analysis on finely labelled data 

Experimental Setting 2: Median Filtering 

This experimental setting is associated with performing the training using Linear Discriminant Analysis (LDA), Gaussian 

Naive Bayes (GNB), Support Vector Machine (SVM), Random Forest (RF) etc. also performs the training on the same 

dataset with coarse class 0 data. Figure 1.12 showcases the process with median filtering. 

A noteworthy performance boost surfaces for the Gaussian KDE, affirming that the implementation of temporal averaging 

proves instrumental in recovering event persistence. This manifests in the establishment of correlations between neighboring 

values in the time-series during an event. However, it's crucial to recognize that not every model reaps uniform benefits from 

this approach. Models characterized by high precision yet poor recall of the positive class with high F1 scores.   

Conversely, the median filter overly high rate. And hence contribute positive F1 score with the impact of median filtering 

on overall performance. 
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Figure 1.12 Experiment evaluation and comparative analysis with applied median filtering 

Experimental Setting 3: Rejection and Median Filtering 

In Figure 1.13, a compelling revelation unfolds as the Gaussian Kernel Density Estimation (KDE) emerges as a superior 

predictor of well-calibrated probabilities when compared to other baseline classifiers. The rejection window is set between 

0.1 and 0.9. Notably, the Gaussian KDE demonstrates a significant performance improvement with low SNR. 

  Figure 1.14 illuminates the proportion of data that undergo rejection, uncovering a distinctive characteristic of the Gaussian 

KDE. At lower SNRs, the model rejects a substantial portion of the data, underscoring that extreme probabilities are assigned 

only when the model exhibits a high degree of confidence in its predictions. This nuanced behavior underscores the 

discriminative power of the Gaussian KDE in offering well-calibrated probabilities, particularly in challenging acoustic 

environments. 

 

Figure 1.13 Experiment evaluation and comparative analysis   with median filtering. 

The Kernel Density Estimation (KDE) derives notable advantages from both median and rejection filtering, owing to its 

balanced distribution of positive and negative predictive accuracy, as well as its principled approach to handling uncertainty. 
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This dual application enhances the overall robustness and reliability of the KDE model, showcasing its adaptability and 

effectiveness in scenarios with varied levels of uncertainty and prediction complexities.  

 

Figure 1.14 Experiment evaluation and comparative analysis on ratio of data rejected by grouping SNR 

Experimental Setting 4: CNN Classification 

This experiment delves into formal classification by applying median filtering and rejection on the comprehensive framework 

with the provision of pseudo-fine labelled data as input for Convolutional Neural Network. Table 1.6 presents data with 

conventional CNN trained on coarse data. 

Training the CNN using Gaussian Kernel Density Estimation yields the best baseline system, the CNN(GNB), by an 

impressive 22.1%. The KDE exhibits lower precision and recall scores. This innovative approach showcases a significant 

advancement in the robustness and efficacy of the overall classification system. 

Table 1.6 CNN Classifier with 60 iterations 

Classifier 

Methods 

Performance F1 

Score 

Performance 

Precision 

Performance 

Recall 

CNN with KDE 0.737 ± 0.036   0.720 ± 0.030 0.745 ± 0.032 

CNN with MLP 0.438 ± 0.024  0.668 ± 0.027 0.323 ± 0.027 

CNN with RF 0.325 ± 0.033  0.421 ± 0.036 0.262 ± 0.033 

CNN with SVM 0.339 ± 0.025  0.486 ± 0.023 0.261 ± 0.023 

CNN with GNB 0.596 ± 0.024  0.657 ± 0.027 0.546 ± 0.024 

CNN with LDA 0.308 ± 0.028  0.572 ± 0.025 0.230 ± 0.027 

CNN with Coarse 0.175 ± 0.037  0.094 ± 0.032 0.926 ± 0.041 

The graph analysis on above comparison is depicted in Figure 1.15. It shows that CNN with KDE is the strongest inner 

classifier in terms of pest classification. 
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Figure 1.15 Comparative analysis on Performance of CNN classifiers 

5. CONCLUSION AND FUTURE SCOPE 

In conclusion, this article pioneers the integration of Smart IoT devices and cutting-edge deep learning and generative AI 

techniques for automatic pest detection in the realm of smart agriculture. The proposed smart system uses several IoT sensors 

enhances pest identification but also provides valuable details regarding the pest ecosystem in farming. Through the 

implementation of advanced deep learning models, including Convolutional Neural Networks (CNN) and Recurrent Neural 

Networks (RNN) with Long Short-Term Memory (LSTM), the article demonstrates a meticulous analysis of collected data 

for precise pest identification. The chatbot inclusion to the smart system is automatically and dynamically trained with 

observed data and environmental features. The proposed smart system ensures the pest detection with high accuracy and 

performance in predictive analysis of the pests. 

The scalability and large-scale deployments of the proposed system is still a challenging issue. To ensure adaptiveness and 

swift response using the chatbots, rigorous training with more data is essential. If the smart system includes hyper spectral 

imaging and drone-based monitoring, the pest detection system will be attracting more farmers in the nation 
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