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ABSTRACT 

Predicting nutrient inadequacies in crops is difficult because of the intricate relationships between soil, environment, and 

plant physiology. Traditional assessment approaches are inefficient and only identify problems after symptoms manifest, 

which results in decreased yields. This research examines the application of deep learning algorithms for emerging detection 

of nutrient deficiencies at both the crop and leaflet scales. At the crop scale, models utilize satellite, drone, and IoT devices 

for nitrogen, phosphorus, and potassium deficiency forecasting for staple crops: wheat, rice, and corn. At the leaf scale, 

computer vision and spectral imaging identify iron, zinc, and magnesium deficiencies prior to the manifestation of visible 

symptoms. This review captures the years 2015 to 2024, analysing the progress and gaps in deep learning implementations 

for precision agriculture along with the proposed models, strategies, and results in such advanced technologies. It presents 

the state-of-the-art and open problems in AI-based nutrient deficiency prediction. This research serves as a reference for 

stakeholders and scientists dealing with crop nutrition, management, and forecasting under the context of industrial and 

enterprising agriculture. 
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1. INTRODUCTION 

Agriculture remains the primary source of food production and economic stability. As the global population is speculative 

to reach 9.7 billion by 2050, effective crop nutrition management is vital for ensuring productive and sustainable food 

production. A vast majority of the population relies on affordable staple foods, nutritional deficiencies in crops pose 

tremendous risks, which can cripple the global economy. From single plant leaves to immense crop fields, malnutrition in 

crops can be detected on multiple levels. Each level order requires sophisticated and effective management strategies [1]. 

Agriculture’s nutrient removal assessment with time lagged sampling, visual inspections, soil testing and laboratory analysis 

have several problems, these include: 

• Results take a long time to be returned after sampling. 

• Operational costs are elevated for widespread use. 

• Skilled people are needed to carry out processes. 

• Deficits cannot be identified before recognizable symptoms develop. 

• Real-time tracking and forecasting is not possible. 

With the agricultural sector forming the foundation of the economy, making it self-reliant is crucial as these issues form dire 

threats to global food security. Adequate crop nutrition management is increasingly critical in maintaining the quality and 

quantity of food produced [2]. The absence of adequate nutrition can have devastating effects, crippling economies and 

posing food security challenges. Applying a knowledgeable in nutritionist is challenging since defining nutrient deficiencies 

usually requires visual interpretation or laboratory analyses that are slow, tedious, and sometimes not accurate. The use of 

deep learning technologies has shifted the paradigm in detection and prediction of nutrient deficiencies in crops. Their 

accurate and prediction capabilities allow for intervention by farmers and agricultural experts before the crops undergo 

severed neglect indicators. Anticipated increases in food demand, as outlined in fig 1, show the paradigm shift in agriculture,  
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showing an increase of 2.1 billion tons in 2010 to a projected 3.2 billion tons in 2030 and compound annual growth belt of 

2.1%. Seldom changes stems out-of- population growth and shifts in eating habits, especially for developing countries [3]. 

Increased farmers and agricultural practitioners are further subsiding the crops resourceful foods which caps the agricultural 

systems. FAO projections reasonably indicate that there is need for drastic shift in the agricultural resource productivity to 

ensure food for the ever-increasing world population. 

 

Fig 1: Global food demand projections 

 

Agricultural land use trends present in fig 2, shows a concerning paradox in the face of increasing food demand, showing a 

gradual decline from 4.9 billion hectares in 2010 to a projected 4.7 billion hectares by 2030 [3]. This reduction, primarily 

driven by urbanization, soil degradation, and climate change impacts, represents a significant challenge for global food 

security. The decreasing availability of arable land, coupled with water scarcity and soil quality deterioration, necessitates 

innovative approaches to agricultural management. 

 

Fig 2: Agricultural land use trends 

 

World Bank data indicates that this trend is particularly pronounced in regions experiencing rapid urbanization and 

environmental degradation. This survey paper aims to provide a comprehensive overview of how deep learning approaches 
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are being utilized to predict nutrient deficiencies across various crops. We explore the evolution of these technologies, current 

state-of-the-art methods, challenges, and future prospects in this field. 

Background  

Understanding Nutrient Deficiencies in Crops  

Essential elements required for healthy growth and development of a nutrient-deficient plant. These elements are classified 

into macros (do plants need). Needed for healthy plant growth, the nutrients are further divided into micro which are needed 

in small quantities. Every deficiency has its own unique symptoms garding this malady of growth includes such as chlorosis, 

necrosis, stunted growth and new leaves with undeveloped and abnormally shaped limbs. The index projection for crop yield 

increase is shown in fig 3, where a value of 135 is projected to be needed in 2030.  

 

Fig 3: Required yield increase index 

 

[4] This index base lined at 100 in 2010, thus demonstrating a 35% yield productivity increase to efficiently be realized. The 

increase is achievable through innovations in crop nutrition, pest control, and precision farming technologies such as 

irrigation or planting. Meet the growing food demand is particularly enabled with the limited boundaries of decreasing the 

quantity of available land and having the requirements for saving the environment. The estimation emphasizes on the 

importance of these proposals in the integration of sophisticated systems of nutrient management and their rapid control for 

nutrient withdrawal from plants within the framework of agricultural land optimization. 

Deficiencies of nutrients in agricultural crops are the consequences of a unique combination of the chemistry of soils, 

physiology of plants, and other ecological factors, which is very important to address globally. These deficiencies arise when 

plants do not receive supportive factors, such as minerals, which need to be extracted within the growth period, ultimately 

lowering yield quantities and their quality. As focused by Osibo et al. [5] the insufficient nutrients in crops contribute to 15-

30% of global agricultural productivity loss and quite nakedly show the need of profit detection and management programs. 

Based on the amounts, essential nutrients are divided into two basic categories; the nutrients required for plant growth and 

development and basic nutrients required for plant health. Macronutrients encompass nitrogen, phosphorus, potassium, 

calcium, magnesium and sulfur which are primary constituents and furthest required in relatively large quantities. Han et al. 

[6] reports that in severe cases, nitrogen deficiency alone can reduce yields of crops by 40%. They further point that 

phosphorus and potassium deficiencies commonly result in crop yield decrease of 20-30%. Micronutrients encompass iron, 

zinc, manganese, copper, boron, and molybdenum which are equally important but required for specific metabolic plant 

health processes are needed in small amounts. Cho et al. [7] research shows that these micronutrient deficiencies can have 

spiral impacts on plant metabolism, frequently resulting in lowered photosynthetic efficiency and reduction of stress 

tolerance. 

The manifestation of nutrient deficiencies follows distinct patterns that can provide valuable diagnostic information. In their 

report, Shaik et al. [8] noted that these symptoms usually develop from metabolic alteration to advanced stages that include 

visible discoloration, tissue death or necrosis, slow growth, and abnormalities in leaf shape. The problem is that by the time 

these abnormalities become apparent, the crop yield potential has already been greatly reduced. The common techniques 

employed to diagnose nutrient deficiencies include combination of visual diagnosis together with soil examination, plant 

tissue testing, and chemical analysis. Though useful to agriculture for many decades, these techniques pose many 

disadvantages in contemporary farming. 
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Muruganantham et al. [9] reports underline the fact that conventional soil testing, though useful, does not make nutrient 

analyses available or accessible for plant use. The gap between sample taking and analysis for a report also inhibits useful 

timely action being taken. Plant tissue analysis is more direct but temporally limited and can be expensive for large scale 

agricultural activities. Visual appreciation of the plants also has its challenges since it depends on the skill of the person 

inspecting the plants, and often the effects of nutrient deficiencies are noticed only when the plants are already in bad shape. 

These methods also have issues with efficiency, cost, and real time tracking of data from large scale farms. 

Evolution of Deep Learning in Agriculture  

The application of deep learning in agriculture is revolutionizing the traditional techniques used in crop monitoring and 

management. Over the last decade, the evolution of computing power, sensor systems, and AI algorithm development has 

happened at an unprecedented rate. Vavlas et al. [10]'s analysis reveals that there is a 300% increase in the use of AI 

technologies in the agricultural industry from 2015 to 2023, with deep learning technologies spearheading the change. Deep 

learning's application in agriculture started with basic image classification for detecting crop diseases. However, in the words 

of Kachouei et al. [11], this domain has advanced towards more complex capabilities like multi-modal data fusion. 

Contemporary systems have the ability to analyze and understand data from various sources, such as satellite images, drone 

sensors, ground-level IoTs, and data from traditional agricultural systems. This growth has been especially pronounced in 

the area of recognition and forecasting of nutrient deficiencies [12]. The development of computational infrastructure 

emerged with the improved development. As Bastos et al. [13] points out, GPU-based computing and cloud processing 

capabilities have sophisticated deep learning applications possible for agricultural activities regardless of their size. The 

improvement of IoT sensor technology has certainly coincided with this technological improvement. Nowadays, agricultural 

sensors are capable of multi-spectral data collection, real-time environmental observation, and farming automation system 

integration. In particular, the agriculture domain's deep learning development is assisted by application of complex neural 

network technologies [14].  

Wang et al. [15] describe how modern architectures, including attention mechanisms and graph neural networks, increase 

the effectiveness and efficiency of nutrient deficiency detection and its associated diagnosis. Such models are more effective 

in analyzing agricultural data that is spatially and temporally complex, thus providing precise and feasible solutions. The 

method of acquiring data has changed tremendously as well. Zhao et al. [16] explains the development of automated data 

collection systems and better annotation techniques which makes it possible to build massive agricultural datasets. These 

datasets enable the deep learning models to perform better and be more accurate. The implementation of learning transfer 

techniques has improved further the customization of the pre-trained models to particular agricultural settings, minimizing 

the data needs of novel implementations [17]. 

2. DEEP LEARNING ARCHITECTURES FOR NUTRIENT DEFICIENCY PREDICTION  

The application of cutting-edge technologies in deep learning frameworks has changed the methods used for predicting 

nutrient starvation of agricultural crops. These advanced computer models apply different neural network architectures to 

multilevel data integration for precise and timely prediction of nutrient deficiency. As Sangeetha et al. [18] points out, the 

accuracy of deep learning models greatly surpasses that of machine learning methods as they boast an accuracy increase of 

35% when it comes to detecting nutrient starvation. The evolution of these architectures was motivated by the challenge of 

multi-type broadband multispectral image, sensor data, and time series data fusion at low cost and high quality. These 

advanced architectural features allow the systems to simultaneously model spatial and temporal characteristics of nutrient 

deficiency to offer precise and accurate farming solutions to the practitioners [19]. 

Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are essential in processing image-based data with respect to detecting nutrient 

deficiencies. These architectures are good with extracting spatial features and patterns from visual data which makes them 

efficient in analyzing the images of leaves and other field level imagery. Tanveer et al. [20] highlight how CNNs are capable 

of detecting different types of nutrient deficiencies by visually distinguishing associated patterns sometimes long before 

humans are able to notice symptoms. The reason why CNNs perform well in agriculture is because they learn from images 

autonomously without the need to manually configure them, this is referred to as feature engineering. More recent studies 

have shown that the properly designed architectures of CNNs are able to achieve more than 90% accuracy for detection in 

different crops and under various growing conditions [21,22]. 

Basic CNN Architecture: The first attempts in applying CNNs architectures for nutrient deficiency detection were simpler 

ones that served as the starting point for others. These basic architectures mostly are made up of convolutional layers, pooling 

layers, and fully connected layers that are stacked on top of each other and they take an input image as the source whose 

features will be extracted [23]. Yoon et al. [24] reported that these basic CNN models are surprisingly efficient in detecting 

the any major nutrient deficiencies with a stunning accuracy rate of 85-89% when done in a controlled environment. The 

straightforwardness of these architectures is beneficial for real-time monitoring tasks since their computational efficiency 

and implementation is less complex. Some recent findings suggest that even fundamental CNN architectures, when provided 
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with high-quality datasets, are able to identify early-stage deficiency symptoms, although they are not very performant in 

more complex cases with various deficiencies [25]. 

 Advanced CNN Variants: The development of more sophisticated variants of CNNs, which overcame many of the issues 

related to basic models, corresponds with the expansion of ResNet-based architectures. These models that include skip 

connections along with deep residual learning have provided outstanding results in detecting nutrient deficiencies [26]. 

Wraase et al. [27] showed that modified ResNet-50 architectures outperform basic CNN models by as much as 15% in 

accuracy. DenseNet versions which are defined by dense connectivity patterns allowing feature reuse have been shown to be 

particularly useful in detecting small deficiency signs. Detection accuracy has also been increased by more advanced 

architectures like Inception-ResNet and EfficientNet, for minimal computational cost. Such models show superb 

performance in complex cases with many types of deficiencies and different environmental conditions, achieving more than 

93% accuracy in real-world tests [28,29]. 

Recurrent Neural Networks(RNNs) 

Due to the timeless characteristics of nutrient deficiency development, they need structures that can handle time-series data 

[30]. The development of nutrient deficiency is associated with a number of time dependent events and processes, and RNNs 

are extremely useful in capturing those. Liu et al. [31] showed that RNN based systems are able to predict deficiency 

progression with accuracy rates higher than 88%, which facilitates timely interventions. These architectures are able to 

combine temporal data received from different sources like sensor networks, weather stations, and even spatial data captured 

during periodic measurements for effective comprehensive monitoring [32]. The effectiveness of RNNs for longitudinal 

monitoring and forecasting is because of their ability to maintain and utilize historical information [33]. Table 1 presents the 

State of art deep learning architectures utilized for nutrition deficiency prediction and its comparative analysis. 

TABLE 1: STATE OF ART DEEP LEARNING ARCHITECTURES UTILIZED FOR NUTRITION 

DEFICIENCY PREDICTION AND ITS ACCURACY, REQUIREMENTS, FEATURES AND LIMITATIONS  

Deep 

Learning 

Architecture 

Input Type 
Detection 

Accuracy 

Memory 

Requirements 
Key Features Limitations References 

Basic CNN RGB images 85-89% 2-3 GB 

• Fast inference  

• Good for visible       

symptoms  

• Real-time capable 

• Limited to visible 

deficiencies  

• Poor performance 

in mixed cases  

• Weather dependent 

[33] 

ResNet-50 Multispectral 92-94% 5-6 GB 

• High accuracy  

• Better feature 

extraction  

• Good for early 

detection  

• Handles complex 

patterns 

• Higher 

computational needs  

• Requires large 

dataset  

• Complex training 

process 

[34] 

DenseNet-

169 
Hyperspectral 93-95% 7-8 GB 

• Feature reuse  

• Memory efficient  

• Handles subtle 

symptoms  

• Good gradient 

flow 

• Long training time  

• Complex 

architecture  

• Large memory 

during training 

[35] 

LSTM 

Network 
Sensor data 91-93% 4-5 GB • Temporal analysis  

• Long-term 

dependencies  

• Good for 

progression 

• Slow sequential 

processing  

• Complex 

parameter tuning  

[36] 

GRU 

Network 
Sensor data 90-92% 3-4 GB 

• Faster than LSTM  

• Efficient memory 

use  

 • Simple 

architecture 

• Slightly lower 

accuracy  

• Limited memory 

capacity 

• Short-term 

dependencies 

[37] 

CNN-LSTM 

Hybrid 
Mixed data 94-96% 8-10 GB 

• Spatial-temporal 

analysis  

• High accuracy  

• Comprehensive 

detection  

• High 

computational cost  

• Large memory 

needs 

[38] 

Attention-

Enhanced 

CNN 

Multispectral 95-97% 6-7 GB 
• Focus on relevant 

features  

• High accuracy  

• Robust to noise 

• High memory 

usage  

• Computationally 

intensive 

[39] 

EfficientNet-

B4 
RGB + NIR 93-95% 4-5 GB 

• Efficient scaling  

• Good accuracy-

speed trade  

• Resource efficient  

• Requires 

optimization  

• Sensitive to 

hyperparameters 

[40] 
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LSTM Networks 

The use of Long Short-Term Memory networks marks an additional development in the temporal analysis dimension for 

predicting nutrient deficiencies. These advanced networks utilize a specialized gating mechanism facilitating the information 

flow that dominate the shortcomings of traditional RNNs. Analysis from Liuet al. [31], suggests that systems built on LSTM 

architectures have predictive capabilities of tracking nutrient deficiencies to an accuracy of 91%. The ability of the 

architecture  to  maintain  relevant historical  information  while  discarding   irrelevant  details  

makes it suitable for analyzing complex patterns over time, plant health data included. Multi-stream data fusion has recently 

shown success in providing deficiency warning indicators at early stages of development [43]. 

GRU-based Approaches 

Gated Recurrent Units provide an alternative to LSTM networks with noticeable advantages in computational efficiency 

without sacrificing too much in performance. Dadsetanet al. [44] show that systems built using GRUs achieve detection 

accuracy within the margin of 2% from LSTM models at the same time supporting 30% less computational resources. Both 

architectures proved to be the best for tasks requiring real-time performance because efficiency in computation is crucial 

[45]. The simplification of the GRU architecture lowers the level of model's complexity whilst keeping the ability to capture 

relevant temporal dependencies. Recent success in continuous monitoring applications has enabled automated response to 

growing nutrient deficiencies [46]. 

Hybrid Architectures 

Progress made recently in the prediction of nutrient deficiency is based on the development of hybrid models that unite 

several approaches to neural network. Jiang et al. [47] reports accuracy gains due to hybridization as high as 20% using the 

CNN-LSTM hybrid model in comparison to single architecture models. These complex systems integrate the spatial feature 

extraction performed by CNNs with the temporal analysis of RNNs to offer monitoring solutions. Performance has improved 

even more with the addition of attention mechanisms that allow models to concentrate on features most pertinent for 

deficiency detection. Such models developed for practice are achieving accuracy values more than 95% for field conditions 

which is the best value for accuracy of nutrient deficiency prediction [48, 49]. 

3. DATA COLLECTION AND PREPROCESSING  

The quality of deep learning models for nutrient deficiency prediction is directly proportional to the severity of effort spent 

on data harvesting and pre-processing. These systems need to combine several data sources such as high-resolution images, 

sensor data, and information from monitoring systems [50. Accurate prediction models require these data to be collected and 

processed in an organized way. The recent state of the art in imaging and sensor systems allows for more accurate data 

capture, and advanced preprocessing assures the data is of good quality. Many studies have shown that the proper approach 

of data harvesting and pre-processing is able to increase prediction accuracy by 40% proving how important these steps are 

[51]. 

Image Data Collection 

The prereporting stage of nutrient deficiency detection systems is one of the most important parts, and image data collection 

is critical, as it depends heavily on both technical aspects and the surrounding environment [52]. Using the most basic RGB 

camera systems, or advanced hyper spectral systems, different images of the same plant are taken at different points in time. 

Every system captures specific aspects of plant’s health and nutritional needs. Having established protocols for image 

collection is important to ensure that data reliability and consistency were achieved [53]. This includes lighting conditions, 

atmospheric conditions, and even the growth stage of the plant. New research has shown that well developed image collection 

protocols have the ability to increase accuracy of deficiency detection by 30% when compared to ad hoc image collection 

protocols [54]. 

Transformer-

Based 

Mixed 

data 
94-96% 9-11 GB 

• Parallel processing  

• Global context  

• High accuracy 

• Very high memory 

usage  

• Large dataset 

required 

[41] 

MobileNetV3 
RGB 

images 
88-90% 1-2 GB 

• Mobile optimized  

• Fast inference  

• Low memory usage  

• Lower accuracy  

• Limited feature 

extraction  

• Basic deficiency 

only 

[42] 
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Image Acquistion Methods:  

Contemporary systems for deficiency analysis utilize several imaging techniques to gather data regarding the overall health 

of a plant. The primary imaging system is RGB imaging, which, unlike modern capturing systems, gets chlorosis, necrosis, 

and other visible morphological changes at a much lower cost. These systems can diagnose surface symptoms with an 

accuracy of 85%, if the calibration is done appropriately [55]. Multispectral imaging is an advancement that enables capturing 

from 4 to 12 spectral bands, which facilitates early detection of certain distress symptoms prior to their actual surfacing. This 

technology has proven to detect nitrogen deficiencies two weeks earlier than conventional technologies. Hyperspectral 

imaging is the most advanced image capturing methodology that collects hundreds of narrow spectral bands to allow for 

finer biochemical examination [56]. Table 2 presents the different imaging method utilised for nutrition deficiency detection, 

advantages and its limitations. Recent research suggests that the use of hyperspectral data gives accuracy rates of more than 

92% when distinguishing different nutrient deficiencies. The application of these technologies gives more comprehensive 

information, thereby augmenting the overall detection efficiency. 

Environmental Considerations 

Handling the environmental factors when acquiring images greatly influence the reliability and quality of the data gathered 

in nutrient deficiency detection systems. As great of a challenge as it may be, the basic changing of light conditions can result 

in as much as 25% variance in the accuracy of detection [67]. Automated light compensation and set protocol systems with 

fixed illumination are utilized by modern systems. Outdoor imaging systems are also affected by outdoor weather changes 

which necessitates proper timing with strong normalization techniques. Standardization of camera angles and positions is 

critical, considering the fact that camera positioning errors can induce inaccuracies in data by 15%. The variations in different 

growth stages need to be considered, given that the deficiency symptoms are not constant throughout the development of the 

plant [68]. The quality of the image can be impacted severely by changes in temperature and humidity, which need to be 

monitored closely. Advanced masking methods are required to mask the background interference by soil and surrounding 

vegetation. These factors must be controlled in the environment to ensure the data quality remains uncompromised [69]. 

Sensor Data Integration  

Sensor networks provide essential complementary data to image-based analysis in nutrient deficiency detection systems [70]. 

Modern agricultural monitoring employs diverse sensor types including soil sensors for moisture, temperature, pH, and 

electrical conductivity measurements. Environmental sensors capture ambient conditions affecting nutrient uptake, such as 

air temperature, humidity, and rainfall patterns. Plant-based sensors monitor physiological parameters including leaf 

temperature, chlorophyll fluorescence, and sap flow. Integration of these sensor systems improves detection accuracy by up 

to 35% compared to image-based analysis alone [71]. Data collection occurs at multiple timescales, from continuous 

monitoring to periodic sampling. Sensor placement strategies ensure comprehensive coverage while minimizing interference. 

Quality control measures maintain sensor calibration and reliability throughout the growing season [72] analysis in detecting 

nutrient deficiencies. The application of normalization techniques ensures that images  

 b) Sensor Data Preprocessing: The steps taken for preprocessing an image are vital for enabling deep learning analysis 

in detecting nutrient deficiences. 

TABLE 2: DIFFERENT IMAGING METHOD UTILISED FOR NUTRITION DEFICIENCY DETECTION, 

ADVANTAGES, AND ITS LIMITATION 

Imaging 

Method 
Technology Description Advantages Limitations References 

RGB Imaging Digital photography using 

visible light spectrum (400-

700nm). Uses standard 

digital cameras with RGB 

sensors 

• Cost-effective and widely 

accessible 

• Easy system integration 

• Simple data processing 

• Real-time capability 

• High spatial resolution 

• Large existing datasets 

• Limited to visible 

symptoms 

• Affected by ambient 

lighting 

• Cannot detect early 

deficiencies 

• Weather dependent 

• Poor performance in 

mixed deficiencies 

[57]  

Multispectral 

Imaging 

Captures 4-12 discrete 

spectral bands including 

visible and near-infrared 

• Early detection capability • 

Better canopy penetration • 

Moderate cost-effectiveness • 

• Higher equipment costs • 

Requires expertise • 

Complex calibration • 

[58]  
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wavelengths Good spectral-spatial balance • 

Weather-independent 

Limited spectral bands • 

High storage needs 

Hyperspectral 

Imaging 

Continuous spectral 

information across 

hundreds of narrow bands 

(350-2500nm) 

• Highest spectral resolution • 

Subtle change detection • Early 

warning system • Precise 

deficiency differentiation • 

Chemical composition analysis 

• Very expensive • 

Complex processing • 

Huge data volumes • High 

expertise needed • Time-

intensive 

[59]  

Fluorescence 

Imaging 

Measures chlorophyll 

fluorescence emission for 

photosynthetic efficiency 

• Non-destructive • High stress 

sensitivity • Early detection • 

Quantitative results • 

Independent of visible 

symptoms 

• Expensive equipment • 

Lab-based mainly • Needs 

dark adaptation • 

Environment sensitive • 

Complex analysis 

[60]  

Thermal 

Imaging 

Captures temperature 

variations using infrared 

radiation 

• Non-contact method • Rapid 

assessment • Large area 

coverage • Stress detection • 

Weather-independent 

• Environment affected • 

Moderate cost • Needs 

references • Limited 

specificity • Resolution 

issues 

[61]  

X-ray 

Imaging 

High-energy radiation for 

internal structure 

visualization 

• Internal imaging • High 

resolution • Non-destructive • 

Root examination • 3D 

capability 

• Very high cost • Lab-only 

use • Safety concerns • 

Limited field use • Slow 

process 

[62]  

MRI Magnetic fields for water 

distribution mapping 

• Non-destructive • Water 

tracking • 3D visualization • 

Tissue analysis • No radiation 

• Extremely costly • Lab 

installation • Slow 

acquisition • Size 

limitations • Complex use 

[63] 

Raman 

Spectroscopy 

Molecular vibration 

measurements for chemical 

analysis 

• Molecular analysis • Non-

destructive • Chemical specific 

• Real-time data • No 

preparation 

• High cost • Limited depth 

• Fluorescence issues • 

Small area • Complex data 

[64]  

Terahertz 

Imaging 

Far-infrared radiation for 

internal structure analysis 

• Deep penetration • Safe 

radiation • Water analysis • 

Internal imaging • Non-

destructive 

• Very expensive • 

Atmospheric issues • 

Limited resolution • 

Complex processing • New 

technology 

[65]  

Light Sheet 

Microscopy 

3D imaging using sheet 

illumination 

• High-res 3D • Fast capture • 

Low toxicity • Live imaging • 

Cell detail 

• Clear samples only • 

Expensive setup • Complex 

prep • Lab-based • Size 

limits 

[66]  

 

captured under different conditions depict the deficiency symptoms in a uniform manner. 

Data Preprocessing Techniques  

a) Image Preprocessing: Image analysis related to nutrient deficiency detection systems lack the accuracy provided by sensor 

networks, which offer the information that needs to be filled. The integration of soil sensors that measure moisture, 

temperature, pH, and electrical conductivity is an example of modern agricultural monitoring classification. Environmental 

sensors capture other determinants that enhance nutrient uptake like air temperature, humidity, and rainfall, while plant based 

sensors monitor the physiological parameters of the plant like leaf temperature, chlorophyll fluorescence and sap flow. The 

integration of these sensor systems surpasses image analysis by 35%, thus making the accuracy much higher. Data collection 

occurs at multiple timescales, from continuous monitoring to periodic sampling. Different strategies can be used to optimize 

sensor placement concerning accuracy and coverage such as interval sampling.  

Lighting and camera noise adjustment is done with color space transformation, and noise artifacts that impair analysis 

accuracy are eliminated with the use of noise reduction techniques. Background segmentation techniques prune the area 
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around the plant material and strip the non-plant constituents using powerful segmentation algorithms. Controlled rotation, 

scale, and brightness to an image enable the generation of additional training examples which in turn enhance model 

robustness. These measures greatly increase the overall accuracy of detection, in some cases up to 25%. Automated quality 

check procedures ensure uniformity in large data sets. These measures are taken with the assurance that data integrity will 

not be compromised. Advanced automation streams have been built to do this alongside the manual work while maintaining 

the data depth [75]. The successful implementation of deep learning approaches for nutrient deficiency prediction depends 

heavily on comprehensive data collection and preprocessing strategies. These methods encompass various imaging 

technologies, sensor systems, and sophisticated data processing techniques that work in concert to provide accurate and 

reliable information about plant nutritional status. The integration of multiple data sources and careful attention to 

preprocessing requirements ensures the development of robust and effective prediction systems. 

4. MODEL TRAINING AND OPTIMIZATION 

The effectiveness of deep learning approaches in nutrient deficiency prediction heavily depends on sophisticated training 

and optimization strategies. Research by Wang et al. [76] demonstrates that proper model training techniques can improve 

prediction accuracy by up to 25% compared to baseline approaches. The complexity of nutrient deficiency patterns, 

combined with the diverse nature of agricultural data, necessitates careful consideration of training methodologies and 

optimization techniques. Modern training approaches integrate multiple strategies to handle challenges such as data 

imbalance, environmental variations, and temporal dependencies. Recent advances in optimization techniques have enabled 

more efficient training of deep learning models while improving their generalization capabilities. According to Tran et al. 

[77], optimized training strategies can reduce computational requirements by up to 40% while maintaining or improving 

model performance. The development of robust training methodologies has been crucial in creating practical applications 

that can operate effectively under varied field conditions. 

  Training Strategies 

The development of effective training strategies represents a critical aspect of implementing nutrient deficiency prediction 

systems. Nikitha et al. [78] highlight that carefully designed training approaches can improve model robustness by up to 30% 

when dealing with diverse environmental conditions. These strategies encompass various aspects of the training process, 

from data preparation to model validation. Modern training approaches incorporate techniques such as curriculum learning, 

where models are trained progressively on increasingly complex examples of nutrient deficiencies. The integration of domain 

knowledge into training procedures has proven particularly effective in agricultural applications. Advanced training 

strategies often employ multi-stage processes that gradually refine model performance. Recent research demonstrates that 

well-designed training strategies can significantly reduce the amount of labeled data required for effective model training 

[80]. The implementation of these strategies requires careful balance between computational efficiency and model 

performance. 

Loss Functions 

The selection and implementation of appropriate loss functions play a fundamental role in training effective nutrient 

deficiency prediction models. Research by Premi et al. [79] demonstrates that custom loss functions designed specifically 

for agricultural applications can improve detection accuracy by up to 20%. These specialized functions account for the unique 

characteristics of nutrient deficiency data, including class imbalance and temporal dependencies. Modern approaches often 

combine multiple loss terms to address different aspects of the prediction task. The development of adaptive loss functions 

that adjust their behavior based on training progress has shown promising results. Recent studies have introduced novel loss 

formulations that incorporate domain-specific constraints and expert knowledge. The effectiveness of these loss functions 

depends on careful tuning and validation across different scenarios. Implementation of sophisticated loss functions requires 

consideration of computational overhead and training stability. These advances in loss function design have enabled more 

precise and reliable nutrient deficiency prediction systems. 

Optimization Algorithms 

The evolution of optimization algorithms has significantly enhanced the training efficiency and performance of nutrient 

deficiency prediction models. Supreetha et al. [80] report that advanced optimization techniques can accelerate training 

convergence by up to 45% compared to traditional methods. Modern optimization approaches incorporate adaptive learning 

rate strategies and momentum-based updates to improve training stability. The development of specialized optimizers for 

agricultural applications has led to more robust model training. Recent advances include the implementation of gradient 

accumulation techniques for handling large datasets efficiently. Optimization algorithms now commonly incorporate 

regularization mechanisms to prevent overfitting while maintaining model performance. The selection of appropriate 

optimization strategies depends on factors such as dataset characteristics and model architecture. Fig 4 shows the accuracy 

comparison of applying different optimization algorithms for nutrient deficiency prediction using deep learning techniques 

These optimization techniques have proven particularly effective in handling the complex nature of agricultural data.  
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Fig 4: Accuracy comparison of applying different optimization algorithms for nutrient deficiency prediction using 

deep learning techniques. 

Model Optimization Techniques 

Advanced model optimization techniques have revolutionized the development of efficient and effective nutrient deficiency 

prediction systems. Research by Chinnaiah et al. [81] shows that sophisticated optimization approaches can reduce model 

size by up to 60% while maintaining prediction accuracy. Fig 6 presents the Multi-Metric Comparison Graphs of different 

deep learning techniques memory versus accuracy. These techniques encompass various aspects of model design and 

implementation, from architecture optimization to deployment strategies. Modern optimization methods often employ 

automated techniques for finding optimal model configurations. The integration of hardware-aware optimization has enabled 

more efficient deployment of models in resource-constrained environments [82]. Recent developments in model compression 

and quantization have made it possible to deploy complex models on edge devices. The implementation of these optimization 

techniques requires careful consideration of accuracy-efficiency trade-offs. These advances have made nutrient deficiency 

prediction systems more practical for real-world applications. 

 

Fig 6: Multi-Metric Comparison Graphs 
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5. PERFORMANCE EVALUATION 

The comprehensive evaluation of deep learning models for nutrient deficiency prediction requires sophisticated assessment 

methodologies that consider multiple performance aspects. According to Patel et al. [82], effective evaluation frameworks 

must account for both technical performance metrics and practical agricultural considerations. The complexity of nutrient 

deficiency detection necessitates multi-dimensional evaluation approaches that assess model performance across various 

environmental conditions and crop types. Recent research by Sudhakar et al. [83] emphasizes the importance of considering 

temporal aspects in performance evaluation, as prediction accuracy can vary significantly throughout the growing season. 

The development of standardized evaluation protocols has enabled more meaningful comparisons between different 

approaches and implementations. Fig 7, presents accuracy vs model size reduction Graphs Modern evaluation frameworks 

incorporate both quantitative metrics and qualitative assessments to provide comprehensive performance insights. The 

integration of domain-specific evaluation criteria has enhanced the practical relevance of performance assessments. Figure 

8, shows model optimization techniques comparison graphs. These advances in evaluation methodologies have contributed 

significantly to the development of more effective nutrient deficiency prediction systems. 

 

Fig 7: Accuracy vs Model Size reduction Graphs 

 

Figure 8: Model Optimization Techniques Comparison Graphs 

Evaluation Metrics 

The selection and implementation of appropriate evaluation metrics play a crucial role in assessing the effectiveness of 

nutrient deficiency prediction models. Chen et al. [84] demonstrate that comprehensive metric sets can provide deeper 
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insights into model performance compared to single-metric evaluations. Classification metrics such as precision, recall, and 

F1-score offer fundamental insights into model accuracy, with recent studies showing that balanced accuracy metrics are 

particularly important for handling uneven deficiency distributions. Advanced evaluation approaches incorporate confusion 

matrix analysis to understand model behavior across different deficiency types. Temporal evaluation metrics assess the 

model's ability to predict deficiency progression over time, with research by Kavitha et al. [85] introducing novel metrics for 

measuring prediction timeliness. Cost-sensitive evaluation metrics account for the economic impact of false predictions in 

agricultural settings. The implementation of these metrics requires careful consideration of agricultural domain knowledge 

and practical requirements. Recent developments in evaluation metrics have enabled more nuanced understanding of model 

performance in real-world conditions. 

 Classification Metrics 

The assessment of nutrient deficiency prediction models relies heavily on sophisticated classification metrics that capture 

various aspects of model performance. The F1-score provides a balanced measure of precision and recall, offering insights 

into overall model effectiveness. Area Under the Curve (AUC) measurements evaluate model performance across different 

threshold settings. Fig 9, presents the performance evaluation of different deep learning techniques for nutrient deficiency 

prediction Modern evaluation approaches often incorporate weighted metrics that account for the varying importance of 

different deficiency types [86]. These classification metrics form the foundation for comprehensive model assessment. Figure 

10 shows the Receiver Operating Characteristic (ROC) curves comparison of different deep learning models.  

 

Fig 9: Performance Evaluation of different deep learning techniques for nutrient deficiency prediction 

Kaur et al. [86] highlight that traditional metrics like accuracy must be supplemented with more nuanced measures for 

agricultural applications. The calculation of precision metrics reveals a model's ability to avoid false positives, which is 

crucial for preventing unnecessary interventions. Recall metrics assess the model's capability to identify all instances of 

nutrient deficiencies, with recent research showing that high recall is particularly important for early detection. 

Regression Metrics 

Regression-based evaluation metrics provide crucial insights into the quantitative aspects of nutrient deficiency prediction. 

Liao et al. [87] demonstrate that regression metrics are particularly valuable for assessing models that predict deficiency 

severity levels. Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) measure the magnitude of prediction 

errors, with recent studies showing their effectiveness in comparing different model architectures. Mean Absolute Error 

(MAE) provides insights into average prediction accuracy across different scenarios. R-squared values assess the model's 

ability to explain variance in nutrient deficiency patterns. Time-series specific metrics evaluate prediction accuracy over 

temporal sequences. The implementation of these metrics requires careful consideration of measurement scale and units. 

Recent advances in regression metrics have enabled more precise evaluation of quantitative predictions. 

 Comparative Analysis 

Comparative analysis of different nutrient deficiency prediction approaches requires sophisticated evaluation frameworks 

that enable fair and meaningful comparisons. Research by Sakthipriya et al. [88] demonstrates that standardized comparison 

methodologies can reveal significant performance differences between various approaches. Modern comparative analyses 

consider multiple aspects including accuracy, computational efficiency, and resource requirements. Recent studies have 

introduced benchmark datasets and evaluation protocols to facilitate objective comparisons.  
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Fig 10: ROC curves comparison of different deep learning models 

The analysis of model performance across different environmental conditions and crop types provides insights into 

generalization capabilities. Implementation considerations such as training time and resource utilization form important 

components of comparative evaluation. The development of comprehensive comparison frameworks has accelerated the 

advancement of nutrient deficiency prediction technologies. These comparative analyses help identify the most effective 

approaches for specific agricultural applications. 

6. CHALLENGES AND LIMITATIONS 

The implementation of deep learning approaches for nutrient deficiency prediction faces numerous challenges that span both 

technical and practical domains. Recent research highlights that despite significant advances, several fundamental challenges 

continue to impact the effectiveness of these systems in real-world agricultural settings. The complexity of nutrient deficiency 

manifestations, combined with environmental variability, creates significant hurdles in developing robust prediction models. 

The dynamic nature of agricultural environments poses unique challenges that require innovative solutions beyond traditional 

deep learning approaches. The integration of multiple data sources and sensor types introduces additional complexity in 

system design and implementation. Current limitations in hardware capabilities and data processing techniques affect the 

practical deployment of sophisticated prediction systems. Research indicates that addressing these challenges requires a 

multi-disciplinary approach combining expertise in agriculture, computer science, and environmental science. These 

challenges present opportunities for innovation while highlighting areas requiring further research and development. 

 Technical Challenges 

The challenges related to nutrient deficiency prediction systems are technical in nature and include fieldwork data capture, 

manipulation, and modeling. Bhabay et al. [89] consider data quality and its accessibility as major barriers, noting that the 

lack of rich, well-labeled data makes it difficult to train the model. Predictive models that work well on a given dataset are 

hard to build because of the high variation in environmental conditions and the crops’ attributes. Sunitha et al. [90] discuss 

the difficulties in model formulation and training stemming from the intricate features of nutrient relationships and their 

evolution over time. The need for immediate response time coupled with the need for accurate prediction overextends 

available computing resources. Limitations in sensor technology as well as data capture technology results in poor quality 

and unreliable data. The problem of effective manipulation of bulk agricultural data poses an architectural and optimization 

challenge. These studies have shown that with the various conditions that nutrition lacks are exposed, existing deep learning 

frameworks fail to identify the patterns of nutrition deficiency. These reasons indicate a lack of any combination of these 

features in both software and hardware, which is a cue to work on. 

Issues regarding the accuracy and dependability of the deep learning models arise due to data problems in the agricultural 

sector. Sharmila et al. [91] note that class imbalance in the nutrient deficiency data set may greatly affect model performance 

and that accurately detecting the few deficiency cases that actually exist is extremely challenging. The progression of nutrient 

deficiencies over time necessitates highly skilled modeling approaches that can capture both short and long range patterns. 

Research suggests that deep learning models have a hard time achieving transfer learning across different crops and their 

growing environments. The challenge created by the nutrient deficiency detection problem’s feature interactions requires 
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sophisticated models capable of capturing complex relationships. The challenge of insufficient model interpretability 

constrains the usability of advanced predictive systems. Strain in deploying models on devices with limited resources is one 

of the additional challenges. Model performance degradation versus model computational efficiency has recently been a hot 

topic in academia. These problems require new approaches to construct model architectures as well as new optimization 

strategies. 

 Implementation Challenges 

The actual application of prediction systems for nutrient deficiencies within farming domains presents dire difficulties. 

Arulananth et al. [92] pinpoint infrastructure and resource access as significant obstacles for the acceptance of these 

technologies. The absence of dependable electrical power and internet access in remote agricultural regions poses grave 

difficulties to implementation. Tamilselvi et al. [93] argue that the adoption of such prediction systems within agriculture 

poses problems of users' abilities and needs. Hardware deployment and maintenance is frequently beyond the means of many 

agricultural operations. Other implementation hurdles include regular system recalibration and requalification to the local 

environment. The operation and maintenance of such systems requires advanced technical skills, which makes practical 

deployment problematic. Research indicates that user training and adoption pose serious challenges in the implementation 

of these systems. Such challenges impact the scalability and sustainability of solutions to predict nutrient deficiency. 

The implementation of prediction systems also has problems concerning user acceptance and system support. Agricultural 

contexts often fall short with respect to user training and support resources. System effectiveness is perpetually challenged 

by the need for system maintenance and updates. Studies indicate that there is a need for much more change and acceptance 

in the agricultural processes to allow for integration within the pre-existing structure. Users lacking any technical skills may 

find themselves overwhelmed with the intricacies of operating a system. Severe agricultural environments pose 

implementation problems such as the need for great error tolerance and system dependability. The system cannot be 

adequately designed and maintained because there are too many varying conditions that need an equally consistent 

performance. More recent studies have made it clear that these practical considerations need to be tackled if system 

deployment is to be achieved [93]. To overcome these challenges requires systems that are flexible in their design and in the 

support provided to users. 

7.  FUTURE DIRECTIONS IN NUTRIENT DEFICIENCY PREDICTION 

The refinement of more sophisticated neural architectures capable of fusing hyperspectral images, IoT sensors, and historical 

crop records is certainly something to look forward to. Self-attention and transformer-based mechanisms offer unrivalled 

capabilities in managing complex patterns typical of agricultural data, attaining up to 30% accuracy in prediction. The 

introduction of these architectures will increase understanding of nutrient deficiency patterns in conjunction with time and 

space. Real-time monitoring of nutrient deficiency for crops will profoundly improve with the innovation of new edge 

computing technologies directed toward agriculture. Optimized edge deployment greatly increases response time, declining 

it by upwards of 75% while still retaining accuracy margins above 90%. Such achievement facilitates mobile devices and 

local processing units to grant instant information regarding the nutritional health of crops, which will assist farmers in 

managing prompt responses to optimum intervention strategies. 

Systems for the future will have new self-calibrating features without the need for manual intervention due to the shift in 

growing conditions, variety of crops, or growth phases. Adaptive systems equipped with reinforcement learning techniques 

are capable of enhancing model accuracy by forty percent with changes in the agricultural environment. This will lower the 

manual adjustment and skilled professional assistance required considerably, hence making the technology more beneficial 

to farmers from nearly all regions. The following generation of systems that predict nutrient deficiencies will transition into 

complete, intelligent decision aid systems capable of describing how to deal with the detection of the deficiency. Predictive 

models  

integrated into precision agriculture systems in one single system can reduce the amount of fertilizers needed by thirty five 

percent and still sustain or improve the yield production. All these systems will incorporate artificial intelligence which will 

independently create necessary treatment instructions for specific crops, the prevailing weather conditions, and the current 

market situation. 

8. CONCLUSION 

This comprehensive survey has focused on the latest techniques within deep learning approaches for predicting nutrient 

deficiencies at the crop and leaf levels. The progression from primary CNN models to more advanced hybrid structures with 

attention and temporal analysis has shown stunning developments in terms of accuracy and reliability of detection. Analysing 

contemporary deep learning systems illustrates that using multiple imaging modalities and sensors enables over 95% 

prediction accuracy, while the ability to detect early has advanced by nearly two weeks when compared with conventional 

methods. These systems, however, still face issues in data quality, computational need, and real-world application, even 

though the combination of edge computing technologies and self-calibration systems have made them more practical to 
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agricultural specialists. The creation of standardized evaluation metrics and comprehensive performance analysis 

frameworks provides more objective comparison of different approaches so that the field may improve. In the future, the 

combination of sophisticated AI frameworks, edge computing, and holistic decision support systems is likely to transform 

agriculture by improving nutrient deficiency prediction and management processes. Despite the fact that there is still some 

technique-specific and implementation-oriented challenges, development work continues to focus on marrying laboratory 

based innovations with practical farming processes. Hence closer to the goal of efficient and sustainable management of crop 

nutrition. 
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