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ABSTRACT 

Diabetes represents a significant global health challenge, particularly as the prevalence of individuals at risk continues to 

rise. Diabetes is classified as a chronic disease; diabetes is responsible for a substantial number of fatalities annually. Early 

prediction of diabetes is essential for halting its progression and mitigating the risk of severe associated complications, 

including cardiovascular disease and renal damage. This research proposes an innovative Deep Learning (DL) clinical 

decision support system designed to optimize diabetes prediction accuracy using machine learning. The proposed DL 

methodology combines a stacking pattern based on learning with various DL architectures, specifically ANN, LSTM 

networks, and CNN, to form a Combined Learning Network Pattern (CLNet). To enhance diabetes prediction capabilities, 

the DL framework employs a pattern that integrates meta-level patterns. The novel DL patterns are trained to utilize three 

distinct diabetes information sets. Pertinent variables are obtained from the information set utilizing the proposed 

methodology. Key evaluation metrics such as accuracy, precision, recall, specificity, F1-score, MCC, and ROC/AUC are 

employed to assess the effectiveness of the proposed CLNet patterns. When applied to the information sets, the Combined 

Learning Network Pattern (CLNet) exhibited improved performance compared to the other proposed CLNet pattern, 

obtaining accurate results rates of 99.5%, 98.8%, and 98.4%, respectively. The analysis reveals that the proposed CLNet 

patterns exhibit enhanced performance in diabetes prediction compared to previous studies. 

 

Keywords: diabetics, prediction, deep learning, hybridization, variables 

1. INTRODUCTION 

With more and more diabetic individuals at risk, diabetes is a widespread health concern internationally. It results in a 

significant death toll [1]. Diabetes, commonly known as DM, is a metabolic disorder characterized by chronically, 

abnormally high blood glucose levels caused by the body's reduced ability to utilize glucose effectively. Diabetic 

ketoacidosis, chronic renal failure, nonketotic hyperosmolar coma, foot ulcers, retinal damage, cardiovascular disease, stroke, 

and chronic renal failure are among the severe consequences linked to DM. Developed during pregnancy, T1D and T2D are 

the three main forms of DM [2]. T1D is caused by inadequate insulin synthesis and typically affects individuals under 30. 

Typical symptoms consist of elevated blood sugar levels, frequent urination, and intense thirst. Patients with type 1 diabetes 

usually require medication for management. In contrast, chronic metabolic disorder is a prevalent condition where the body 

struggles to produce or effectively respond to insulin properly. It primarily affects middle-aged and older persons and is 

frequently linked to lifestyle choices, food habits, obesity, smoking, high cholesterol (hyperlipidemia), hypertension 

(hyperglycemia), and a lack of physical activity. Pregnancy can also be used to diagnose gestational diabetes [3]. This illness 

poses a significant risk to public health, necessitating ongoing prevention and treatment initiatives. 
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Over 420 million individuals worldwide have DM, and over 650 million adults are considered obese; since 1975, the number 

of obese people has tripled, following WHO criteria [4]. Over time, the chronic illness known as DM has increased in 

prevalence. A primary international health concern is the massive upward trend in the number of people with metabolic 

disorder. The top 15 countries with the highest DM rates are listed [5]. Many diabetes patients tend to underestimate the 

severity of their health condition in the early stages of the disease. Since delayed diagnosis causes a high annual mortality 

rate and several health issues, methods for early detection and prediction of DM must be developed. The prevalence of DM 

patients is rising, which is a serious health issue [7]. It is critically essential to predict DM in individuals of all ages. 

Consequently, timely implementation of suitable lifestyle modifications can aid in halting the advancement of DM and its 

associated health issues [8]. At the moment, the scientific community is focused on using powerful computer techniques to 

predict DM in an early and accurate manner. Soft computing techniques and artificial intelligence (AI) play key roles. Top 

15 countries with the highest incidence of diabetes [8]. In turning abstract ideas into valuable applications. These systems 

are used in various human health-related fields, including medical diagnostics. AI and machine learning (ML) provide 

benefits over manual diagnosis by enabling automated early detection and prediction of DM [9]. There is now a sizable 

corpus of research on DM self-management and automatic detection strategies utilizing ML and AI approaches [10]. 

Traditional ML algorithms have produced encouraging results for predicting and categorizing DM into DM-positive and 

DM-negative cases [11] – [12]. However, using a DL framework can significantly improve the accuracy of DM diagnosis 

[13]. To our knowledge, DL techniques have not been used in any available investigations. This study proposes a novel 

CLNet prediction framework that employs DL algorithms as base-level patterns, including CNN, ANN, and LSTM. After 

that, DL is put into practice using patterns that use meta-level patterns like CNN, LSTM, and ANN to enhance DM prediction. 

The pattern can identify distinct patterns and variables in the information thanks to the mixing of several neural network 

architectures. The DL combines the predictions from each base pattern to optimize the pattern's capacity to maintain accuracy 

with new information and minimize over-fitting. The following is a summary of this study's main contributions: 

1. To develop a clinical decision support system (DSS) for predicting diabetes that employs DL methods and a pattern. 

2. To enhance variable extraction and prediction accuracy by combining several DL techniques, including LSTM, CNN, and 

ANN known as the Combined Learning Network Pattern (CLNet). 

3. Three diabetes information sets known as the short information set (PIMA-IDD-I) with 768 cases, a big information set 

(DDFH-G) with 2000 instances, and a multi-class information set (IDPD-I) with 1000 instances are used to train the DL 

pattern. 

4. To give medical practitioners a tool for highly accurate early prognosis and individualized patient care in diabetes 

management.   

5. A comparison with the latest methods has been carried out to investigate the effectiveness of the proposed CLNet. This 

assessment confirms that the proposed CLNet developed pattern exceeds current techniques and shows that it is the best at 

predicting diabetes.  

The work is divided into sections as follows: Section 2 discusses a wider analysis of diverse approaches. The methodology 

is presented in Section 3, with results outlined in Section 4. The work summary is outlined in Section 5. 

2. RELATED WORKS 

The importance of identifying diabetes has been explored in many research studies that employ ML and DL methods [14]. 

For instance, a Gestational DM prediction system based on explainable ML was proposed. The author put forth an ML-based 

pattern for T2D detection and categorization. BERT was proposed for the identification of DM utilizing unstructured 

information from electronic health records. For DM detection, the author in [15] used a health survey and Indian demographic 

information to develop Gaussian Naive Bayes (NB), linear discriminant analysis, LR, SVM, DT, KNN, RF and Extreme 

Gradient Boosting (XGB) [16] – [18]. Comprehensive diabetes management in a primary care setting was examined. The 

author presented a DM prediction pattern based on SVM, KNN, DT, RF, adaptive boosting, LR, and DL. The investigator 

developed XGB, RF with recursive variable elimination, and ANN for diagnosing diabetic retinopathy in the Chinese 

population. The author in [19] did another relevant work in which they offered a questionnaire-based survey that uses SVM, 

DT, LR, gradient boost, XGB, and RF to address prevalent risk factors of DM [20]. To identify T2D, the author suggested a 

soft voting method that combines light gradient boosting XGB and RF. They employed 9822 screening samples with 82 

appropriate characteristics to conduct their study. 

An SVM method was created to predict T2D from electronic medical records. Similarly, the author suggested a regression 

tree and LR-based prediction pattern for determining whether females with gestational diabetes will require insulin therapy. 

They looked at samples from 775 women who were diagnosed with gestational DM based on the IADPSG. Using PIMA-

IDD-I, the author in [21] offered a KNN-based pattern for DM prediction, whereas the author proposed an ANN pattern with 

an accuracy of 80.79% for DM prediction. The author in [22] used PIMA-IDD-I to create RF, NB, and J48 DT for DM 

categorization and prediction. The author used majority voting to apply ANN, RF, XGB, and adaptive boosting for DM 
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prediction. The patterns KNN, DT, RF, and SVM were created. The author also used the PIMAIDD-I and IDPD-I information 

sets to propose LR, NB, and RF approaches with a soft pattern. Their proposed pattern attained 97% and 81% accuracy 

utilizing the information set, respectively. The author in [23] used IDPD-I to create a multi-layer perceptron to forecast DM. 

For T2D prediction, the author in [24] created KNN, SVM, RF, and DL. Using the PIMA-IDD-I and IDPD-I information 

sets, they trained the patterns. Using the PIMA-IDD-I information set, the author in [26] presented RF and SVM, which 

produced 83% and 81.4% precision scores, respectively. Similar to this, the RF pattern was proposed in [27] for DM 

prediction, and it produced accuracy ratings of 85.6%, 82%, and 82.26%, respectively. The following are some current 

applications of DL techniques in DM detection and prediction. To predict diabetics, the author in [28] created DL approaches 

utilizing CNN for categorization and trained the pattern using PIMAIDD. The author used ANN and ML methods. They 

discovered that the RL and the SVM methods perform well for DM prediction. The researchers conducted experiments 

involving different configurations of hidden layers within their ANN architecture and found that the pattern incorporating 

two concealed layers attained a precision of 88.6%. The author used a deep ANN with an encoder to classify the PIMA-IDD-

I. Using DL techniques, the author developed a technique for differentiating between normal and diabetic HRV signals. To 

identify complex dynamic changes over time factors from the HRV information, they constructed CNN and LSTM. A deep 

belief network is one of the DL techniques that was developed to categorize and forecast the course of impaired glucose 

tolerance. Showing a high degree of accuracy of 81.25%, the deep belief network outperformed other ML algorithms. Using 

the PIMA-IDD-I and DDFH-G information sets, the author suggested ANN, ANN, DT, and KNN patterns for DM prediction. 

Similarly, the author used ANN to detect and categorize DM. They obtained an accuracy of 85.09% using the PIMA-IDD-I 

for evaluation [29]. 

While normal information-driven methods struggle to find enough labeled information and make the results easily 

comprehensible, DL approaches typically require large amounts of information. These issues can be successfully addressed 

using DL as a constraint and guide in the current information-driven patterns. In particular, there are not always enough 

electronic health records accessible to train DL patterns in constructing healthcare decision support systems. Currently, the 

introduction of learning methods in a particular electronic medical information set [29] can considerably improve the 

effectiveness of DL approaches. Using DL techniques to extract knowledge from electronic health records is a useful but 

complex undertaking for diagnosis and prediction. Undiagnosed diabetes can hurt the kidneys, liver, and other organs in the 

human body. This medical condition affects people of all ages. Numerous studies have tried to use ML and DL approaches 

to predict and categorize diabetes in the literature. However, a research need is highlighted by the absence of the DL method 

for diabetes prediction from the current categorization and prediction approaches. However, when dealing with large and 

multi-class information sets, state-of-the-art methods face a major obstacle characterized by decreased accuracy. The 

suggested DL attempts to solve this issue by introducing variable optimization and categorization techniques to make highly 

accurate predictions about DM. This paper suggests a new clinical decision support system that combines a pattern with DL 

architectures, including ANN, CNN, and LSMT. As base-level patterns, these DL architectures are employed. To improve 

the prediction of DM, DL is developed (i.e., meta-level) by adding novel patterns [30]. The fact that none of the current 

patterns have been trained on the many kinds of diabetes information sets is another limitation of earlier research. The 

suggested DL patterns in this work are trained using three distinct diabetic information sets. The information sets include a 

multi-class IDPD-I with 1000 samples, a large DDFH-G with 2000 samples, and a tiny PIMA-IDD-I with 768 samples. 

Additionally, the suggested study addresses the relevance of the outcomes produced by the DL system and compares it with 

recent state-of-the-art research [30]. 

3. METHODOLOGY  

Fig 1 shows the suggested DL framework. Information sets, information preprocessing, variable selection, information 

splitting, base-level patterns, and performance-based assessment are all steps in the DL framework.  

3.1. Information set description 

The DL is calibrated and experimented with using three diabetes information sets, namely PIMIA-IDD-I, DDFH-G, and 

IDPD-I. To predict DM across two classes (DM-positive and DM-negative) and three classes (pre-diabetes, diabetic, and 

non-diabetic), respectively, the information sets are divided into binary and multi-class categorizations. The information sets 

are divided into three categories: PIMIA-IDD-I, DDFH-G, and IDPD-I, which are small, large, and multi-class information 

sets, respectively. The ensuing subsections provide a detailed explanation of the suggested information sets. The UCI 

Repository is the source of the PIMA-IDD-I. There are 768 samples of diabetes patients, with nine different variables in each 

sample. Equal numbers of participants with diabetes, pre-diabetes, and no diabetes are included in these records. The final 

column represents a binary target variable, where a null value signifies the absence of diabetic conditions in the patient. In 

contrast, a value of 1 denotes the existence of pre-diabetic or diabetic conditions or diabetes. Two thousand cases with eight 

variables each comprise the DDFH-G information set, which comes from the Hospital Frankfurt in Germany, and 768 

patients with eight attributes each comprise the PIMA-IDD-I information set. The main distinction between the DDFH-G 

information set and the information sets used in the research and Dwivedi is the greater quantity of information points in 

DDFH-G. The characteristics cover a wide range, from skin thickness to the number of pregnancies. It is seen in the 
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information set that several characteristics, including skin thickness, blood pressure, insulin, glucose, and BMI, show zero 

values, which is not realistic. The mean value of the corresponding variable column containing the missing values is thus 

used to replace these instances, which are kept as missing information. The IDPD-I information set was collected from the 

Iraqi population, specifically from facilitated by the Specialized Center for Endocrinology and Diabetes at Al-Kindy 

Teaching Hospital and the laboratory at Medical City Hospital. There are 1000 samples in the IDPD-I. There are 435 females 

and 565 males in the IDPD-I, with ages ranging from 20 to 79. It is divided into three classes: 53 samples are classified as 

Predicted Diabetic (P), 103 samples are classified as Non-Diabetic (N), and 837 samples are classified as Diabetic (Y). 

Patient Number, Age, Gender, Blood Sugar Level, Cholesterol, Creatinine Ratio (Cr), Urea, Body Mass Index (BMI), 

HBA1C, Fasting Lipid Profile (VLDL, LDL, Triglycerides, HDL Cholesterol), and Class (signaling the diabetic patient's 

status as Diabetic, Non-Diabetic, or Pre-Diabetic) are among the eleven physical examination indicators that define these 

samples.  

3.2. Pre-processing 

Any information items, including missing values, were methodically removed from the information set to prepare it for DL 

training and guarantee superior outcomes. First, all entries with duplicate and null/missing values were eliminated from the 

three district information sets. Certain variables, including skin thickness, insulin, blood pressure, glucose, and BMI, show 

zero values in the information sets, which is unrealistic. The mean value of the corresponding attribute column containing 

the missing values is thus used to replace these occurrences, which are kept as missing samples. Additionally, the 

MinMaxScaler was employed to standardize the information values before integrating them into the pattern. There was a 

notable class imbalance in the original information set, with most of the samples being negative and just 20% of the samples 

belonging to the positive class. The SMOTE was employed to augment the representation of the minority class within the 

information set, thereby addressing the issue of class imbalance. Given that the information was categorical and the target 

variable was binary, categorization patterns were utilized to determine the predictive performance of DM. The goal of this 

thorough information before the treatment method is to improve the suggested DL's performance and capacity for making 

accurate predictions.  

 

Fig 1. Block of the CLNet 

3.3. Information partitioning 

Here, the normalized and preprocessed diabetic information sets are divided into two subsets: the training and test sets. 

Information splitting is a methodological approach that includes partitioning an information set into distinct categories. The 

proposed division of the information sets follows an 80:20 ratio, wherein 20% of the information is allocated for evaluating 

the DL pattern (testing). In comparison, the remaining 80% is leveraged for training the DL pattern. The test set comprises 

information samples designated for assessing the effectiveness of the DL, whereas the training set encompasses information 

samples employed to learn and adjust the pattern parameters. 
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3.4. Variable selection 

The variable selection method identifies and selects relevant variables from a vast array of available attributes to enhance 

precision while reducing computational complexity and latency. It is possible to assess each variable's significance in 

diabetes information sets by using the pattern characteristics attribute. Each function of the results is assigned a variable 

value score, indicating its significance and influence on the dependent variable. A higher score is associated with greater 

significance or appropriateness of the variable. In the present study, the Gini relevance technique is employed to utilize the 

Extreme Decision Tree (EDT) to isolate the most important variables from the information set. This pattern incorporates a 

predefined class that aids in evaluating variable importance, particularly within Tree-Based patterns, thereby proving to be 

highly effective for analyzing variable significance. By employing the EDT, we can obtain important insights for our 

investigation and pinpoint the salient characteristics that greatly influence the system's predicted performance.  

3.5. Prediction process  

Following variable determination, the patterns were constructed using ANN, CNN, Hybrid CNN-LSTM, and LSTM, and 

the four DL prediction and categorization techniques. The sections that follow provide descriptions of the suggested patterns.  

a) Artificial Neural Networks 

As illustrated in Fig 2, an ANN is a computer system composed of numerous basic yet interconnected processing units. These 

units are processed using different external inputs. The architecture of the ANN proposed in this study is informed by a non-

recurrent network that utilizes a supervised back-propagation algorithm, which facilitates the integration of multiple weighted 

hidden layers. This approach is commonly applied across diverse fields, comprising image processing, speech recognition, 

robotic control, sentiment analysis, forecasting, artificial intelligence, and the management of control and protection systems 

in power systems. The human brain can be connected to an ANN. The human brain is composed of many effective neurons. 

Every information input travels through neural signaling, which interprets, calculates, and processes the information before 

sending it on to the subsequent neuron unit. Although the aggregate processing speed of each neuron or node is slow, the 

network's overall speed is compromised incredibly speedily and optimized. The input layer, hidden layers, neurons, and 

ANNs created for this study are all discussed. By establishing best practices, the quantity count of elements in the initial and 

intermediate layer is equivalent to that of the feature layer. The output layer, designed for high-dimensional case prediction, 

comprises two neurons, whereas the second hidden layer contains five neurons. The prediction layer utilizes a Softmax 

activation function, typically employed for binary categorization, while the hidden layers implement the ReLU activation 

function. 

 

Fig 2. Conventional ANN pattern 

b) Convolutional network 

One DL technique that can be learned straight from information is a CNN. These are very useful for distinguishing different 

items by identifying patterns in samples. Moreover, neural networks demonstrate significant utility in classifying image and 

non-image information. The fundamental concept underlying CNNs is identifying increasingly complex variables by 
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extracting local characteristics from abstract representations of input pipelines transmitted to subordinate systems. As 

illustrated in Fig. 3, a conventional CNN architecture typically consists of convolutional, pooling, and dense layers. The 

feature extraction layer generates variable maps as tensors by employing a set of kernels. These kernels perform convolution 

on the information utilizing specified "strides," generating output volumes with integer precision dimensions. However, the 

application of spatial stride leads to a reduction in the input volume sizes within the convolutional layer. The input feature 

map comprises fundamental variables as it is necessary to employ zero padding to populate the input space with missing 

values. Applying the ReLU function induces non-linearity in the variable maps. By establishing a limiting input of null, the 

triggering is subsequently determined. A chosen input dimension is down-sampled using the pooling layer to lower the 

number of variables. Max pooling is a popular technique that keeps the highest value within a designated input space. The 

Fully Connected layer is responsible for classification and prediction, facilitating information categorization by utilizing the 

data acquired from the max pooling and convolution components. 

 

Fig 3. Convolutional Neural Network architecture 

c) Long Short-Term Memory  

LSTM networks are a component of the DL field. They are widely recognized for their proficiency in capturing persistent 

connections, notably in tasks requiring temporal understanding related to sequence prediction. It belongs to the class of 

recurrent neural networks. It receives input and relays it to others as it develops. The cells of the LSTM carry out several 

functions. Long-term dependencies can be learned, and information can be retained for extended periods in the memory state 

of an LSTM. Consequently, LSTMs have demonstrated their effectiveness in diverse areas, such as natural language 

processing, sequential data prediction, and speech recognition. Using a cell state in LSTMs allows them to maintain long-

term information, giving them a significant edge over RNNs. This capability enables LSTM networks to retain and connect 

information from previous time steps to the current one. To accomplish this, LSTMs utilize three controllers: the input, the 

forget, and the output. Ct and Ct−1 represent the contemporary and earlier memory cells, while it denotes the current input. 

𝐻𝑡  𝑎𝑛𝑑 𝐻𝑡−1 allude to the contemporary and earlier outputs, respectively. Fig 4 diagrams the internal architecture structure 

of an LSTM, highlighting how gates and cell state work together to support information flow and persistent memory 

throughout the network. Feedback from the dropout layer is directed to the LSTM layer. The mathematical operation consists 

of four elements: a new memory cell (𝑐𝑡), an output gate (𝑜𝑡), a forget gate (𝑓𝑡), and an input gate (𝑖𝑡). The computations 

combine the forward and backward performance using Eq. (1) to Eq. (4). As illustrated below, an LSTM takes in the current 

observation (𝑋𝑡) and the past state (ℎ𝑡−1), performs specific calculations, and organizes the results into a hidden state (ℎ): 

𝑓𝑡 =  𝜎(𝑈𝑓ℎ𝑡−1, 𝑊𝑓𝑋𝑡 + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑈𝑖ℎ𝑡−1, 𝑊𝑖𝑋𝑡 + 𝑏𝑖) (2) 

𝑎𝑡 = tanh(𝑈𝑐ℎ𝑡−1, 𝑊𝑐𝑋𝑡 + 𝑏𝑐) = tan(𝑎̂𝑡) (3) 

𝑜𝑡 =  𝜎(𝑈𝑜ℎ𝑡−1, 𝑊𝑜𝑋𝑡 , 𝑏𝑜) (4) 
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Fig 4. LSTM pattern 

d) Hybridization 

This research proposed a new CLNet method for predicting diabetic cases using multivariate diabetes information sets. The 

pattern integrated CNN-LSTM architectures, where the CNN extracted encoding detailed acoustic features information, 

whereas the LSTM functioned as the anticipation mechanism component. Variables related to diabetes symptoms were 

gathered from the raw information sets and employed for learning to develop the CNN-LSTM framework using these 

multivariate diabetes information sets. Fig 5 depicts the 30 layers constituting the proposed CLNet pattern for predicting 

diabetes: The network consists of 18 convolutional layers, 12 pooling layers, a fully connected layer, an LSTM layer, and a 

final output layer employing the softmax method. Each convolutional neural block contained a pooling layer, two to three 

2D CNNs, and one convolutional block. Additionally, a dropout layer where 20% of neurons are randomly deactivated was 

incorporated. A convolutional layer with a 3 × 3 kernel size was employed to extract variables initially obtained using the 

ReLU method. To reduce the dimensionality of the input multidimensional diabetes variables, a max-pooling layer 

employing 2x2 convolutional kernels was applied. To retrieve patient information, the final phase's LSTM layer received the 

generated variable map. The output form (none, 8, 8 512) was molded to understand the convolution part. A reshaping 

technique was used to reduce the input size of the LSTM layer (16, 512). The framework initially studied the sequential 

pattern elements before transmitting the multidimensional diabetes information through a dense layer to categorize each case 

into two subsets, like diabetes favorable or diabetes unfavorable (no diabetes). 

 

Fig 5. CLNet architecture 
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4. NUMERICAL RESULTS 

Major assessment criteria, including accuracy, f-score, sensitivity, precision, specificity, ROC/AUC, and MCC, are used to 

assess the suggested DL system. These indicators assess DL performance in a DM prediction task. Each evaluation index is 

explained in detail in the ensuing subsections. The percentage of correctly predicted instances (including True Negatives 

(TN) and True Positives (TP)) about all occurrences (including True Negatives (TN), True Positives (TP), False Negatives 

(FN) and False Positives (FP)) is known as accuracy is calculated using Eq. (5). It is a widely used statistic to assess 

categorization patterns. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁
 

(5) 

 

According to Eq. (6), precision is the proportion of TP predictions among the pattern's FP and TP predictions. It evaluates 

the DL's capacity to minimize FP while producing accurate positive forecasts. Higher precision numbers indicate fewer FP. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

(6) 

 

Specificity, a TN rate representing the proportion of TN classes that the DL correctly anticipated, is computed using Eq. (7). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

(7) 

 

The percentage of TP cases that the DL accurately predicts using Eq. (8) is known as sensitivity. It evaluates the DL to record 

positive examples. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

(8) 

 

Eq. (9) calculates the F-Score, the harmonic mean of precision and sensitivity. Taking into account both FP and FN offers a 

fair assessment of a DL's performance. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(9) 

 

MCC is used to assess the validity of binary categorizations. Because it considers both TP and FP in addition to TN and FN, 

it is particularly useful when working with unbalanced information sets. Eq. (10) can be used to calculate it mathematically. 

𝑀𝐶𝐶 =  
𝑇𝑁 ∗ 𝑇𝑃 − 𝐹𝑁 ∗ 𝐹𝑃

√(𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁))
 

(10) 

 

4.1. Result analysis 

The performance of the suggested DL in terms of accuracy, f-score, sensitivity, precision, specificity, ROC/AUC, and MCC 

utilizing PIMAIDD-I, DDFH-G, and IDPD-I for DM prediction is shown experimentally in this section. Based on various 

kinds of assessment measures, Tables 1 to 3 present a performance comparison of the DL-based meta-level patterns and the 

DL-based base-level patterns. Precision, accuracy, specificity, sensitivity, MCC, and f-score are among the evaluation 

measures. A thorough analysis of several patterns on the PIMA-IDD-I information set is provided in Table 1. While the 

LSTM and CNN also produce competitive results, the ANN has the highest accuracy (92%), precision (93%), and sensitivity 

(93%) among the base-level patterns. Overall assessment metrics for each base pattern are regularly outperformed by the 

meta-level patterns, which are the base patterns. In particular, the ANN performs better overall, achieving notable accuracy 

(98%), precision (97%), and specificity (98%). According to accuracy, precision, specificity, sensitivity, f-score, and MCC 

of 97.23%, 97.34%, 96.54%, 96.44%, 97.06%, and 93.07% utilizing PIMA-IDD-I. Accuracy, precision, specificity, 

sensitivity, f-score, and MCC scores of 94.81%, 93.93%, 93.88%, 94.2%, 93.78%, and 92.28% were all higher for CNN 

when using PIMA-IDD-I. This illustrates how effectively base patterns can be combined to improve prediction power. The 

MCC values demonstrate the suggested DL's proficiency with binary categorization problems. As demonstrated in Fig 6, the 
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results highlight how DL enhances the accuracy and resilience of the suggested DL patterns for the PIMA-IDD-I information 

set. 

Table 1. Comparison with dataset 1 

Evaluation Index   DL patterns 

Conventional ANN Conventional CNN Conventional  

LSTM 

Proposed CLNet 

Accuracy (%) 92.7 97.2 94.8 98.8 

Precision (%) 92.6 97.3 93.9 97.9 

Specificity  92.8 96.5 93.8 98.4 

Sensitivity 92.7 96.4 94.02 98 

F1-score 91.1 97 93.78 97.8 

MCC 90.4 93.07 92.2 94.5 

Table 2. Comparison with dataset 2 

Evaluation Index DL patterns 

Conventional ANN Conventional CNN Conventional  

LSTM 

Proposed CLNet 

Accuracy (%) 94.7 98.3 97.4 99.5 

Precision (%) 92.8 98.3 97.04 98.2 

Specificity  93.7 98.7 96.8 99.05 

Sensitivity 94.02 98.5 96.8 98.9 

F1-score 94.01 97.4 96.05 99.2 

MCC 93.6 96.2 95.08 97.2 

Table 3. Comparison with dataset 3 

Evaluation Index DL patterns 

Conventional ANN Conventional CNN Conventional  

LSTM 

Proposed CLNet 

Accuracy (%) 94.6 90.8 97.8 98.8 

Precision (%) 93.4 90.6 98.03 96.9 

Specificity  92.7 91.3 97.7 97.9 

Sensitivity 93.8 90.5 97.8 98.6 

F1-score 94.2 90.2 97.05 98.7 

MCC 93.4 98.1 95.4 98.8 
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Fig 6. Performance evaluation with information set 1 

 

 

Fig 7. Performance evaluation with information set 2 

 

Fig 8. Performance evaluation with information set 3 

Accuracy  precision  specificity  sensitivity  MCC

ANN 94.7 92.8 93.7 94.02 94.01 93.6

CNN 98.3 98.3 98.7 98.5 97.4 96.2

LSTM 97.4 97.04 96.8 96.8 96.05 95.08

CLNet 99.5 98.2 99.05 98.9 99.2 97.2
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Fig 9. ROC comparison of proposed CLNet 

A thorough evaluation of DL performance on the DDFH-G information set is given in Table 2. Fig 7 also provides a graphic 

representation of the comparison. While the LSTM and CNN patterns also show comparable results, the ANN stands out in 

the field of base patterns with the highest accuracy (94.77%), precision (93.65%), sensitivity (94.02%), and F-Score 

(94.01%). Interestingly, base patterns are routinely outperformed by DL patterns on all evaluation metrics. The ANN exhibits 

remarkable performance with a noteworthy accuracy of 99.51% and high values for specificity, precision, F-Score, and 

sensitivity. With precision, accuracy, sensitivity, specificity, MCC, and F-score of 98.34%, 98.36%, 98.54%, 98.77%, 

96.20%, and 97.43% respectively, the LSTM demonstrated strong performance using DDFH-G. With accuracy, precision, 

specificity, sensitivity, F-score, and MCC scores of 97.44%, 97.04%, 96.88%, 96.85%, 96.06%, and 95.07%, respectively, 

the CNN demonstrated strong performance while employing DDFH-G. Merging the predictions from base patterns 

demonstrates the potential of the suggested DL. A thorough assessment of DL performance on the IDPD-I information set 

is given in Table 3. With its excellent accuracy (94.62%), precision (93.43%), and sensitivity (93.88%), the ANN 

outperforms the other base patterns. The CNN and LSTM patterns also provide competitive performance, demonstrating the 

variety of base-level architectures. Interestingly, the meta-level patterns perform better than the basic patterns on several 

evaluation metrics. With remarkable accuracy (98.5%), precision (98.3%), and sensitivity (98.02%), the ANN stands out and 

exemplifies the value of mixing various base patterns. With accuracy, precision, specificity, sensitivity, F-score, and MCC 

scores of 97.8%, 98.03%, 97.75%, 97.5%, 97.06%, and 95.4%, respectively, the LSTM also outperformed when using IDPD-

I. The CNN also produced strong results with accuracy, precision, specificity, sensitivity, F-score, and MCC scores of 

96.89%, 96.90%, 97.22%, 96.62%, 96.70%, and 94.87%, respectively. These results demonstrate how well the suggested 

DL patterns perform when improving predictive accuracy using IDPD-I. The obtained outcomes demonstrate how effective 

DL patterns are at multi-class categorization tasks. This demonstrates how DL might help healthcare DSSs by enhancing 

pattern performance and robustness in disease prediction. 

The performance of three DL on three distinct information sets is evaluated in Fig 7. The ROC curve in Fig 9 show how 

discriminatively each pattern can categorize DM as positive or negative. With an AUC of 92%, which indicates strong 

accuracy for prediction, the ANN stands out as the best performer. The CNN comes in second with an AUC of 96%, while 

the LSTM is in the middle with an AUC of 92%. Likewise, Fig 8 shows how these patterns are assessed with the IDPD-I. 

AUC values for the ANN, CNN, and LSTM are 94%, 91%, and 90%, respectively. With an AUC of 97%. The LSTM comes 

in second with 96% and the CNN with 94% utilizing DDFH-G. Together, these results demonstrate how different base-level 

patterns perform, demonstrating how effective base-level patterns are at predicting DM. The ROC curve and AUC values 

for the suggested DL patterns used for the PIMA-IDD-I information set are shown graphically. Each DL pattern's 

performance is shown according to its AUC value: CNN, LSTM, and ANN. With the greatest AUC value of 98%, the ANN 

performs well in both positive and negative DM case categorization and prediction. With a bit lower AUC value (94%), the 

CNN pattern comes in second, while the LSTM pattern is in the middle with an AUC of 97%. The performance of these 

patterns is shown using IDPD-I, where the ANN, LSTM, and CNN obtained AUC scores of 98%, 98%, and 97%, 
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respectively. AUC scores for the ANN, LSTM, and CNN are similarly displayed in Fig 8 with DDFH-G as 99%, 98%, and 

97%, respectively. These findings demonstrate how well the suggested DL patterns categorize and forecast DM-related 

events. Higher AUC values indicate better effectiveness in differentiating between DM-positive and DM-negative cases. The 

AUC values are a quantitative indicator. The performance evaluation of the suggested DL patterns is shown in Fig 6 to Fig 

8. The experimental findings show how well three distinct DM information sets perform when assessed using the three DL 

configurations of ANN, LSTM, and CNN. The accuracy numbers demonstrate the suggested DL patterns' capacity for 

prediction. Using PIMA-IDD, ANN produced the best accuracy of 98.81%, while LSTM and CNN also produced 

encouraging accuracy ratings of 97.3% and 94.1%, respectively. Similarly, DDFH-G performs well, attaining an accuracy 

of 99.1% with ANN, 98.6% with LSTM, and 97.4% with CNN. Lastly, accuracy values of 98.5%, 97.8%, and 96.9% were 

demonstrated by the IDPD-I, ANN, LSTM, and CNN, respectively. These results comprehensively evaluate the suggested 

DL patterns' ability to predict DM with Accuracy. 

4.2. Discussion 

When comparing the DL patterns to the latest ML and DL techniques, the experimental results show a significant 

enhancement in the Accuracy of DM predictions. The suggested DL framework's early prediction and intervention 

capabilities can greatly benefit medical professionals. A comparison of ML and DL approaches for DM prediction using 

various diabetic information sets is presented. Furthermore, CNN and BILSTM, Deep Belief Network, and ANN are 

examples of DL approaches. The accuracy findings show how well these methods work on diabetes information sets. 

However, using an DL framework has significantly improved the accuracy of DM prediction. Additionally, utilizing DDFH-

G, the suggested DL patterns obtained encouraging accuracy of 99%, 98%, and 97%, respectively. The suggested DL 

patterns, which comprise LSTM (97%), CNN (94%), and ANN (98%) using PIMAIDD are shown to have the most promising 

accuracy out of all the patterns. Lastly, utilizing the IDPD-I, DL obtained 98.4%, 97.8%, and 96.9% accuracy for ANN, 

LSTM, and CNN, respectively. This implies that it has been shown that the suggested DL system is very effective for DM 

prediction tasks. Furthermore, with accuracies ranging from 76% to 88%, conventional ML patterns including RF, NB, RF, 

SVM and LR have done rather well. It is evident that while traditional patterns for ML, such as RF, LR, and SVM, attained 

a respectable degree of accuracy, they could not match the DL patterns' greatest accuracy levels. Furthermore, compared to 

current methods, DL techniques produced categorization results with dependable accuracy. Early DM prediction is crucial, 

and achieving a greater accuracy rate in DM prediction is unquestionable. For DM prediction, the researchers have therefore 

put forth several ML and DL techniques, including BiLSTM, ANN, Deep ANN and DBN, all of which have shown 

competitive performance. Specifically, CNN and BILSTM exhibited high accuracy is 92.31% and 94.0%. These findings 

demonstrate how well DL patterns can identify complex structures in electronic medical information. 

4.3. Implications 

Developing a new DL framework for DM prediction exceeds the capabilities of current leading methods, marking the study's 

key theoretical contribution. These patterns perform better than most other patterns because of their distinct architecture and 

particular combination of learning techniques. This reduces the possibility of over-fitting and improves DL's generalization 

skills, allowing it to gather useful information from electronic medical records and produce more precise clinical forecasts 

and DSSs. The DL seeks to find novel patterns and characteristics associated with DM in electronic medical information to 

help doctors and specialists make an initial diagnosis of diabetic patients. Because it enables early prediction and action, this 

can greatly benefit the medical community. By improving early prediction and individualized treatment plans, the enhanced 

DL can be included in clinical decision support systems, improving patient outcomes and lessening the pressure on healthcare 

institutions.  

4.4. Limitations and future research  

Notwithstanding the advantages of the suggested DL, we also recognize that there are information quality issues and the 

complexity, validation, and generalization of other illnesses. The quality of the input information has a significant impact on 

prediction accuracy. Incomplete or inaccurate medical records can impact the prediction's performance and result in 

predictions that are not reliable. Future studies will concentrate on developing a revolutionary automatic clinical decision-

making system for DM prediction and prevention that uses reinforcement learning approaches to overcome these limitations. 

We intend to create a smart system based on reinforcement learning to provide T1D and T2D patients with individualized 

dietary and treatment recommendations. Other chronic diseases can be predicted by extending the suggested DL. We also 

intend to validate the suggested DL using other diabetic information sets. To further improve the DM prediction system that 

helps health organizations, hybrid approaches that combine the advantages of DL and conventional techniques can also be 

investigated in the future [47]. For example, more computationally efficient design of DL algorithms can be achieved by 

applying additional optimization techniques. 

5. CONCLUSION 

In this work, we investigated the potential of DL to predict diabetes using a clinical decision support system. CNN, LSTM, 

and ANN were among the DL patterns combined in the suggested DL. The technique with meta-patterns was implemented 
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by combining the predictions of DL approaches. To predict diabetes across two classes (DM-positive and DM-negative) and 

three classes (diabetic, non-diabetic, and pre-diabetes), respectively, this study presented a novel DL technique for binary 

categorization and multi-class categorization. Small, big, and multi-class diabetic information sets was used to train the 

suggested DL. The key variables from these information sets were extracted using the EDT approach for variable selection. 

This makes it possible for the pattern to pinpoint crucial elements for improving prediction accuracy and managing over-

fitting when the DL is being trained. Major assessment methodologies, including F-score, MCC, ROC/AUC, sensitivity, 

specificity, Accuracy, and precision, were used to assess the DL. The ANN achieved superior performance compared to the 

other proposed patterns, with accuracy rates of 99.51%, 98.81%, and 98.45% on the three information sets respectively. DL's 

potential for clinical use is highlighted by its results in ANN. The results indicated that diabetes can be effectively predicted 

using the predictive DL method. The LSTM and CNN patterns exhibited impressive performance, achieving high Accuracy, 

precision, MCC, ROC/AUC scores, and sensitivity. This research enhances DL's ability to generalize and minimizes the risk 

of over-fitting, leading to more accurate clinical predictions for diabetes and other chronic diseases. Future healthcare 

organizations can benefit from the DL's ability to anticipate a variety of chronic diseases. 
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