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ABSTRACT

The opioid addiction crisis in the United States has gained national attention due to the alarming rise in opioid overdose
(OD)-related deaths. Addressing this epidemic has become a top priority for governments and healthcare providers, requiring
critical insights into the risk factors associated with opioid overdose. In this paper, we present our work on developing
machine learning-based prediction models to assess the likelihood of opioid overdose using patients’ electronic health records
(EHR).

We conducted two studies utilizing New York State claims data (SPARCS) with 440,000 patients and Cerner’s Health Facts
database with 110,000 patients. Our experiments demonstrated that EHR-based prediction models achieved the highest recall
using the random forest method (precision: 95.3%, recall: 85.7%, F1 score: 90.3%), while deep learning yielded the highest
pre- cision (precision: 99.2%, recall: 77.8%, F1 score: 87.2%). Addi- tionally, we identified clinical events as key features
contributing to the accuracy of these predictions.

Keywords: Medicine Overdose, Machine Learn- ing, Predictive Analytics, Healthcare Al, Risk Assessment.

1. INTRODUCTION

The United States faces an opioid epidemic, with misuse of prescribed pain relievers and illegal opioids like heroin
and fentanyl leading to a surge in overdose-related deaths. In 2017, drug overdoses caused 70,237 deaths, with 67.8 percent
involving opioids. Improving clinical practices, such as CDC guidelines and pain management standards, can help mitigate
risks. ldentify applicable funding agency here. If none, delete this. Clinical Decision Support Systems (CDSS) leverage Elec-
tronic Health Records (EHR) to enhance decision-making and identify individuals at risk of opioid toxicity The widespread
adoption of EHR, supported by initiatives like HITECH, has enabled large-scale data analysis. Government and commercial
EHR databases, such as SPARCS and Cerner’s Healthcare Data Insights, provide valuable resources for predictive mod-
eling. Machine learning, including deep learning techniques, has been increasingly applied to EHR-based predictive mod-

eling. Studies have used deep neural networks and recurrent neural networks (RNN) for disease prediction and opioid use
classification. Our research developed multiple models using claims and EHR data to predict opioid poisoning risks. By an-
alyzing demographic information, medical history, diagnoses, and clinical events, we identified key predictive features. Our
models achieved high accuracy, with Random Forest yielding a precision of 95.3 percent and recall of 85.7percent, while
Neural Networks achieved a precision of 99.2 percent and an UC of 95.4 percent. These findings demonstrate the potential
of machine learning in opioid risk prediction, highlighting the importance of clinical event data in enhancing predictive
accuracy.
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I. RELATED WORK
A. Prediction Results Analysis

our experiments, we utilized SPARCS and Health Facts databases., splitting 90% both positive and negative cases for training
and 10% for testing. For SPARCS, the training set included 360,000 negative and 36,000 positive cases, while the test set
had 40,000 negative and 4,000 positive cases. For Health Facts, the training set had 90,000 negative and 9,000 positive cases,
with 10,000 negative and 1,000 positive cases in the test set. To assess model performance, we measured accuracy, precision,
recall, F1-score, and AUC. Given the dataset im-balance, recall is crucial, and F1-score provides an aggregated performance
measure. We compared traditional and deep learning models, with results detailed in Table 2, where the best-performing
values are highlighted. Results demon- strated our models are capable of classifying opioid poisoning very well. Our models
perform effectively, achieving an F1 score of 79.27% for SPARCS using deep learning and 90.30% for Health Facts with
the random forest method. Deep learning yields the highest precision, reaching 97.07% for SPARCS and 99.23% for Health
Facts, highlighting the models’ ability to accurately identify opioid-poisoned patients. In terms of

recall, the models achieve 71.68% for SPARCS and 85.70% for Health Facts, these recall values represent the model’s ability
to identify all opioid-poisoned patients in the dataset. The highest AUC scores achieved are 94.94% for SPARCS and 95.41%
for Health Facts. In the SPARCS dataset, which contains fewer features, deep learning produces the best F1 score while
achieving an AUC score comparable to that of random forest. In contrast, for Health Facts, which includes a more extensive
set of features, random forest delivers the highest F1 score, whereas deep learning attains the best AUC score.

TABLE I: Experiment Result of different methods on SPARCS and Health Facts datasets

Dataset Model Acc. Prec. Rec. F1 AUC
Random Forest| 96.03% | 88.03% | 64.25% | 74.61% | 94.94%
SPARCS | Decision Tree | 95.33% 75.37% 71.68% 73.17% 94.62%
Logistic Reg. 96.44%)| 96.95% 67.85%| 76.22% 81.33%)
Deep Learning 96.82% | 97.07% | 72.02% | 79.27% | 94.92%
Random Forest| 98.69% | 95.34% | 85.78% | 90.30% | 95.11%
Health Facts Decision Tree | 97.83% 87.47% 83.10% 85.23% 93.83%
Logistic Reg. 95.73%| 96.17% 55.20%| 70.14% 74.32%)
Deep Learning| 97.93% | 99.43% | 77.80% | 87.22% | 95.41%

TABLE II: Top 20 Important Features for Prediction on SPOCS Dataset

Category Description Rank Category Description Rank
Diagnosis Sedative dep. T Diagnosis Altered mental 11
status
Diagnosis Viral hep. C A Diagnosis Drug _ abuse, 17
unsp.
Diagnosis Clonsmousness 3 Diagnosis CRronic pain 13
alt.
Diagnosis Cannabis abuse 4 Diagnosis ]tielsplratory 14
ailure
Diagnosis ANXiety state 5 Diagnosis Lumbago 15
Diagnosis Drug dep. 6 Diagnosis CNS stimulant 16
poison
Diagnosis Sedative abuse 7 Diagnosis Depressive ais- 17
order
Diagnosis Alconol foxic- 8 Diagnosis Benzodiazepine 18
ity poison
Diagnosis CRhronic pain g Diagnosis Tobacco USe 19
disorder
Diagnosis Pedestrian 10 Procedure TISSUE excision 20
injury (deep)

B. Feature Analysis

Understanding the significance of various features in the models is crucial for helping researchers and clinicians ex- plore
potential causes or disease progression patterns. Using our best-performing traditional method, random forest, we identified
the most important features for both datasets, as presented in Tables 3 and 4. These tables also include the ranking and feature
categories. Random forest determines feature importance based on Gini importance, which measures the total reduction in
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node Gini impurity index, weighted by the probability of reaching that node, and averaged across all decision trees in the
ensemble. The Gini impurity index is defined as:

G =i = 1ncpi(1pi)eq 1)

Random Forest is a collection of decision trees, where each tree classifies input samples as positive or negative. The final
decision is determined by combining results from all trees. Each decision tree node selects a feature to determine the path,
affecting class distribution and Gini impurity index. The Gini importance is then derived based on these variations.

| = GparentGsplit1Gsplit2eq (2)

The Gini impurity index measures node purity in decision trees, with Gini importance representing a feature’s contribu- tion
across all trees. For the New York State SPARCS dataset, diagnosis codes are the most significant predictive features, with
sedative, hypnotic, or anxiolytic dependence ranking as the top feature (ICD-9:304.11, ICD-10: F13.20). Other key features
include Hepatitis C, altered consciousness, cannabis

abuse, and chronic pain conditions. The Health Facts database, with richer clinical data, high- lights heart rate, respiratory
rate, temperature, pain scale, fall history, and BMI as top predictors, as opioid overdose affects vital signs. Table 5
summarizes feature importance, with diagnosis dominating SPARCS predictions, followed by procedures and demograph-
ics, while clinical events lead in Health Facts, followed by diagnosis, medications, and procedures.

TABLE I11: Importance for Each Feature Category

SPARCS Health Facts

Diag. [Proc. |Demo. Diag. [Proc. [Meds [Clin. [Demo.

78.1% [15.3% [6.6% [25.1% [6.2% |13.8% [50.1% 4.8%

C. Experiment on Predicting Outcomes Using Only Primary Data

To evaluate performance using only primary data, we re- moved diagnosis codes from the Health Facts dataset and rebuilt
the models. Table 6 compares results before and after removal. Despite the exclusion, prediction performance remained
strong, with Random Forest achieving a slightly higher AUC was achieved without including diagnosis codes.

TABLE IV: Performance of Models Before and After Removing Diagnostic Features on Health Facts

Methods Diag. Accuracy [Precision [Recall F1 AUC
Codes

Random Forest [Yes 98.69% 05.34% 85.70%  [90.30% 05.11%
No 97.41% 96.25% 74.10% 85.36%  [95.29%

Decision Tree [Yes 97.38% 87.47% 73.10% 82.29% 94.53%
No 96.98% 93.15% 72.10% [83.29%  [94.58%

Logistic Yes 95.73% 06.66% 55.80%  [70.10% 95.69%

Regression |, 95.73%  [96.63%  [55.80% [70.10%  [95.69%

Deep Learning [Yes 97.35% 98.36% 72.00% 83.14% 94.97%
No 97.35% 08.36% 72.00% [83.14%  [94.97%

A. Data Sources

2. METHODOLOGY

We utilized SPARCS and Cerner’s Health Facts as a data source, while SPARCS inpatient data includes hospital dis- charge
records from New York State healthcare facilities, sup- porting statewide healthcare analysis. Health Facts inpatient data
comprises Anonymized EHR records from over 600 U.S. hospitals, offering a comprehensive dataset with diagnoses,
procedures, demographics, medications, vital signs, lab results, and other clinical observations.

B. Diagnosis Codes for Data Retrieval
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Patients were categorized into opioid overdose and non- opioid groups based on opioid-related diagnosis codes in their
records. ICD-9 and ICD-10 codes were used to identify poi- soning from opiates, heroin, methadone, and other narcotics.
Since future opioid overdose risk is unknown, a patient’s last visit status was used as the prediction target, while prior visit
data served as features for model training.

C. Research Datasets

We created two separate study datasets: SPARCS (2005-2016) and Health Facts (2000-2017). In SPARCS, we selected
40,000 opioid-poisoned patients and 400,000 non- opioid patients to balance the dataset. Health Facts included 110,000
patients (10,000 positive, 100,000 negative), ensuring at least one hospital visit with documented clinical event records for
improved analysis. Key predictive features included diagnosis codes, procedure codes, medications, clinical events, and
demographic data. Diagnosis codes, essential for predict- ing future opioid overdoses, were filtered to remove direct opioid-
related codes. Procedure codes were retrieved for both datasets, while medication data (NDC codes) were specific to Health
Facts. Only the most relevant 10% of medication codes were retained, considering dosage and duration. Clinical events,
available only in Health Facts, covered symptoms, pain levels, smoke history, and vitals. Since 79.21% hospitals included
in the Health Facts recorded clinical events, they were valuable for prediction. Demographic information (age, gen- der, race)
was included in both datasets, while payment sources (Medicare, Medicaid, etc.), relevant to socioeconomic status, were
incorporated into SPARCS. This feature selection ensured a focused, efficient model for predicting opioid overdose risk.

D. Feature Selection and Normalization

To optimize prediction and training efficiency, we filtered features by selecting only the top 10 percent of diagnosis,
procedure, and medication codes based on their frequency in opioid poisoning cases. This reduced the feature space while
retaining relevant predictors. Health Facts includes a broader range of features compared to SPARCS, and the final selected
features are summarized in Table V.

TABLE V: Overview of Selected Features for Prediction in Study Datasets

Datasets Category Feature |Description
s
Diagnosis 2000 [ICD-9, ICD-10 Codes
SPARCS Procedure 2000  [ICD, CPT Codes
Demographics 4 Race, gender, age, payment
Diagnosis 2000 |ICD-9, ICD-10 Codes
Procedure 1000 |ICD, CPT Codes
Health Facts Demographics 3 Race, gender, age
Clinical Events 900 500 events, 400 numeric values
Medication 4500  [1500 NDC Codes, dosage, duration

Ages were grouped into 0-5 years and then 10-year intervals to enhance training efficiency with minimal performance loss.
One-Hot Encoding was applied to categorical features like

race and payment methods. Figure 1 illustrates this encod- ing for payment sources, where Patient 1 receives the code
[1,1,0,0,0,0]. We represented diagnosis, procedure, medication codes, and clinical events using a binary format (1 if present,
0 if absent). Numeric features, such as medication dosage, duration, blood pressure, height, and pain score, were recorded in
appropriate units (e.g., height in cm, blood pressure in mmHg). The feature preprocessing process is illustrated in Figure 2.

TABLE VI: One-Hot Encoding for Payments

Patient [Self-Pay [Medicare [Medicaid |Insurance

P1 1 0 0 0
P2 0 0 0 1
P3 1 0 1 0

This study seeks to predict opioid poisoning using EHR data through machine learning (ML) and deep learning (DL) models.
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Traditional ML approaches, such as random forest, decision tree, and logistic regression, were used with opti- mized
parameters. To address class imbalance, higher weights were assigned to positive cases. For DL, we developed and
implemented a fully connected neural network with three layers, dropout regularization (20%), and ReLU activation for
hidden layers. A sigmoid activation function was employed for binary classification. The model framework is illustrated in
Figure 3. This study predicts opioid poisoning using EHR data with machine learning (ML) and deep learning (DL)
approaches Traditional ML methods include random forest, decision tree, and logistic regression models with optimized
parameters. To handle class imbalance, higher weights were assigned to positive cases. For DL, we used a fully connected
neural network with three layers, dropout (20 percent), ReLU activation, and a sigmoid output for classification.

E. Prediction Methods

This study aims to predict opioid poisoning in patients using EHR data by applying both traditional machine learning and
deep learning techniques. Traditional models such as decision trees and random forests, and logistic regression have proven
effective for health data analytics. In our experiments, we prioritized recall over precision to ensure high-risk patients

Feature Category Raw Data Input Feature Mapping Prepared Features
+0One-Hot Encoding
(CDo, 786.2.2000.06-12)  Foegmentation [0, ety ooy s O]

Diagnosis [ICD9, 276.51,2009-01-15] Dimension = 2000 in
. both SPARCS/Health Facts

(ICD9, 87.79, 2008-07-25]
Procedure 0 4542 2008-03-17 s Yantiea®
(ICDS, 45.42, 2008-03-13) Dimension =2000 in SPARCS
Dimension =1000 in Health Facts
49 years old,
2 Female,
Demeraphlc Caucasian, Fioy 054,560,990 55 19,1, 55
[Self-Pay, 2008-07-24] Dimension = 45 in SPARCS
[Medicare, 2008-07-24] Dimension = 12 in Health Facts
g [Med13208, 6.0 doses, 2012-02-02 12:00, 2012-12-2214:31]  [..., 1, 6.0, 151.0 ..., 1, 2.0, 442.0, ...]
Medication . 175065, 2.0 tablet, 2010-10-31 9:00, 2010-10-31 16:22) Dimension = 4500 in Health Facts
Clinical [COE '—”u‘? ke 20“0"05'02]: - [.. 1,310 ..., 1,340,..]
Events [DBP Cuff, 34.0, mmHg]. 2010-05-02] Dimension = 900 in Health Facts

Fig. 1. Example of feature preprocessing for the prediction models.

were identified. Logistic regression applied L2 regularization, while decision trees and random forests used Gini impurity
for data splitting. To address class imbalance, we assign a higher weight to positive cases, improving the F1 score. Figure 1
illustrates the sample preprocessing done for the prediction models.

Output Layer (1) ‘

Fully Connected Layer (8)

Disabled neuron randomiy
chosen after dropout in each
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Fully Connected Layer (512) ‘ ‘ e ‘
(| Remained neuron after dropout in

each training epoch, all
connections to this neuron work

in this epoch.

Dropout (0.2)
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Fig. 2. Neural Network Framework for the Prediction Model
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For deep learning, we implemented a fully connected neural network with three layers, two dropout layers, and a final output
layer for binary classification. ReLU was used in hidden layers to prevent vanishing gradients, a sigmoid function was applied
in the output layer, and the model optimized binary cross-entropy loss using the Adam algorithm for better effi- ciency. We
conducted experiments using Python (TensorFlow, Keras, Scikit-learn) on an NVIDIA Tesla V100 GPU, ensuring robust
and efficient implementation.

3. CONCLUSION

The opioid epidemic has emerged as a public health emer- gency in the United States. Identifying high-risk patients for
opioid overdose can enable smarter and safer clinical decision- making, ultimately improving pain management practices.
Our research on machine learning-based predictive models for opioid overdose detection has shown promising results using
both claims data and comprehensive EHR data. These findings suggest that an Al-driven approach, when integrated into
clinical settings, can enable automated and highly accurate predictions, offering valuable support to healthcare providers in
addressing the opioid crisis.
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