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ABSTRACT 

Binding number is used to quantify the network's vulnerability as a parameter from the viewpoint of neighborhood structure. 

A graph Γ represents the network, and min {
𝑁(𝑇)

𝑇
: 𝑇 ⊆ 𝐸(𝐺)} is the Edge binding number 𝐄𝐁𝐍 of Γ. Let 𝐺 be a vertex set, 

where 𝐺 is a finite group with identity e. If two distinct vertices a and b are connected if and only if (|𝑎|, |𝑏|) = 1. This is 

called the coprime graph of 𝐺 and its denoted by Γ𝐺 . In this paper, we investigate the exact 𝐄𝐁𝐍 for the network settings that 

are constructed as Γ𝐺  and discussed its bound range. 

 

Keywords: Network; Binding number; Coprime graph. 

1. INTRODUCTION 

In recent years, network attacks have increased in frequently. Network attacks refer to unauthorized and malicious activities 

targeting computer network, systems and infrastructure. These attacks aim to compromise network security, steal sensitive 

data, disrupt service, or gain unauthorized access. 

The globe has seen some well-known cyber-attack: 

⚫ Yahoo! warned the public in September 2016 that a cyber-attack in 2014 hacked 500 million user accounts. The attack 

was thought to have been carried out by a state-sponsored actor. Three months later, the business announced that it had 

found another breach that had taken place in August 2013. It was one of the worst data breaches ever, with Yahoo! 

estimating that 1 billion user accounts had been compromised. All 3 billion Yahoo! accounts were found to have been 

accessed when the FBI became involved, making it an unprecedented breach. 

⚫ The Unique Identification Authority of India created Aadhaar, the largest ID database in the world, in 2009. A 12-digit 

unique identification number, fingerprint scans of all ten fingers, two iris scans, name, gender, and contact details were 

among the details of almost 1.1 billion Indian individuals that were included in the database. Applying for state aid or 

financial assistance, purchasing a cellular SIM card, opening a bank account, enrolling in utilities, and completing other 

administrative tasks all require the card. The Aadhaar database hack was reported in January 2018, making it one of the 

largest data breaches of the year. 

Analyzing the neighborhood structure of the network, beginning with the weakest node, or identifying and obtaining the 

most important nodes of the entire network, then launching intense attacks on these crucial components, are two examples 

of successful network attack techniques. Given these facts and contexts, network security and design have provided the 

evaluation of network vulnerability a lot of attention[see [2], [5], [6], [7] and [9] for more details]. 

Edge binding number (𝐄𝐁𝐍) 𝐛𝟏 of a graph is study of minimizing 
𝑁(𝑇)

𝑇
, where the 𝑇 is subset of 𝐸(𝐺) and neighbourhood 

of the set is 𝑁(𝑇). If we think the greater binding number (𝐁𝐍) is better, then a network with a high binding number is 

actually quite dense, with many sites connected. This indicates that building channels requires a significant amount of 

financial, material, and human resources, which raises the network's overall cost. Therefore we have to find minimum binding 

number. This article's goals are to provide exact binding number based on graph analysis, give network designers a precise  
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and useful reference, and create a standard for network design based on network metrics such as binding number. The type 

of security criteria that the built network must meet, as well as the bind number conditions that must be met to guarantee the 

network's resilience and vulnerability. 

Algebraic graph theory and group theory are closely related to one another. Algebraic graphs can be constructed in many 

ways, some special graphs are Finite symmetric graph, Cayley graph, etc. Liu et. al. [10] initially proposed a concept of a 

graph's 𝐛𝟏 in 2001. He provided 𝐁𝐍 of a few plane graphs. The 𝐁𝐍 of Γ𝐺  is less than or equal to 1, as discussed in the earlier 

paper [1]. We investigate the 𝐄𝐁𝐍 of the Γ𝐺  based on the previous research finding. 

The coprime graph was created in 1997 by Paul Erdos and N. Sarkozy [11]. In 2016, the non-coprime graph was introduced 

by F.Mansoori, et al [3]. Let 𝐺 be the identity finite group. The graph with 𝐺as the vertex set is the coprime of 𝐺. Adjacent 

exists in Γ𝐺 , whenever order of two different vertices are relatively coprime. 

The following definition is for graph terminology [4]. The network is represented by the graph model Γ = (𝑉, 𝐸) from the 

perspective of graph theory, where the set of channels is represented by the edge set 𝐸 = 𝐸(Γ), and the site set is represented 

by the vertex set 𝑉 = 𝑉(Γ). A graph is referred to be a complete graph 𝐾𝑛 if it has 𝑛 vertices connected to one another. Let 

𝑆 ⊆ 𝑉(Γ). In  Γ, 𝑁(𝑐) is the open neighborhood of 𝑎 such that 𝑁(𝑐) = {𝑑 ∈ 𝑉(Γ)|(𝑐, 𝑑) ∈ 𝐸(Γ)}. The open neighborhood 

𝑁(𝑆) = ⋃ 𝑁𝑢∈𝑇 (𝑢) 

The next part makes use of the definition and outcomes that follow. 

Definition 1.2 [10] The Edge binding number 𝐄𝐁𝐍 of a graph Γ is defined by,     𝑏1(Γ) = 𝑚𝑖𝑛 {
|𝑁(𝑇)|

|𝑇|
 :  𝑇 ⊆ 𝐸(Γ) & 𝑁(𝑇) ≠

𝐸(Γ)}. 

One can refer [8] for the group terminology. All groups are considered as finite in this paper. The number of elements of 𝐺 

is called its order and is denoted by |𝐺|. The order of an element 𝑥 of 𝐺 is the smallest positive integer 𝑛 such that 𝑥𝑛 = 𝑒. 

The order of an element 𝑥 is denoted by |𝑥|. The set ℤ𝑛 = {0,1,2, … , 𝑛 − 1} for 𝑛 ≥ 1 is a group under addition modulo 𝑛. 

Dihedral Group 𝐷2𝑛 is a group generated by two elements 𝑎, 𝑏, 𝐷2𝑛 = {𝑎, 𝑏|𝑎𝑛 = 𝑒, 𝑏2 = 𝑒, 𝑏𝑎𝑏−1 = 𝑎−1}. Dicyclic Group 

𝐷𝑖𝑐4𝑛(𝑛 > 1) is an extension of the cyclic group of order two by a cyclic group of order 2𝑛, 𝐷4𝑛 = {𝑎, 𝑏|𝑎2𝑛 = 𝑒, 𝑏2 =
𝑎𝑛 , 𝑏−1𝑎𝑏 = 𝑎−1}. The set of all permutation of 𝑛 symbols is called the Symmetric Group 𝑆𝑛 of degree 𝑛 with order is 𝑛!. 

The group of even permutation of 𝑆𝑛 is denoted by 𝐴𝑛 and is called the Alternating Group of degree 𝑛. Also 𝐴𝑛 has 
𝑛!

2
 

elements. Here 𝑀(𝑛, 𝐹, +), 𝐺𝐿(𝑛, 𝐹), 𝑆𝐿(𝑛, 𝐹) denote the collection of all 𝑛 × 𝑛 matrices, General Linear Group and Special 

Linear Group respectively. 

2. EDGE BINDING NUMBER 

2.1 Motivation 

 Results for 𝐁𝐍 in various network configurations are provided Wang and Gao 2021 [12]. Their discussed about the 

bounds of 𝐁𝐍. 

The 𝐁𝐍 involves the order of the vertices and edges. So the binding is highly dependent on the order of the vertices in the 

graph. It inspires us to find the 𝐄𝐁𝐍 for the coprime graph of groups. The objective of this section is to determine the precise 

value of 𝐄𝐁𝐍 for the Γ𝐺  network setup. 

2.2 Main Result 

Theorem 2.1 Let 𝐺 be isomorphic to one of the following groups: ℤ𝑝𝑛 and 𝑀(𝑛, ℤ𝑝𝑛 , +). Then 𝑏1(Γ𝐺) = |𝐺| − 2. 

Proof. If 𝐺 ≅ ℤ𝑝𝑛 or 𝑀(𝑛, ℤ𝑝𝑛 , +), then the order of the vertices of Γ𝐺  is multiple of 𝑝. Therefore the coprime graph Γ𝐺  will 

be the complete bipartite graph say, 𝐾1,𝑛. 

Here every edges are adjacent each other. We can choose only one arbitrary edge 𝑒 for 𝑆, otherwise 𝑁(𝑆) will be the 𝐸(Γ𝐺). 

Now 𝑁(𝑆) is 𝑁(𝑆)/{𝑒}, so 𝑏1(Γ𝐺) = |𝐺| − 2. 

Theorem 2.2 Let 𝐺 be a finite additive abelian group and 𝑝1, 𝑝2, … , 𝑝𝑛 be the distinct prime numbers. Assume that 𝐺 ≅
∏ 𝐺𝑖

𝑛
𝑖=1  where |𝐺𝑖| is 𝑝𝑖-group with |𝐺𝑖𝑗

| < |𝐺𝑖𝑗+1
| for 𝑖𝑗 = 1,2, … , 𝑛 and 𝑗 = 1,2,3, … , 𝑛 − 1. 

Then the order of edges in Γ𝐺  is, 

|𝐸(Γ𝐺)| = ∑ 2𝑛−𝑘

𝑛

𝑘=1

[ ∑ ∏ (

𝑛−(𝑘−1)

𝑗=1

𝑘

𝑖1=1(𝑖1<𝑖𝑗)

𝑝𝑖𝑗
− 1)]. 

Proof. Let 𝐺 ≅ ∏ ℤ
𝑝

𝑖

𝛼𝑖
𝑛
𝑖=1  and ∏ 𝑝𝑖 =𝑛

𝑖=1 ∏ 𝑝𝑖𝑗

𝑛
𝑖=1 , where 𝑖 = 𝑝𝑖 , where 1 ≤ 𝑖 ≤ 𝑛 and 𝑗 is place of 𝑝. 
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Let 𝑖𝑗 = 1,2 then 𝐺 ≅ ℤ𝑝1
𝛼1 × ℤ𝑝2

𝛼2  

Divide the vertex set 𝑉(Γ𝐺) into 22 = 4 vertex sets such that 

𝑉1 = {𝑣1 :  |𝑣1| = 1} 

𝑉2 = {𝑣2 :  |𝑣2| ≡ 0 (mod 𝑝1) 𝑜𝑛𝑙𝑦} 

𝑉3 = {𝑣3 :  |𝑣3| ≡ 0 (mod 𝑝2) 𝑜𝑛𝑙𝑦} 

𝑉4 = {𝑣4 :  |𝑣4| ≡ 0 (mod 𝑝1𝑝2) 𝑜𝑛𝑙𝑦} 

Here |𝑉1| = 1, |𝑉2| = 𝑝1 − 1, |𝑉3| = 𝑝2 − 1 and |𝑉4| = (𝑝1 − 1)(𝑝2 − 1). 

From the observation, the adjacency of vertex sets are following without repeating, 

𝑉1 is connected to all other sets and the set of all vertices in 𝑉2 is adjacent to all the vertices in 𝑉3 only. 

Hence Γ𝐺  is a 4-partite graph. 

|𝐸(Γ𝐺)| is between the adjacent vertex sets 𝑉𝑖 and 𝑉𝑗 is |𝑉𝑖| × |𝑉𝑗|. 

|𝐸(Γ𝐺)| = |𝑉1| × |𝑉2| + |𝑉1| × |𝑉3| + |𝑉1| × |𝑉4| + |𝑉2| × |𝑉3| 

= 2 ∏(

2

𝑖=1

𝑝𝑖 − 1) + ∑(

2

𝑖=1

𝑝𝑖 − 1) 

= ∑ 2𝑛−𝑘

2

𝑘=1

[ ∑ ∏ (

𝑛−(𝑘−1)

𝑗=1

𝑘

𝑖1=1(𝑖1<𝑖𝑗)

𝑝𝑖𝑗
− 1)] 

Let 𝑖𝑗 = 1,2,3, then 𝐺 ≅ ℤ𝑝1
𝛼1 × ℤ𝑝2

𝛼2 × ℤ𝑝3
𝛼3 . 

Divide the vertex set 𝑉(Γ𝐺) into 23 = 8 vertex sets such that, 

𝑉1 = {𝑣1 :  |𝑣1| = 1},   |𝑉1| = 1 

𝑉2 = {𝑣2 :  |𝑣2| ≡ 0 (mod 𝑝1) 𝑜𝑛𝑙𝑦},   |𝑉2| = 𝑝1 − 1 

𝑉3 = {𝑣3 :  |𝑣3| ≡ 0 (mod 𝑝2) 𝑜𝑛𝑙𝑦},   |𝑉3| = 𝑝2 − 1 

𝑉4 = {𝑣4 :  |𝑣4| ≡ 0 (mod 𝑝3) 𝑜𝑛𝑙𝑦},   |𝑉4| = 𝑝3 − 1 

𝑉5 = {𝑣5 :  |𝑣5| ≡ 0 (mod 𝑝1𝑝2) 𝑜𝑛𝑙𝑦},   |𝑉5| = (𝑝1 − 1)(𝑝2 − 1) 

𝑉6 = {𝑣6 :  |𝑣6| ≡ 0 (mod 𝑝1𝑝3) 𝑜𝑛𝑙𝑦},   |𝑉6| = (𝑝1 − 1)(𝑝3 − 1) 

𝑉7 = {𝑣7 :  |𝑣7| ≡ 0 (mod 𝑝2𝑝3) 𝑜𝑛𝑙𝑦},   |𝑉7| = (𝑝2 − 1)(𝑝3 − 1) 

𝑉8 = {𝑣8 :  |𝑣8| ≡ 0 (mod 𝑝1𝑝2𝑝3) 𝑜𝑛𝑙𝑦},   |𝑉8| = (𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) 

From the observation the adjacency of vertex sets are following without repeating, 

𝑉1 is connected to all other vertex sets. Set of all vertices in 𝑉2 is connected to the set of all vertices in 𝑉3, 𝑉4, 𝑉7 only. Set of 

all vertices in 𝑉3 is connected to the set of all vertices in 𝑉4, 𝑉6 only and set of all vertices in 𝑉4 is connected to the set of all 

vertices in  𝑉5 only. Therefore Γ𝐺  is a 8-partite graph. 

|𝐸(Γ𝐺)| is between the adjacent vertex sets 𝑉𝑖 and 𝑉𝑗 is |𝑉𝑖| × |𝑉𝑗|. 

|𝐸(Γ𝐺)| = ∑ |

8

𝑖=1

𝑉1| × |𝑉𝑖| + ∑ |

𝑖=3,4,7

𝑉1| × |𝑉𝑖| + ∑ |

𝑖=4,6

𝑉1| × |𝑉𝑖| + |𝑉4| × |𝑉5| 

= 4 ∏(

3

𝑖1=1

𝑝𝑖1
− 1) + 2 ∑ ∏(

2

𝑗=1

2

𝑖1=1(𝑖1<𝑖𝑗)

𝑝𝑖𝑗
− 1) + ∑ (

3

𝑖1=1

𝑝𝑖1
− 1) 

= ∑ 2𝑛−𝑘

3

𝑘=1

[ ∑ ∏ (

𝑛−(𝑘−1)

𝑗=1

𝑘

𝑖1=1(𝑖1<𝑖𝑗)

𝑝𝑖𝑗
− 1)] 

Similarly we can find it for 𝑖𝑗 = 1,2,3, … , 𝑛, 
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∑ 2𝑛−𝑘

𝑛

𝑘=1

[ ∑ ∏ (

𝑛−(𝑘−1)

𝑗=1

𝑘

𝑖1=1(𝑖1<𝑖𝑗)

𝑝𝑖𝑗
− 1)] 

Theorem 2.3 Let 𝐺 be a finite abelian group and 𝑝1, 𝑝2, … , 𝑝𝑛 be the distinct prime numbers. Assume that 𝐺 ≅ ∏ 𝐺𝑖 where 

|𝐺𝑖| is 𝑝𝑖-group with |𝐺𝑖| < |𝐺𝑖+1| for 𝑖 = 1,2, … , 𝑛 − 1. Then  

𝑏1(Γ𝐺) =
∑ 2𝑛−𝑘𝑛

𝑘=1 [∑ ∏ (
𝑛−(𝑘−1)
𝑗=1

𝑘
𝑖1=1(𝑖1<𝑖𝑗) 𝑝𝑖𝑗

− 1)] − 1

∑ 2𝑛−𝑘𝑛
𝑘=1 [∑ ∏ (

𝑛−(𝑘−1)

𝑗=1
𝑘
𝑖1=1(𝑖1<𝑖𝑗) 𝑝𝑖𝑗

− 1)] − ∑ 𝑝𝑖 + 12
𝑖=1

 

Proof. Let 𝐺 ≅ ∏ ℤ
𝑝

𝑖

𝛼𝑖 . 

Let 𝑉1, 𝑉2, 𝑉3 ⊂ 𝑉(Γ𝐺) such that, 

𝑉1 = {𝑎: |𝑎| ≡ 𝑒} 

𝑉2 = {𝑏: |𝑏| ≡ 0 (mod 𝑝1) 𝑜𝑛𝑙𝑦} 

𝑉3 = {𝑐: |𝑐| ≡ 0 (mod 𝑝2) 𝑜𝑛𝑙𝑦} 

Here |𝑉1| = 1, |𝑉2| = 𝑝1 − 1 and |𝑉3| = 𝑝2 − 1. 

Without loss of generality, let 𝑉1 = {𝑣1}, 𝑉2 = {𝑣2, 𝑣3, … , 𝑣𝑝1
} and 

𝑉3 = {𝑣𝑝1+1, 𝑣𝑝1+2, … , 𝑣𝑝1+𝑝2−1} 

From the Theorem 2.2, 

|𝐸(Γ𝐺)| = ∑ 2𝑛−𝑘

𝑛

𝑘=1

[ ∑ ∏ (

𝑛−(𝑘−1)

𝑗=1

𝑘

𝑖1=1(𝑖1<𝑖𝑗)

𝑝𝑖𝑗
− 1)] 

Let 𝐴, 𝐵 be the subsets of 𝐸(Γ𝐺) such that, 

𝐴 = {𝑒𝑎: 𝑒𝑎 ∈ 𝑣1 − 𝑣2, 𝑣1 − 𝑣𝑝1+1} with |𝐾| = 2 

𝐵 = {𝑒𝑏: 𝑒𝑏 ∈ 𝑣2 − 𝑉3, 𝑣𝑝1+1 − 𝑉2} with |𝐿| = 𝑝1 + 𝑝2 − 1 

where 𝑣1 − 𝑣2 and 𝑣1 − 𝑣𝑝1+1 is set of all edges from 𝑣1 to 𝑣2 and from 𝑣1 to 𝑣𝑝1+1 respectively; where 𝑣2 − 𝑉3 and 𝑣𝑝1+1 −

𝑉2 is set of all edges from 𝑣2 to 𝑉3 and from 𝑣3 to 𝑉2 respectively. 

Choose 𝑆 = 𝐸(Γ𝐺)/{𝐴 ∪ 𝐵}. Then the 𝑁(𝑆) is all the edges of 𝐸(Γ𝐺) except an edge 𝑒𝑏 which is between 𝑣2 and 𝑣𝑝1+1. 

|𝑆| = ∑ 2𝑛−𝑘

𝑛

𝑘=1

[ ∑ ∏ (

𝑛−(𝑘−1)

𝑗=1

𝑘

𝑖1=1(𝑖1<𝑖𝑗)

𝑝𝑖𝑗
− 1)] − ∑ 𝑝𝑖 + 1

2

𝑖=1

 

|𝑁(𝑆)| = 𝐸(Γ𝐺)/{𝑒𝑏} 

|𝑁(𝑆)| = |𝐸(Γ𝐺)| − 1 

𝑏1(Γ𝐺) =
∑ 2𝑛−𝑘𝑛

𝑘=1 [∑ ∏ (
𝑛−(𝑘−1)
𝑗=1

𝑘
𝑖1=1(𝑖1<𝑖𝑗) 𝑝𝑖𝑗

− 1)] − 1

∑ 2𝑛−𝑘𝑛
𝑘=1 [∑ ∏ (

𝑛−(𝑘−1)

𝑗=1
𝑘
𝑖1=1(𝑖1<𝑖𝑗) 𝑝𝑖𝑗

− 1)] − ∑ 𝑝𝑖 + 12
𝑖=1

 

Theorem 2.4 Let 𝐺 ≅ 𝐷2𝑛 , where 𝑛 is odd. Then  𝑏1(Γ𝐷2𝑛
) =

𝑛2+𝑛−2

𝑛2−𝑛−1
  . 

Proof. Let 𝐺 ≅ 𝐷2𝑛  and 𝑉(Γ𝐺) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣2𝑛} 

Split the vertices of 𝑉(Γ𝐺) into subsets 𝑃, 𝑄, 𝑅 such that, 

𝑃 = {𝑣: |𝑣| = 𝑒} with |𝑃| = 1 

𝑄 = {𝑤: |𝑤| = 2𝑠,  𝑠 ∈ ℕ} with |𝑄| = 𝑛 − 1 

𝑅 = {𝑥: |𝑥| = 𝑜𝑑𝑑} with |𝑅| = 𝑛 

Without loss of generality, let 𝑃 = {𝑣1}, 𝑄 = {𝑣2, 𝑣3, … , 𝑣𝑛} and  

𝑅 = {𝑣𝑛+1, 𝑣𝑛+2, … , 𝑣2𝑛}. 
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Observation from these vertex sets, Γ𝐺  is a complete tripartite graph 𝐾1,𝑛−1,𝑛. 

So the order of edges in Γ𝐺  is 𝑛2 + 𝑛 − 1. 

Let 𝐾, 𝐿 be the subsets of 𝐸(Γ𝐺) such that, 

𝐾 = {𝑒𝑥: 𝑒𝑥 ∈ 𝑣1 − 𝑣2, 𝑣1 − 𝑣𝑛+1} with |𝐾| = 2 

𝐿 = {𝑒𝑦: 𝑒𝑦 ∈ 𝑣2 − 𝑅, 𝑣𝑛+1 − 𝑄} with |𝐿| = 2𝑛 − 2 

where 𝑣1 − 𝑣2𝑎𝑛𝑑𝑣1 − 𝑣𝑛+1 is set of all edges from 𝑣1 to 𝑣2 and from 𝑣1 to 𝑣𝑛+1 respectively; where 𝑣𝑛+1 − 𝑄 and 𝑣2 − 𝑅 

is set of all edges from 𝑣𝑛+1 to 𝑄 and from𝑣2 to 𝑄 respectively. 

Choose 𝑆 = 𝐸(Γ𝐺)/{𝐾 ∪ 𝐿}, Then the 𝑁(𝑆) is all the edges of 𝐸(Γ𝐺) except an edge 𝑒𝑦 which is between 𝑣2 and 𝑣𝑛+1. Also 

|𝑆| = 𝑛2 − 𝑛 − 1 and |𝑁(𝑆)| = 𝑛2 + 𝑛 − 2 

∴  𝑏1(Γ𝐺) =
𝑛2 + 𝑛 − 2

𝑛2 − 𝑛 − 1
 

Theorem 2.5 Let 𝐺 ≅ 𝐷𝑖𝑐4𝑛, where 𝑛 is odd. Then 𝑏1(Γ𝐺) =
2𝑛2+3(𝑛−1)

2𝑛2−3
 

Proof. Let 𝐺 ≅ 𝐷𝑖𝑐4𝑛 and  

𝑉(Γ𝐺) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛, 𝑣𝑛+1, … , 𝑣2𝑛, 𝑣2𝑛+1, … , 𝑣3𝑛, 𝑣3𝑛+1, … , 𝑣4𝑛}. 

Split the vertices of 𝑉(Γ𝐺) into subsets 𝑃, 𝑄, 𝑅, 𝑆 such that, 

𝑃 = {𝑣: |𝑣| = 𝑒} with |𝑃| = 1 

𝑄 = {𝑤: |𝑤| = 𝑜𝑑𝑑} with |𝑄| = 𝑛 − 1 

𝑅 = {𝑥: |𝑥| = 2𝑘 ,  𝑘 ∈ ℕ} with |𝑅| = 2𝑛 + 1 

𝑆 = {𝑦: |𝑦| = 𝑘𝑛,  𝑘 ∈ ℕ} with |𝑆| = 𝑛 − 1 

Without loss of generality, let 𝑃 = {𝑣1}, 𝑄 = {𝑣2, 𝑣3, … , 𝑣𝑛}, 

𝑅 = {𝑣𝑛+1, 𝑣𝑛+2, … , 𝑣3𝑛 , 𝑣3𝑛+1} 𝑎𝑛𝑑 𝑆 = {𝑣3𝑛+2, 𝑣3𝑛+3, … , 𝑣4𝑛} 

Observe that, Γ𝐺  is a 4-partite graph. 

Adjacent exists from 𝑃 to the sets 𝑄, 𝑅 and 𝑆 only, also from𝑄 to 𝑅. So the order of edges in Γ𝐺  is, 2𝑛2 + 3𝑛 − 2. 

Let 𝐾, 𝐿 be the subsets of 𝐸(Γ𝐺) such that, 

𝐾 = {𝑒𝑥: 𝑒𝑥 ∈ 𝑣1 − 𝑣2, 𝑣1 − 𝑣𝑛+1} with |𝐾| = 2 

𝐿 = {𝑒𝑦: 𝑒𝑦 ∈ 𝑣2 − 𝑅, 𝑣𝑛+1 − 𝑄} with |𝐿| = 𝑛 − 1 + 2𝑛 + 1 − 1 = 3𝑛 − 1 

where 𝑣1 − 𝑣2 and 𝑣1 − 𝑣𝑛+1 is set of all edges from 𝑣1 to 𝑣2 and from 𝑣1 to 𝑣𝑛+1 respectively; where 𝑣𝑛+1 − 𝑄 and 𝑣2 − 𝑅 

is set of all edges from 𝑣𝑛+1 to 𝑄 and from 𝑣2 to 𝑅 respectively. 

Choose the set 𝑆 = 𝐸(Γ𝐺)/{𝐾 ∪ 𝐿}. Then the 𝑁(𝑆) is all the edges of 𝐸(Γ𝐺) except one edge 𝑒𝑦 which is between 𝑣2 and 

𝑣𝑛+1. Also |𝑆| = 2𝑛2 − 3 and |𝑁(𝑆)| = 2𝑛2 + 3(𝑛 − 1). 

𝑏1(Γ𝐺) =
2𝑛2 + 3(𝑛 − 1)

2𝑛2 − 3
 

Theorem 2.6 i) If 𝐺 ≅ 𝐷2𝑛. Then 𝑏1(Γ𝐺) =
2[𝑟(2𝑘+𝑛−1)+𝑛−1]

2𝑘(2𝑟−1)+𝑛(2𝑟+1)−(4𝑟+1)
 

ii) If 𝐺 ≅ 𝐷𝑖𝑐4𝑛. Then 𝑏1(Γ𝐺) =
4𝑛(𝑟+1)+2𝑟(2𝑘+1−1)−2

(2𝑛−1)(2𝑟+1)+2𝑘+1(2𝑟−1)−2𝑟
     

where 𝑛 = 2𝑘(2𝑟 + 1). 

Proof. Let 𝐺 ≅ 𝐷2𝑛  or 𝐷𝑖𝑐4𝑛. 

Split the vertices of 𝑉(Γ𝐺) into the subsets 𝐴, 𝐵, 𝐶, 𝐷 such that, 

𝐴 = {𝑤: |𝑣| = 𝑒} 

𝐵 = {𝑥: |𝑥| = 2𝑟 + 1} 

𝐶 = {𝑦: |𝑦| = 2𝑘} 

𝐷 = {𝑧: |𝑧| = 𝑙(2𝑟 + 1)} 
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Observe that, Γ𝐺  is a 4-partite graph. 

Adjacent exists from 𝐴 to 𝐵, 𝐶, 𝐷 and from 𝐵 to 𝐶. So the order of edges in Γ𝐺  is, 

|𝐸(Γ𝐺)| = [|𝐴| × |𝐵|] + [|𝐴| × |𝐶|] + [|𝐴| × |𝐷|] + [|𝐵| × |𝐶|] 

𝐂𝐚𝐬𝐞𝟏: 𝐺 ≅ 𝐷2𝑛 

Here |𝐴| = 1, |𝐵| = 2𝑟, |𝐶| = 𝑛 + 2𝑘 − 1 and |𝑅| = 𝑛 − 2𝑘 − 2𝑟 

|𝐸(Γ𝐺)| = 2[𝑟(2𝑘 + 𝑛 − 1) + 𝑛] − 1. 

Let 𝑉(Γ𝐺) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛 , 𝑣𝑛+1, … , 𝑣2𝑛} 

Without loss of generality, let 𝐴 = {𝑣1}, 𝐵 = {𝑣2, 𝑣3, … , 𝑣2𝑟+1},                              𝐶 = {𝑣2𝑟+2, 𝑣2𝑟+3, … , 𝑣𝑛+2𝑘+2𝑟} and 

𝐷 = {𝑣𝑛+2𝑘+2𝑟+1, 𝑣𝑛+2𝑘+2𝑟+2, … , 𝑣2𝑛} 

Let 𝐾, 𝐿 be the subsets of 𝐸(Γ𝐺) such that, 

𝐾 = {𝑒𝑥: 𝑒𝑥 ∈ 𝑣2𝑟+2 − 𝐵, 𝑣2 − 𝐶} 

𝐿 = {𝑒𝑦: 𝑒𝑦 ∈ 𝑣1 − 𝑣2𝑟+2,  𝑣1 − 𝑣2} 

where 𝑣2𝑟+1 − 𝐵 and 𝑣2 − 𝐶 is set of all edges from 𝑣2𝑟+2 to 𝐵 and from 𝑣2 to 𝐶 respectively; where 𝑣1 − 𝑣2 and 𝑣1 − 𝑣2𝑟+2 

is set of all from edges from 𝑣1 to 𝑣2 and from 𝑣1 to 𝑣𝑛 respectively. 

From the definition of coprime graph, the order of edges between two vertex set is the multiple of order of their vertex sets. 

Also one edge is becomes two times in the vertex set 𝐾 which is between 𝑣2 and 𝑣2𝑟+2. 

Now, 

|𝐾| = 2𝑟 + 𝑛 + 2𝑘 − 2 

|𝐾| + |𝐿| = 𝑛 + 2𝑟 + 2𝑘 

Choose the set 𝑆 = 𝐸(Γ𝐺)/{𝐾 ∪ 𝐿}. Then the set 𝑁(𝑆) is all the edges of 𝐸(Γ𝐺) except one edge 𝑒𝑥 which is between 𝑣2 and 

𝑣𝑛. Also |𝑆| = 2𝑘(2𝑟 − 1) + 𝑛(2𝑟 + 1) − (4𝑟 + 1) and |𝑁(𝑆)| = 2[𝑟(2𝑘 + 𝑛 − 1) + 𝑛 − 1]. 

𝑏1(Γ𝐺) =
2[𝑟(2𝑘 + 𝑛 − 1) + 𝑛 − 1]

2𝑘(2𝑟 − 1) + 𝑛(2𝑟 + 1) − (4𝑟 + 1)
 

𝐂𝐚𝐬𝐞𝟐: 𝐺 ≅ 𝐷2𝑛 

Here |𝐴| = 1, |𝐵| = 2𝑟, |𝐶| = 2𝑛 + 2𝑘+1 − 1 and |𝐷| = 2(𝑛 − 2𝑘 − 𝑟). 

So |𝐸(Γ𝐺)| = 4𝑛(𝑟 + 1) + 2𝑟(2𝑘+1 − 1) − 1. 

Let 𝑉(Γ𝐺) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛 , 𝑣𝑛+1, … , 𝑣2𝑛 , 𝑣2𝑛+1, … , 𝑣3𝑛 , 𝑣3𝑛+1, … , 𝑣4𝑛}. 

Without loss of generality, let 𝐴 = {𝑣1}, 𝐵 = {𝑣2, 𝑣3, … , 𝑣2𝑟+1}, 

𝐶 = {𝑣2𝑟+2, 𝑣2𝑟+3, … , 𝑣2(𝑟+𝑛+2𝑘)} and 𝐷 = {𝑣2(𝑟+𝑛+2𝑘)+1, 𝑣2(𝑟+𝑛+2𝑘)+2, … , 𝑣4𝑛} 

Let 𝐾, 𝐿 be the subsets of 𝐸(Γ𝐺) such that, 

𝐾 = {𝑒𝑥: 𝑒𝑥 ∈ 𝑣2𝑟+1 − 𝐵,  𝑣2 − 𝐶} 

𝐿 = {𝑒𝑦: 𝑒𝑦 ∈ 𝑣1 − 𝑣2𝑟+1,  𝑣1 − 𝑣2} 

where 𝑣2𝑟+1 − 𝐵 and 𝑣2 − 𝐶 is set of all edges from 𝑣2𝑟+1 to 𝐵 and from 𝑣2 to 𝐶 respectively; where 𝑣1 − 𝑣2𝑟+1 and 𝑣1 −
𝑣2 is set of all edges from 𝑣1 to 𝑣2𝑟+1 and from 𝑣1 to 𝑣2 respectively. 

From the definition of corpime graph, the edges between two vertex set is multiple of the order of their vertex sets. Also one 

edge is becomes two times in the vertex set 𝐾 which is between 𝑣2 and 𝑣2𝑟+1. 

Now, 

|𝐾| = 2𝑟 + 2𝑛 + 2𝑘+1 − 2 

|𝐾| + |𝐿| = 2(𝑟 + 𝑛 + 2𝑘) 

Choose the set 𝑆 = 𝐸(Γ𝐺)/{𝐾 ∪ 𝐿}. Then the set 𝑁(𝑆) is all the edges of 𝐸(Γ𝐺) except one edge 𝑒𝑥 which is between 𝑣2 and 

𝑣2𝑟+1. Also |𝑆| = (2𝑛 − 1)(2𝑟 + 1) + 2𝑘+1(2𝑟 − 1) − 2𝑟, and |𝑁(𝑆)| = 4𝑛(𝑟 + 1) + 2𝑟(2(𝑘 + 1) − 1) − 2 

𝑏1(Γ𝐺) =
4𝑛(𝑟 + 1) + 2𝑟(2𝑘+1 − 1) − 2

(2𝑛 − 1)(2𝑟 + 1) + 2𝑘+1(2𝑟 − 1) − 2𝑟
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Remark 2.1 Observe that for 𝐺 ≅ 𝑆𝑛. 

Divide the set 𝑉(Γ𝐺) as 𝑉1, 𝑉2, 𝑉3, 𝑉4 such that, 

𝑉1 = {𝑣1 = |𝑣1| = {𝑒}} 

𝑉2 = {𝑣2 = |𝑣2| = 2𝑟 + 1,  𝑟 ∈ ℕ} 

𝑉3 = {𝑣3 = |𝑣3| = 2𝑘 ,  𝑘 ∈ ℕ} 

𝑉4 = {𝑣4 = |𝑣4| = 𝑙(2𝑟 + 1),  𝑙 > 1,  𝑙, 𝑟 ∈ ℕ} 

Adjacent exists from 𝑉1 to 𝑉2, 𝑉3, 𝑉4 and from 𝑉2 to 𝑉3 for any 𝑆𝑛. Also adjacent exists from 𝑉2 to 𝑉4 for some groups. 

Let 𝑇 be the subset of 𝐸(Γ𝐺) which contains the edges from 𝑥1 to 𝑉3, from 𝑥2 to 𝑉2 and from 𝑥3 to 𝑥1& 𝑥2, where 𝑥1 ∈
𝑉2,  𝑥2 ∈ 𝑉3,  𝑥3 ∈ 𝑉1. 

Choose 𝑆 as the set 𝐸(Γ𝐺) except the vertices of 𝑇. Then |𝑆| = |𝐸(Γ𝐺)| − |𝑇|. 

Now the 𝑁(𝑆) will be 𝐸(Γ𝐺) except one edge 𝑥1, 𝑥2, where 𝑥1 ∈ 𝑉2,  𝑥2 ∈ 𝑉3. Hence |𝑁(𝑆)| = |𝐸(Γ𝐺)| − 1. 

𝑏1(Γ𝐺) =
|𝐸(Γ𝐺)| − 1

|𝐸(Γ𝐺)| − |𝑇|
 

Theorem 2.7 Let 𝐺 be a group of all 𝑛 × 𝑛 matrix under over ℤ𝑝 ring of integer modulo p, p is a prime number. Then 1 <

𝑏1(Γ𝐺) ≤ 2 

Proof. Let 𝐺 ≅ 𝐺𝐿(𝑛, ℤ𝑝), 𝑆𝐿(𝑛, ℤ𝑝). 

𝐂𝐚𝐬𝐞𝟏: Let 𝑝 and 𝑛 is equal to 2 

Let 𝑘1, 𝑘2, 𝑘3 be there subsets of 𝑉(Γ𝐺) such that ⋃ 𝑘𝑖 = 𝑉𝑛
𝑖=1 (Γ𝐺) with 

𝐾1 = {𝑒},  |𝐾1| = 1 

𝐾2 = {𝑡: |𝑡| = 3},  |𝐾2| = 2 

𝐾3 = {𝑠: |𝑠| = 2},  |𝐾3| = 3 

Let 𝑉(Γ𝐺) = {𝑣1, 𝑣2, … , 𝑣6}. Then  

𝐾1 = {𝑣1} 

𝐾2 = {𝑣2, 𝑣3} 

𝐾3 = {𝑣4, 𝑣5, 𝑣6} 

From these vertex sets, the graph Γ𝐺  will be a complete tripartite graph 𝐾𝑘1,𝑘2,𝑘3
 

Order of edges in this graph is 11 say 𝑒1, 𝑒2, … , 𝑒11 

Assume that the edges 𝑒1, 𝑒2, 𝑒3 are incident between 𝑘1 and 𝑘3, the edges 𝑒4, 𝑒5 are incident between 𝑘1 and 𝑘2, the edges 

𝑒6, 𝑒7, 𝑒8, 𝑒9, 𝑒10, 𝑒11 are between 𝑘1 and 𝑘3. 

Let 𝑌 = {𝑒1, 𝑒4, 𝑒6, 𝑒7, 𝑒8, 𝑒9} be a subsets of 𝑉(Γ𝐺), 

where 𝑒1 = 𝑣1𝑣2, 𝑒4 = 𝑣1𝑣4, 𝑒6 = 𝑣2𝑣4, 𝑒7 = 𝑣3𝑣4, 𝑒6 = 𝑣2𝑣4, 𝑒8 = 𝑣2𝑣5, 𝑒9 = 𝑣2𝑣6. 

Choose 𝑆 as all edges except the set of all edges in 𝑌. Then |𝑆| = 5. 

According to the Γ𝐺 . 

𝑁(𝑆) = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒7, 𝑒8, 𝑒9, 𝑒10, 𝑒11} 

|𝑁(𝑆)| = 10 

𝑏1(Γ𝐺) = 2 

𝐂𝐚𝐬𝐞𝟐: 𝑝 > 2,  𝑛 ≥ 2 

Divide the set 𝑉(Γ𝐺) as 𝐾1, 𝐾2, 𝐾3, 𝐾4 such that, 

𝐾1 = {𝑒} 

𝐾2 = {𝑡: |𝑡| = 2ℎ + 1,  ℎ ∈ ℕ} 

𝐾3 = {𝑠: |𝑠| = 2𝑘 ,  𝑘 ∈ ℕ} 

𝐾4 = {𝑢: |𝑢| = 𝑗(2ℎ + 1),  𝑗, ℎ ∈ ℕ,  𝑗 > 1} 
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Adjacent exists from 𝐾1 to 𝐾2, 𝐾3, 𝐾4 and from 𝐾2 to 𝐾3 for any 𝐺. Also adjacent exists from 𝐾2 to 𝐾4 for some groups. 

Let 𝑒1 = 𝑣1𝑡, 𝑒2 = 𝑣1𝑠, 𝑡 ∈ 𝐾2 and 𝑠 ∈ 𝐾3. 

Let 𝑍 be the edge set which contains the edges incident on 𝑡 and also incident on 𝑠. 

Choose 𝑆 = 𝐸(Γ𝐺)/𝑍′, where 𝑍′ = {𝑒1, 𝑒2} ∪ 𝑍. Then from Γ𝐺 , |𝑆| >
|𝐸(Γ𝐺)|

2
. 

If we add one more vertex in 𝑆, then the 𝑁(𝑆)  will be 𝐸(Γ𝐺) which is a contradiction. 

For this 𝑆, 𝑁(𝑆) is all edges except one edge 𝑒 which is between 𝑡 and 𝑠. 

𝑁(𝑆) = 𝐸(Γ𝐺)/{𝑒} 

Observe that 1 <
|𝑁(𝑆)|

|𝑆|
≤ 2, otherwise |𝑁(𝑆)| = 𝐸(Γ𝐺). 

Hence 1 < 𝑏1(Γ𝐺) ≤ 2. 

Lemma 2.1 Let 𝐺1, 𝐺2 be the groups which are finite. If 𝐺1 ≅ 𝐺2,  

then 𝑏1(Γ𝐺1
) = 𝑏1(Γ𝐺2

). 

Proof. Assume that 𝐺1 ≅ 𝐺2. Then order of the groups and order of the elements in the groups are equal to each other. There 

exists the Γ𝐺1
 and Γ𝐺2

 be the same graph. Hence 𝑏1(Γ𝐺1
) = 𝑏1(Γ𝐺2

). 

Theorem 2.8 If 𝐺 ≅ ℤ4, ℤ2 × ℤ3, 𝑆3, 𝐺𝐿(2, ℤ2) or 𝑆𝐿(2, ℤ2), then 𝑏1(Γ𝐺) = 2. 

Proof. Assume that 𝐺 ≅ ℤ4, ℤ2 × ℤ3, 𝑆3, 𝐺𝐿(2, ℤ2) 𝑜𝑟 𝑆𝐿(2, ℤ2) 

Here ℤ4 ≅ 𝑆3 

By the Theorem 2.1, 2.7 and Lemma 2.1, 

𝑏1(Γℤ4
) = 𝑏1(Γ𝐺𝐿(2,ℤ2)) = 𝑏1(Γ𝑆𝐿(2,ℤ2)) = 𝑏1(Γ𝐺𝐿(2,ℤ2)) = 𝑏1(Γ𝑆3

) = 2 

Remark 2.2 Let 𝐺 ≅ ℤ3. Then there exists only two edges in the graph Γ𝐺 . 

Hence 𝑏1(Γ𝐺) = 1. 

Theorem 2.9 Consider that the 𝐺 group is isomorphic to one of the following: 

𝐷2𝑛 , 𝐷𝑖𝑐4𝑛, 𝑆𝑛 , 𝐴𝑚, 𝑆𝐿(𝑛, ℤ𝑝) or 𝐺𝐿(𝑛, ℤ𝑝). Then 1 ≤ 𝑏1(Γ𝐺) ≤ 2. 

Proof: The proof is followed from the Theorem 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and Remark 2.2. 

3. DISCUSSION AND CONCLUSION 

The binding number is a crucial metric for assessing network performance and is frequently used to gauge the network's 

susceptibility. In particular, there are three primary conclusions in this article: 

1. Determine the exact binding number for the network settings that are constructed as coprime graphs of groups (see 

Theorem 2.1, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and Remark 2.2); 

2. Determine which network setting has binding number 2 (see Theorem 2.8); 

3. Present the binding number is between 1 and 2 for the network settings that are constructed as coprime graphs of groups 

(see Theorem 2.9). 
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