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ABSTRACT  
Biomechanical  analysis  in  tennis  has  become a  critical  area  of  research,  enhancing  performance  optimization,  injury   
prevention, and technique refinement. This paper explores the significance of biomechanical studies in tennis, highlighting  
key techniques such as motion capture, force plate analysis, electromyography (EMG), and computational modelling. We  
analyse how biomechanics influences stroke mechanics, footwork, energy efficiency, and injury mitigation. Furthermore,  
we compare and discuss recent advancements in deep learning and AI-driven pose estimation for real-time player analysis,  
comparing them with traditional camera-based techniques.  
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1.  INTRODUCTION   
Tennis is a dynamic sport that demands precision, agility, and endurance. The substantial forces generated through players’  
limbs necessitate a scientific understanding of their movement patterns. Biomechanical analysis serves as a crucial tool for  
coaches and sports scientists to evaluate technical performance, identify inefficiencies, and implement corrective measures.  

The use of computer vision-based analytics in tennis is a relatively recent development that provides an innovative approach  
to  creating player  and game-related analyses.  Recent  advancements  in  mobile  camera technology have facilitated the  
effortless recording of videos, significantly increasing the volume of data collected. Today, it is common for tennis coaches  
and trainees to utilize video recordings regularly for performance analysis.  These recordings, captured by players and  
coaches, can be further leveraged to produce in-depth analytics through the development of computer vision algorithms.  

Convolutional  Neural  Network (CNN)-based computer  vision algorithms have been extensively  employed for  feature   
extraction related to the court, racket, ball, and player. Researchers have explored various methodologies to derive temporal  
context from video data, enhancing the scope of tennis analytics.Some of the most common 2D based approaches taken by  
many researchers is to connect convolutional networks and recurrent networks in repetitive blocks and vary the number of  
such blocks and fine tune the filter sizes in every block. Usual approaches are to use the a VGG16 proposed by Karen  
Simonyan & Andrew Zisserman [1], and sequence it with RNN blocks to extract the temporal features.  

Three-dimensional analysis has been extensively performed using well-established approaches based on 3D Convolutional  
Neural Networks (3D CNNs), as demonstrated in the work of Paluri et al. [2]. These 3D CNNs, also referred to as 3D  
ConvNets, excel in extracting both spatial and temporal features, and have been documented to surpass the performance of  
2D CNNs.  

The advancement of pose estimation methodologies, particularly the work by Zhe Cao et al. [3] utilizing part affinity fields,  
has inspired researchers to explore pose estimation models tailored for tennis players, facilitating the identification of player  
poses. Building on this foundation, Kurose et al. [4] enhanced the model to analyze player poses through joint estimation  
techniques. Additionally, the contributions of Elliott et al. [5] are noteworthy, as they developed a robust validation scheme  
to estimate the true pose of  a  racket  in tennis  game videos,  using data derived from camera calibration software for   
comparison.  

2.  BIOMECHANICAL FACTORS IN TENNIS PERFORMANCE  
Biomechanics in tennis involves the study of motion, forces, and efficiency in strokes, footwork, and overall movement. It  
helps optimize performance, injury prevention, and energy transfer. The key aspects include kinetic chain involvement, joint  
kinematics and kinetics, energy transfer, ground reaction forces, balance, and agility.  
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2.1 Stroke Mechanics  

In tennis, biomechanics entails the analysis of motion, forces, and efficiency across strokes, footwork, and overall movement  
patterns. This field plays a pivotal role in optimizing athletic performance, preventing injuries, and enhancing energy transfer  
during gameplay. The fundamental elements of tennis biomechanics include the involvement of the kinetic chain, joint  
kinematics and kinetics, energy transfer mechanisms, ground reaction forces, as well as balance and agility.  

Kinetic Chain Involvement  

The kinetic chain in a tennis stroke represents the systematic transfer of force, initiated by the lower body (legs) and  
progressing through the upper body (torso, shoulders, and arms). This sequential energy transfer can be mathematically  
modelled using concepts from rigid body dynamics and impulse-momentum principles, providing a framework to analyse  
and optimize the mechanics of the stroke.  

• Ground Reaction Force (GRF):  

Ground reaction forces (GRF) refer to the forces exerted by the ground on a player's feet during movement, providing  
valuable insights into athletic performance and biomechanics. These forces are typically measured using force plates, which  
record real-time data on the vertical, anterior-posterior, and medio-lateral components of force.  

Force plates capture GRF in three orthogonal directions:  

Vertical force (Fz): Supports the body weight and plays a critical role in jump height and stability.  

Anterior-posterior force (Fx): Governs forward and backward movements, Ex: sprinting during play.  

Medio-lateral force (Fy): Facilitates side-to-side movements, Ex: sliding across the court.  

The total GRF is given by: 퐹퐺푅퐹 = 푚푎 . Kevin et al. [21]  

where FGRF is the force exerted by the ground, mmm is the player's mass, and a is the acceleration.  

The study conducted by Kevin et al. [21] highlights the significance of GRF measurements in understanding and improving  
tennis player performance.  

• Angular Momentum Transfer: 푳 = 푰흎  

where L is angular momentum, I is the moment of inertia, and ω is angular velocity.  

Impulse-Momentum Principle: 푭 풅풕 = ∆풑  • ∫

where p= mv is linear momentum.  

Sequential Kinetic Chain Efficiency  •

Energy is transferred from the legs (Elegs) to the torso (Etorso), then to the arm (Earm), before finally reaching the racket  
(Eracket), Bruce et al [22].  

where 휇 is the efficiency factor accounting for losses.  

2. Joint Kinematics and Kinematics (Motion Without Forces)  

Joint motion in a tennis stroke can be described using kinematics (angles, velocities, accelerations) and kinetics (forces and  
torques), Kevin et al [21].  

Each joint follows a rotational trajectory characterized by:  

Joint angle (θ): 휽 풕 =  휽 +  흎 +  ퟎ  ퟎ ⁄ 휶풕ퟐ  ퟏ( )    ퟐ
where ω0 is initial angular velocity and α is angular acceleration.  

Kinetics (Forces and Torques on Joints)  

• Torque (τ) at a joint: 흉 = 푰 휶  

where I is the moment of inertia of the segment.  

Ground Reaction Force Contribution to Joint Force:  •

푭 =  푭 −  푭풋풐풊풏풕  푮푹푭 푺풆품풎풆풏풕  

3. Energy Transfer Efficiency  
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Energy transfer efficiency determines how much of the generated force and motion is utilized in ball impact without being  
lost.  

Power in the Stroke  

•

•

Efficiency Calculation: Efficiency is the ratio of useful energy transferred to the racket (퐸 ) to the total energy  푅푎푐푘푒푡
퐸푅푎푐푘푒푡  generated (퐸 ):  휇 =  푇표푡푎 푙 퐸푇표푡푎푙  

Minimizing Energy Loss: Energy loss occurs due to friction, improper timing, or misalignment in the kinetic chain.  

Kluwer et al [23]  

2.2 Footwork and Movement Efficiency  

Efficient footwork determines court coverage and recovery. Biomechanical analysis evaluates:  

Balance and stability – (postural stability)  

A player's center of mass (CoM) is the weighted average position of their body mass, which shifts during movement to  
maintain stability.  

Center of Pressure (CoP): The point where the resultant GRF acts on the feet. CoM-CoP Distance: A larger distance increases  
instability risk. Base of Support (BoS): The area under the feet that provides balance, Duane et al [24].  

Sprinting Mechanics  

Stride length (L) and Stride frequency (f)  

where v is running velocity.  

Ground Contact Time (GCT) supports Shorter GCT improves speed and Force Production supports higher GRF in the  
anterior direction improves acceleration, Duane et al [24].  

Sliding Mechanics  

where 휇 is the coefficient of kinetic friction. A controlled slide balances braking and propulsion.  푘  

Split-Step Reaction Time  

A split-step involves a small hop to quickly react to an opponent’s shot.  
푑⁄The reaction time tr is given by: 푡푟   = 푣

where d is reaction distance and v is initial movement velocity. Optimizing these movement patterns improves court coverage  
and overall agility, Bruce et al [22]  

3.  TECHNOLOGICAL APPROACHES IN BIOMECHANICAL ANALYSIS  
3.1 Video Capture Systems  

High-speed optical video capture systems, such as Vicon and Qualisys, provide precise kinematic data, which are critical for  
analyzing movement patterns in tennis. The earliest system for notational analysis of tennis, as observed by Rafael [6], was  
introduced by Downey in 1973. This paper-based method documented strokes, player positions on the court, stroke outcomes,  
and their effects. However, due to its entirely manual and complex nature—both for recording and analyzing data—it was  
rarely adopted. Nevertheless, it sparked interest in the development of advanced methodologies for tennis analysis.  

The first significant computer-based analytics and data recording platform in professional tennis was developed by Infosys  
in 1991. This platform recorded and analyzed comprehensive statistics from the 1991 ATP season, yielding valuable insights  
into gameplay strategies. The analysis further resulted in dashboards showcasing game-level, player-level, and opponent-  
level information, which proved to be transformative in subsequent years. Following this, Hughes, M detailed a computerized  
notation approach for racket sports in his book, *Science and Racket Sports* (1995) [7].  

Subsequent efforts to analyze tennis through computational technologies include the work of Tom Polk et al., who introduced  
*CourtTime*, a comprehensive system for game analysis [8]. Additionally, Jiang Wu et al. [9] devised a framework that  
converts game events into sequences of activities, enabling users to assign custom weights to these sequences and apply the  
Minimum Description Length algorithm to detect  tactical  patterns.  Abhilash Manu et  al.  [25],  [26]  expanded on this   
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framework with further contributions.  

Other significant advancements in tennis analytics include models for predicting match outcomes with high accuracy [10],  
comparative  studies  on  the  physical  demands  and  performance  characteristics  of  professional  tennis  [11],  and  the   
development of a detailed tennis shot taxonomy based on spatiotemporal data [12].  

3.2 Camera-Based Analysis  

Traditional camera-based analysis relies on high-speed video recordings and marker-based tracking systems. Advantages  
include:  

•

•

•

Ease of use: Requires only a high-resolution camera setup.  

Cost-effectiveness: More accessible than dedicated motion capture systems.  

Post-processing capabilities: Frame-by-frame analysis allows manual stroke correction.  

However, camera-based techniques have limitations such as:  

•

•

•

Occlusion issues: Players’ movements can obstruct key body parts.  

Lower accuracy: Lacks the precision of sensor-based motion capture.  

Dependency on frame rate: High-speed actions may blur at lower frame rates.  

3.3 AI-Powered Pose Estimation  

Recent advancements in deep learning, such as OpenPose and MediaPipe, allow real-time analysis of tennis strokes. These  
techniques use:  

• Convolutional  Neural  Networks  (CNNs):  For  joint  detection  and  segmentation,  Karen  Simonyan  & Andrew  
Zisserman [1]  

•

•

Recurrent Neural Networks (RNNs): For sequential movement prediction. Ryunosuke Kurose et al [4]  

Part Affinity Fields (PAFs): To track body segments and limb articulation, by M. Paluri et al. [2], Zhe Cao et al.  
[3], Abhilash Manu et al [27],[28].  

Compared to camera-based methods, AI-powered pose estimation provides:  

•

•

•

Higher automation: Eliminates manual annotation.  

Real-time analysis: Enables instant feedback during training sessions.  

Better occlusion handling: Can infer hidden body parts using predictive modeling.  

Feature   Mobile Video Analysis   Classical Biomechanical Analysis  

Uses  high-speed  cameras,  pose    Uses  motion  capture  systems,  force   
plates, and manual marker placement  Data Collection   estimation,   and   AI-driven  

motion tracking  

Minimal; requires only a camera  
or  smartphone  with  AI-based   
software  

Complex; requires lab setup, sensors, and  
specialized equipment  Setup Complexity  

Moderate to high, depending on  
AI  model  quality  and  camera   
resolution  

Measurement  
Accuracy  

Very high due to precise marker tracking  
and force sensors  

Yes,  AI  can  provide  instant   
feedback  on  technique  and   
biomechanics  

No,  data  requires  post-processing  and   
expert analysis  Real-time Feedback  

Kinematic Analysis  
Estimates  
velocities,  

joint  
and  

angles,  
movement   Directly measures joint kinematics using  

markers and sensors  patterns using AI models  
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Can infer force and torque using Measures  ground  reaction  forces,   Kinetic Analysis  

Energy Transfer  

AI-based physics models   torques, and muscle activations directly  

AI estimates energy flow using  
pose  estimation  and  impact   
physics  

Uses force plates and inverse dynamics  
for precise energy calculations  

AI adapts to player skill  levels Requires manual adjustments and expert  
and playing style automatically interpretation  Personalization  

Portability  

Cost  

High—can be used on-court with Low—requires  lab  conditions  or   
mobile devices wearable sensors  

Lower—AI-based  apps  and  Higher—motion  capture  systems  and   
video tools are more affordable force plates are expensive  

Usability  
Coaching  

for  Highly accessible for players and Primarily used in research or elite athlete  
coaches in real-world training assessments  

Data  Storage  &  AI AI  improves  over  time  with Data is manually recorded and analyzed,  
Training   larger datasets and deep learning requiring expert interpretation  

May  have  errors  due  to   
occlusion,  lighting,  or  AI   
misinterpretation  

Requires  a  controlled  environment  and   
time-intensive setup  Limitations  

While arriving at biomechanical details through a camera based system its important to compare the parameters that have  
been chosen to be compared are as follows:  

a.  Methodology - the approach  

b.  Data - the physical set up  

c.  Results – the outcome  

d.  Discussion - the observations  

Player Analytics  

The performance of tennis players is influenced by capabilities such as agility, body balance, reaction speed, situational  
awareness, and strategic implementation [17]. Efficient analysis of these attributes necessitates robust tools capable of  
providing detailed insights into player pose, movements, and positions. Groundbreaking studies by M. Paluri et al. [2] and  
Zhe Cao et al. [3] introduced pose estimation methodologies that enable the generation of human pose estimates from RGB  
snapshots or videos.  

Building upon these advancements, Ryunosuke Kurose et al. [4] investigated pose estimation for tennis players using deep  
learning-based algorithms to detect and track body key points in video data. Employing the OpenPose algorithm—a multi-  
person extension of the single-person COCO architecture—they accurately identified key points such as the head, shoulders,  
elbows, wrists, hips, knees, and ankles in real-time. Their approach leveraged Part Affinity Fields (PAFs) to derive analytics  
on player poses, creating feature vectors with joint position coordinates. Evaluating their method on a dataset of 1,280 frames,  
sourced from YouTube and featuring both professional and amateur players, they achieved an average key point detection  
rate of 94.5%. Furthermore, the study analyzed differences in pose failure rates between forearm and back arm shots and  
highlighted discrepancies in player posture compared to ideal poses recommended by professional coaches.  

Rajdeep Chatterjee et al. [18] proposed an alternative pose estimation framework utilizing Detectron2 to recognize sports  
activities based solely on pose information. Combining deep learning with traditional computer vision techniques, the  
methodology employed OpenPose to extract human body key points, which were used as features to train a support vector  
machine (SVM) classifier.  Their  ResNet-50-based model integrated newly created features with classified key points,   

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 24s  
pg. 813  



Mr. Abhilash Manu, Dr. Ganesh D  

predicting actions across three pose classes: forehand motion, backhand motion, and reset (base) position. By maintaining  
uniform camera angles and collecting 3,000 images from YouTube, the study achieved significant accuracy improvements,  
outperforming popular models such as AlexNet, VGG16, MobileNetV2, and EfficientNetB71 with a top accuracy of 98.60%.  

Further research employing high-end cameras and motion capture systems in controlled laboratory setups includes Maria et  
al.’s work [19], which examined player movements during forehand and backhand strokes using sophisticated 3D analytics.  
On the other hand, Jhen-Min et al. [20] adopted a streamlined approach for tennis pose classification using pre-trained YOLO  
and Multi-Layer Perceptron (MLP) models.  YOLO was applied to detect  bounding boxes and keypoints,  while MLP  
classified poses based on these keypoints. Using broadcast footage of two matches resampled with OpenCV, their method  
utilized YoloV5 for player and ball detection but lacked specific tennis pose analytics.  

4.  RESULTS  
These studies collectively demonstrate the potential of pose estimation methodologies in providing actionable insights into  
player posture, movement, and techniques, forming the foundation for improved performance analysis and coaching. Below  
are the results of the study and a quick comparison:  

Classical   Biomechanics  
Metric   (Motion  Capture,  Force CNN-Based Analysis  

Plates, Sensors)  
MediaPipe Analysis  

±5° to ±8° (lower precision  
due  to  fewer  keypoints  &   
2D tracking)  

±2.5°  to  ±5.5°  (improved   ±0.5° to ±2°  Joint Angle Accuracy (°)   learning from sample data)  

6–15%  (simplified  motion   
tracking, no direct velocity  
tracking)  

Velocity Estimation Error  
(%)  

4–12% (better CNN model  
training)  <2%  

30–60   fps   (real-time,  Temporal Resolution (fps) 100–1000 fps   30–240 fps   consumer-grade cameras)  

±15–30  mm  (affected  by   ±8–15  
tracking)  

mm   (improved  Spatial Resolution (mm)   ±1–3 mm   occlusion,  
accuracy)  

lower   3D  

15–30%  (no  direct  force   
measurement,  inferred  via   
kinematics)  

Force  Estimation  Error   
(%)  

8–18% (better pose-to-force  
mapping)  <5%  

Ground  Reaction  Force Direct  measurement  (error: Indirect  estimation  (error: Indirect  estimation  (error:   
(N)   ±2–5%)   ±12–25%)   ±18–35%)  

±18–30% (less reliable due  
to  lack  of  true  3D  force   
tracking)  

Torque Estimation Error   
(%)  

±12–22%  
physics model)  

(refined   AI  ±3–5%  

Kinetic  Energy  Transfer   
Efficiency (%)   Measured within ±2–5%   Estimated within ±8–18%   Estimated within ±15–25%  

5.  CONCLUSIONS  
MediaPipe is a lightweight, real-time pose estimation model that is commonly used for motion tracking but has some  
accuracy limitations compared to high-end deep learning models. MediaPipe is Fast & Accessible but Less Accurate.  

•

•

Works in real-time but has higher errors (~5–30%) in angles, velocity, force, and torque estimation.  

Uses 2D pose tracking, so it struggles with depth and occlusion issues in complex movements.  

AI-based CNNs provide quick, accessible analysis but have higher errors (5–30%) in force, torque, and energy calculations.  
CNN-Based AI Improves:  

• Joint angle error drops from ±3–7° to ±2.5–5.5°.  
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•

•

•

Velocity error decreases from 5–15% to 4–12%.  

Force estimation error reduces from 10–20% to 8–18%.  

Spatial resolution improves slightly due to better pose tracking.  

Classical Biomechanics Remains the Gold Standard:  

•

•

Since it directly measures forces, torques, and angles, its accuracy remains constant.  

Best for research & elite training, with errors <5%.  

Requires specialized hardware, increasing setup time and cost.  
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