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ABSTRACT 

Unhealthy lifestyles and vitamin deficiencies contribute to various scalp-related issues, such as dermatitis and baldness. 
Alopecia Areata (AA) is a prevalent form of hair loss, commonly diagnosed using medical image processing-based models. 

However, these models often struggle with overlapping hairs and are highly sensitive to configuration variables, making 

them less reliable. To overcome these limitations, deep learning has been increasingly applied in medical image analysis for 

the detection and diagnosis of AA. While several deep learning models have been developed to recognize different scalp 

conditions, there remains a need for simultaneous identification of AA and other scalp conditions to improve diagnostic 

accuracy.This study introduces a Multi-Task Deep (MTDeep) learning system, incorporating the MT Faster Residual 

Convolutional Neural Network with Long Short-Term Memory (MT-FRCNN-LSTM) model. This approach aims to 

recognize both AA and various scalp conditions in individuals with different baldness patterns. The primary objective of 

multi-task learning (MTL) is to improve recognition accuracy through the use of a shared encoder. In this model, scalp and 

AA images are initially processed through an LSTM encoder and an FRCNN encoder, extracting global and local features 

at different scales. These extracted features are then fused to generate a comprehensive feature representation. Finally, a fully 

connected layer, followed by a softmax classifier, is applied to categorize different scalp conditions. 
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1. INTRODUCTION 

As the Biblical Samson explained to us in Judges 16, hair is a strong physical representation. The hair loss, also known as 

alopecia represents a loss of influence and domination. A hair loss or scalp hair symptoms are usually the results of a stressful 

case [1]. Nowadays, many people suffer from scalp hair issues such as dandruff, folliculitis, hair loss and greasy hair due to 

a variety of factors such as bad daily routines, an unbalanced nutritional intake, excessive stress and poisonous elements in 

their environments [2]. At least 30% of these issues result in hair loss. Rajput [3] investigated the etiology and clinical 

manifestations of hair loss caused by air pollution. According to the World Health Organization (WHO), about 70% of 

individuals have scalp hair issues [4]. Endocrine, genetic, illness, and other internal variables can all contribute to scalp hair 

issues. Additionally, dandruff, scalp pruritus and related signs occurred in the French people. Many investigations revealed 
that about 18% of children in the USA and Australia are affected by dandruff. So, both adults and children may have scalp 

hair issues [5-6]. So, understanding how to successfully avoid scalp hair-related disorders and maintain scalp hair is critical. 

In recent years, specific treatments, such as scalp hair physiotherapy, have evolved to treat more acute scalp disorders.  

Manual inspection is used to assess the state of the patient's scalp hair in the current most popular processing techniques in 

scalp hair physical treatment [7]. However, such manual diagnostic tests are based on the physiotherapist's competence level, 

and as a result, they might provide a variety of outcomes and worries about the scalp hair condition and diagnosis. The two 

major challenges exist associated with hair care services in the recent hairdressing industry are: (i) Due to the regular staffing 

levels in the hairdressing business, organizations have invested significant time and cost to consistently enhance 

physiotherapy skillsets; and (ii) Even among professional physiotherapists who have received the same professional training, 

the interpretation of scalp hair microscope pictures varies. Such discrepancies in diagnostic result interpretation might also 

be attributed to a lack of expertise. 

To combat all these challenges, a deep learning-based intelligent scalp detection and diagnosis model called ScalpEye [8] 

has been developed to identify and diagnose frequent scalp hair symptoms in scalp healthcare, including dandruff, folliculitis, 

hair loss and oily hair. This system was comprised of a portable scalp hair imaging microscope, a mobile device app, a cloud-

based Artificial Intelligence (AI) training server and a cloud-based administration platform. In this system, the FRCNN with  
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Inception_ResNet_v2_Atrous model has been chosen as the deep learning training model and employed to identify and 

diagnose various types of scalp hair symptoms. Among various scalp symptoms, Alopecia Areata (AA) is a common hair 

loss disorder with a lifetime frequency of around 2% [9] that is distinguished by sudden onset of non-scarring hair loss in 

generally sharply defined regions [10]. Some people have just a tiny patch of hair loss, whilst others have more widespread 

or less typically distributed involvement [11]. Many scalp and dermoscopic images have been utilized to recognize and 
diagnose AA in the past few years. Generally, Tracheoscopies and biopsies are frequently necessary to recognize and 

diagnose AA as the cause of hair loss [12]. There are many disadvantages to those diagnostic analyses, including the question 

of how many tests are required for a reliable diagnosis. As a result, there is a lot of space for further research on AA 

recognition and diagnosis based on the AI models such as machine learning and deep learning approaches [13-15]. Such AI 

models, including Support Vector Machine (SVM), K-Nearest Neighbor (KNN), decision trees, Artificial Neural Network 

(ANN), Convolutional Neural Network (CNN), etc., have been applied in a range of healthcare systems for proper diagnostic 

purposes. In dermatology or trichology, many machine learning and deep learning approaches have been utilized to produce 

accurate diagnoses and forecasts using healthy and AA hair images [16]. However, it needs simultaneous recognition of AA 

with the scalp condition to guide proper diagnosis. 

Therefore in this paper, an MTDeep learning system is developed based on the MT-FRCNN-LSTM model for identifying 
AA and scalp conditions together for multiple individuals with the varieties of baldness. This system has the objective of 

employing an additional shared encoder for increasing the efficiency of identifying AA and scalp conditions. Initially, the 

scalp and AA hair images are passed to the LSTM encoder and the FRCNN encoder for obtaining the global and local 

features at different scales. After that, such features are merged to get the final feature vector representation. Further, the 

fully connected layer followed by the softmax classifier is used to simultaneously recognize the AA and scalp conditions. 

Thus, this system enhances the accuracy of AA detection and diagnosis effectively. 

The remaining sections of this manuscript are prepared as follows: Section II discusses the recent works related to AA/scalp 

conditions detection and classification. Section III explains the MT-FRCNN-LSTM model and Section IV illustrates its 

efficiency. Section V concludes the entire study and suggests future enhancement. 

2. LITERATURE SURVEY 

Nabahhin et al. [17] developed an expert model, which conducts treatment for various probable hair loss disorders of the 

levels between individuals by asking yes or no questionnaires. First, it may ask the customer to choose the proper answer on 

all screens. At the end of the dialog session, the treatment and suggestion of the disorder were provided to the customer. On 
the other hand, more characteristics related to hair loss were needed to improve the diagnosis. Wang et al. [18] applied the 

deep learning models to hairy scalp images to identify the different scalp conditions. In this model, the ImageNet-VGG-f 

structure Bag-Of-Words (BOW) was executed with SVM classifier and Histogram-Of-Gradients (HOG) or Pyramid HOG 

(PHOG) with SVM classifier. But, the number of scalp images for training was inadequate and it needs an ensemble model 

to increase the detection accuracy. 

Lee et al. [19] identified the topographic phenotypes of AA using cluster analysis and designed a grading model to stratify 

diagnosis. At first, clinical images for patients with AA were collected and reviewed to analyze alopecia using the severity 

of Alopecia Tool 2. Then, topographic phenotypes of AA were detected by hierarchical clustering with Ward’s method. Also, 

variances in clinical features and diagnosis were compared across the different clusters. But, the statistical efficiency was 

degraded because of the limited number of patients with severe AA. 

Seo & Park [20] presented a scheme to prevent hair loss and diagnose the scalp by capturing Alopecia Feature (AF) depending 

on the scalp image. Primarily, the scalp images were preprocessed by the image processing to fine-tune the contrast of 

microscopy input and reduce the light reflection. Then, the AFs like the number of hair, follicles, density, etc., were extracted 

from the preprocessed images by the gridline selection and eigenvalues to compute the growth level of alopecia. But, it needs 

a massive quantity of scalp images and designs an AI model to automatically extract several kinds of AFs for increasing 

efficiency. 

Fatima et al. [21] investigated clinical, dermoscopic and histopathological findings in patients of AA. In this investigation, 
50 successive patients participating dermatology outpatient department of a tertiary care hospital over 2 years with clinical 

attributes evocative of AA were chosen. After that, a clinical analysis was conducted by dermoscopy and skin biopsy taken 

from the margin of an active lesion. Moreover, the data was evaluated by determining the mean and standard variance. 

However, it needs an automated model to identify and diagnose AA appropriately. 

Ibrahim et al. [22] presented an analysis of the pre-trained categorization of scalp conditions with the help of image 

processing methods. At first, the scalp images were collected and preprocessed. Then, various characteristics like shape, 

color and texture were obtained from all images to determine the Region-Of-Interest (ROI). The values of the pre-trained 

features were utilized as a reference during the categorization. The SVM was used to categorize the scalp conditions. But, it 

needs a deep learning model to increase the feature extraction and classification efficiency. 

Zhang et al. [23] developed a rapid and simple technique to identify the level of hair damage based on the lightweight CNN 



C. Saraswathi 
 

pg. 98 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 17s 

 

model called Hair Diagnosis MobileNet (HDM-Net). In this technique, the HDM-Net was utilized to obtain and choose the 

features. Such features were then fed to the SVM to categorize hair damage images. Though it reduces the number of 

parameters, its accuracy was not effective. 

Shakeel et al. [24] developed a model for the categorization of healthy hairs and AA. First, hair images of healthy and AA 

conditions were collected and preprocessed for partition. Then, various features such as texture, shape and color were 

extracted from each segment. Moreover, SVM and KNN classifiers were employed to classify those features into healthy 

and AA. But, it needs deep learning classifiers to increase the accuracy. 

Kim et al. [25] evaluated the efficiency of hair density measurement by employing a deep learning model. First, the hair 

scalp RGB images were obtained from male alopecia patients. Then, the related annotation data was also acquired that 

contained the position data of the hair follicles in the image and follicle-sort data based on the number of hairs. Moreover, 

those images were classified by the EfficientDet, YOLOv4 and DetectoRS to identify the classes of hair follicles. But, the 

efficiency of all these classifiers for hair follicles of class 3 was poor because the images of class 3 comprise features similar 

to those in the images of class 1 and class 2. Also, the class imbalance occurred between class 3 and the other classes. 

3. III. PROPOSED METHODOLOGY 

In this section, the MT-FRCNN-LSTM model is described briefly for identifying and diagnosing AA and scalp conditions 

in parallel. Figure 1 depicts the schematic representation of this presented MTDeep system. Initially, the hair and scalp 

images of healthy and AA are acquired from the publicly available databases. Then, those images are applied to train the 
MT-FRCNN-LSTM model and the trained model is used to categorize the test samples into healthy and different conditions 

of AA. 

3.1 Image Acquisition 

In this study, 2 different publicly available databases are gathered and they are: 

Figaro1k database: It is an open database comprising 1050 hair images, equally distributed in various classes like straight, 

wavy and curly [26]. 

 

Figure 1. Schematic Representation of Presented MTDeep System for AA and Scalp Symptoms Identification and 

Diagnosis 

Dermnet database: It is an open database accessible on Dermnet, containing 23 classes of dermatological disorders, including 

AA [27]. A total of 108 images are retrieved for 3 different AA classes: mild, moderate and severe.  

The hair and scalp images collected from these databases are given to the MTDeep system for AA conditions identification 

and diagnosis. 

3.2 MTDeep System 

The MT-FRCNN-LSTM model is designed to conduct the AA levels identification based on the various scalp conditions. 

The entire architecture of this model is illustrated in Figure 2. 
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Figure 2. Entire Pipeline of the MT-FRCNN-LSTM Model 

This MTDeep system is explained in the following sub-section:  

3.2.1 Multi-Task Learning Model 

Multi-task learning ensures better efficacy in various image processing and classification processes. Because of the semantic 
variances among distinct types of scalp conditions, even if the aim is to categorize AA levels, it is suitable for the multi-task 

learning scheme. This MTDeep system adopts the Adversarial Multi-Task (AMT) learning model and enhances the 

architecture of its encoder. Adversarial multi-task learning is depending on Global-Local Multi-Task Learning (MTL), as 

depicted in Figure 3. 

 

Figure 3. Structure of Adversarial Multi-task Learning Model 

For GL-MTL, the hair and scalp images in all databases are allocated to 2 feature spaces to encode: global space and local 
space. Global encoders are utilized to obtain hair image features that are independent of AA while local encoders are utilized 

to obtain scalp images that are more relevant to the AA. For an image 𝑥𝑘 in every AA class 𝑘, the global feature 𝑆𝑘 and the 

local feature 𝑃𝑘 of the image are extracted by the 2 encoders. Additionally, the global representation 𝑠𝑘 and local 

representation 𝑝
𝑘
 of the image are acquired after pooling. 

Based on the Generative Adversarial Network (GAN), the adversarial MTL attempts to create a global space comprising 

fewer data than the local space and incorporate a discriminator after the global encoder. It maps the global representation of 

the image to the probability distribution to estimate which AA class the image comes from, as defined in Eq. (1). During the 
learning task, the global encoder avoids the discriminator from creating an accurate decision on the AA classification, 

guaranteeing that the global representation of the image is independent of the classification, whereas the discriminator 

attempts its best to recognize which AA class the current image feature representation comes from. The discriminator loss 

𝑙𝐷 is added in the loss function, as defined in Eq. (2). 
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𝐷(𝑠𝑘 , 𝜃𝐷) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏 + 𝑈𝑠𝑘)      (1) 

In Eq. (1), 𝑈 ∈ ℝ𝑑×𝑑 denotes the variable that can be learned, 𝑏 ∈ 𝑅𝑑 denotes the bias and 𝜃𝐷 indicates the variable of the 

discriminator. 

𝑙𝐷 = min
𝜃𝑆

(𝜆 max
𝜃𝐷

(∑ ∑ 𝑑𝑖
𝑘 log[𝐷(𝐸(𝑥𝑘))]𝑁𝑘

𝑖=1
𝐾
𝑘=1 ))   (2) 

In eq. (2), 𝑑𝑖
𝑘 is the true label of the current image and 𝜃𝑆 indicates the variable of the shared encoder. When guaranteeing 

that the global features of an image include some local features of the image as probable, it is also essential to guarantee that 

the local features of the image do not include those global features as much as promising. From this, the adversarial MTL 

model adopts orthogonal restrains to penalize redundant features and directs the encoder to capture features in multiple 

scales. Likewise, the loss function comprises the orthogonal restrain loss term 𝑙𝑂, as defined in Eq. (3). 

𝑙𝑂 = ∑ ‖𝑆𝑘𝑃𝑘‖𝐹
2𝐾

𝑘=1         (3) 

The major aim of the MTL is to differentiate the AA conditions of the multiple individuals under the different types of hair 

losses. The global encoder is applied to learn the common features (global features) between images from various classes. 

The merit of using the global encoder is that because each image traverse through the global encoder, the global encoder 

learns enriched semantic features. The discriminator assigned by the adversarial MTL model guarantees that the training 

sample of the global encoder is as independent as promising from the image source. But, a local encoder is assigned for all 
classes of AA images to learn the semantic features associated with the local feature. The presence of orthogonal restrains 

creates the training sample of the local encoder as relevant to the classification as probable. At last, the classifier is employed 

for AA identification. The input of the classifier is a feature representation obtained by the global feature and the local 

features of the image. Also, the outcome is the classification result. 

3.2.2 Image Encoder 

The underlying adversarial MTL model utilizes an LSTM encoder to encode images. It is assumed that it only takes the 

global features of the image and neglects the local features of the image to some extent. So, an Atrous convolution merged 
with LSTM is used to encode images, utilizing not only the global features of the image for classification but also the local 

features of multiple scales of the image. The architecture of this encoder is illustrated in Figure 4, which capotes local image 

features of multiple scales from the FRCNN encoder and concurrently captures global features of the image from an LSTM 

encoder and merges these 2 features to produce an entirely local or global feature representation. 

 

Figure 4. Architecture of the FRCNN-LSTM Encoder 

A. Global Feature Extraction using LSTM 

This encoder utilizes LSTM to capture the global features of an image and obtain the global representation of the image 
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features. The LSTM includes 3 gate control strategies such as forget gate, input gate and output gate. Meanwhile, it adopts 

the choice of dependent data on cell state control, which efficiently prevents the issue of gradient explosion and gradient 

disappearance. Its architecture is depicted in Figure 5. 

The presence of the forget gate is to compute the degree of forgetting of the data flow before the ongoing cell. The 

determination is defined in Eq. (4): 

𝑓
𝑡

= 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)       (4) 

 

Figure 5. Architecture of LSTM Cell 

The role of the input gate is to estimate how much present data is included in the data flow. The determination is defined in 

Eqns. (5) and (6): 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)       (5) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)      (6) 

After the data traverse through the input gate and the forget gate, the LSTM fine-tunes the cell state to determine the outcome 

of the ongoing LSTM cell and pass it to the consecutive LSTM cell. The determination is defined in Eq. (7): 

𝐶𝑡 = 𝑓
𝑡

∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡       (7) 

The output gate merges the present input and cell state to compute the result of the present LSTM cell. The computation is 

defined in Eqns. (8) and (9): 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)       (8) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)        (9) 

The function of this encoder to capture the global features of the image and create the global feature representation is 

illustrated in Figure 6(a). The initial image is input to the initial LSTM cell and the result gets the image feature of the present 

period and is sent to the consecutive LSTM cell. This process is repeated for all subsequent images until all features traverse 

through the LSTM cell and obtain their related present image features. 

Because the input of the present period of the LSTM contains the result of the past period, the result of the final period is 

utilized as the global representation of the feature, as portrayed in Figure 6(b). 
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(a) 

 

(b) 

Figure 6. Global Feature Extraction and Representation using LSTM 

B. Multi-dimensional Local Feature Extraction using FRCNN 

FRCNN extracts local features of images by analyzing the pixels of the image via a convolution kernel. By considering color, 

texture and shape characteristics in the image, 3, 4 and 5 dimensions of convolution kernels are decided to capture the local 

features of the image on multiple scales. The determination is defined in Eq. (10): 

𝑐𝑖
𝑟 = 𝑓(𝐹 ∙ 𝑉(𝑤(𝑖: 𝑖 + 𝑟 − 1)) + 𝑏)      (10) 

In Eq. (10), 𝐹 is the convolution kernel of 𝑟 ∗ 𝑘 dimension. In this study, the dimension of 𝑟 is assigned to 3, 4, 5 and 𝑘 refers 

to the size of the feature vector, 𝑓 is the ReLU activation factor, 𝑉(𝑤(𝑖: 𝑖 + 𝑟 − 1)) defines that there are 𝑟 feature vectors 

from 𝑖𝑡ℎ image to the (𝑖 + 𝑟 − 1)𝑡ℎ image in the database and 𝑐𝑖
𝑟 is the 𝑖𝑡ℎ local feature of the image obtained by the 

convolution kernel with width 𝑟. The operation of this encoder to obtain the local features of the image and provide the local 

representations of the image is portrayed in Figure 7. 
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Figure 7. Multi-dimensional Local Feature Extraction and Representation using FRCNN 

C. Concatenation of Local and Global Representations of Images 

In the process explained above, the images have been provided to the LSTM and multi-scale FRCNN encoder to get the 

global and local representations of the image features. After that, such two outcomes are fused to create the entire local or 

global feature representation. In contrast, such 2 feature representations are not equal dimensions. So, the result of the LSTM 

network is given to the 𝑡𝑎𝑛ℎ activation function and the feature dimensions of all scales are limited in the range (−1,1), 

whereas the activation function utilized in the FRCNN is the ReLU. For the classification of AA conditions, the classifier 

can simultaneously learn the feature representations acquired by the 2 encoders. 

To guarantee that the local and global data contained in the feature representations are in an identical state, concatenation is 

performed after the feature representations acquired by FRCNNs at 3 distinct scales. Further, the concatenated local 

representation is fused with the global representation to get the absolute result of the image encoder. At last, the resultant 

feature representation acquired from the result of the global encoder and the result of the local encoder is fed to the softmax 

classifier after the number of fully connected layers for minimizing the dimensionality. Also, this model is trained based on 

the Stochastic Gradient Descent (SGD) and the classifier loss is described as Eq. (12). 

𝑙(𝑦̂, 𝑦) = − ∑ ∑ 𝑦𝑖
𝑗

log(𝑦̂𝑖
𝑗)𝐶

𝑗=1
𝑁
𝑖=1        (11) 

𝑙𝐶 = ∑ 𝛼𝑘𝑙(𝑦̂
(𝑘)

, 𝑦(𝑘))𝐾
𝑘=1         (12) 

Thus, this MT-FRCNN-LSTM model can improve the accuracy of identifying and classifying the three different classes of 

AA: mild, moderate and severe with the help of both hair and scalp images. 

4. EXPERIMENTAL RESULTS 

This section investigates the effectiveness of the MT-FRCNN-LSTM model by executing it in MATLAB 2017b using 

figaro1k and dermnet databases (discussed in Section 3.1). In this experiment, 70% of images are taken for training and the 

remaining 30% of images are taken for testing. Additionally, a comparative analysis is presented to demonstrate its 

effectiveness compared with the classical models based on the different evaluation metrics. The considered classical models 

are FRCNN [8], ImageNet-VGG-f [18], SVM [22], HDM-Net-SVM [23], EfficientDet [25], YOLOv4 [25] and DetectoRS 

[25]. 

4.2 Accuracy 

It is the proportion of exact categorization over the total images analyzed. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
    (13) 

In Eq. (13), the number of healthy images correctly classified as positive (healthy) is TP, while the number of AA images 

correctly classified as negative (AA) is TN. In addition, FP denotes the number of AA images classified as healthy, whereas 

FN denotes the number of healthy images classified as AA. 
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Figure 8. Comparison of Accuracy 

Figure 8 displays the accuracy (in %) realized by the different AA identification models. It addresses that the accuracy of the 

MT-FRCNN-LSTM is 34.84% greater than the SVM, 30.2% greater than the HDM-Net-SVM, 24.28% greater than the 

ImageNet-VGG-f, 19.71% greater than the EfficientDet, 16.33% greater than the YOLOv4, 11.31% greater than the 

DetectoRS and 5.04% greater than the FRCNN models. This is because of handling both local and global features from the 

hair and scalp images at multiple scales. 

4.3 Precision 

It is determined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (14) 

 

Figure 9. Comparison of Precision 

Figure 9 shows the precision achieved by the different AA identification models using hair and scalp images. It notices that 

the precision of the MT-FRCNN-LSTM model is 35.54% higher than the SVM, 30.05% higher than the HDM-Net-SVM, 

24.55% higher than the ImageNet-VGG-f, 19.88% higher than the EfficientDet, 16.37% higher than the YOLOv4, 11.37% 

higher than the DetectoRS and 3.7% higher than the FRCNN models because of capturing both local and global features 

from the hair and scalp images at different scales. 

4.4 Recall 

It is determined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (15) 
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Figure 10. Comparison of Recall 

Figure 10 portrays the recall for various AA identification models. It observes that the recall of the MT-FRCNN-LSTM 

model is 36.4% larger than the SVM, 30.94% larger than the HDM-Net-SVM, 25.43% larger than the ImageNet-VGG-f, 

20.72% larger than the EfficientDet, 17.44% larger than the YOLOv4, 12.58% larger than the DetectoRS and 5.31% larger 

than the FRCNN models owing to the learning both local and global features from the hair and scalp images of various AA 

levels at different scales. 

4.5 F-measure 

It is calculated by 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (16) 

 

Figure 11. Comparison of F-measure 

Figure 11 depicts the f-measure values for various models applied to identify and diagnose AA conditions. It indicates that 

the f-measure of the MT-FRCNN-LSTM model is 35.96% superior to the SVM, 30.49% superior to the HDM-Net-SVM, 

24.98% superior to the ImageNet-VGG-f, 20.3% superior to the EfficientDet, 16.91% superior to the YOLOv4, 11.97% 

superior to the DetectoRS and 4.5% superior to the FRCNN models due to the extraction of both local and global features 

from the hair and scalp images at different scales. 

5. CONCLUSION 

In this study, the MT-FRCNN-LSTM model was presented for identifying and diagnosing various levels of AA by learning 

both hair and scalp images together. Primarily, the hair and scalp image databases were acquired from the openly available 

sources. Then, such images were passed to the LSTM encoder and the FRCNN encoder to concurrently obtain the global 
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and local feature representations from the images at different scales. Once both feature representations were obtained, 

concatenation was performed to fuse such features and get the absolute feature representation. Further, the absolute feature 

representation was passed to the softmax classifier after the fully connected layer to identify and classify the different levels 

of AA efficiently. At last, the experimental outcomes proved that the MT-FRCNN-LSTM model on hair and scalp image 

databases has a 93.82% accuracy compared to the other models for AA identification and diagnosis. As a result, it supports 

physicians to diagnose patients who suffer from AA earlier. 
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