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ABSTRACT 

Predictive modeling course of CKD and ensuring early diagnosis is essential for individualized treatment that may enhance 

patients' quality of life and prolong survival time. Using readily available clinical and laboratory data from patients with 

mental health conditions CKD, this thesis investigates the interpretability of statistical learning and computer vision models 

for predicting end-stage renal disease. Machine-learning models were used with clinical, comorbid, and demographic data 

to ascertain whether a patient with CKD would experience end-stage renal disease. The most significant markers were 

discovered using the proposed Lightweight Layered Network (LLNet) with Stochastic Gradient Descent (SGD). Researchers 

also added sophisticated attribution techniques to improve the intelligibility of the neural network architecture. The neural 

network architecture had a much higher AUC-ROC of 99% than the baseline models. While the existing interpretation was 

inconsistent, the interpretation produced by Lightweight Layered Network (LLNet) with Stochastic Gradient Descent (SGD) 

with attribution techniques aligned with clinical expertise. There were negative connections between eGFR and urine 

creatinine with the progression of CKD, although positive relationships were seen with urine albumin to creatinine ratio, 

potassium, hematuria, and proteinuria. In conclusion, attribution algorithms combined with deep learning can detect 

comprehensible aspects of the development of CKD. Our model found several essential but underreported characteristics 

that could be new indicators of the advancement of CKD. This study gives doctors a strong, empirically supported basis for 

using predictive analytics in the healthcare management and therapy of CKD. 
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1. INTRODUCTION 

One of the deadliest is kidney cancer, which is also, sadly, hard to find early using standard clinical methods [1]. Renal 

cancer is one of the top ten cancers that kill people. However, there is currently little research on it. The prevalence of several 

cancer kinds in the medical community has caused a delay in the adoption of contemporary detection and treatment 

techniques. For decades, patients with kidney cancer have had few alternatives for treatment, and their life expectancy is 

typically less than a year. For this reason, automatic diagnostic tools will make it easier and faster for a doctor to diagnose a 

patient's illness and help them live [2]. It is challenging to detect kidney disease early on. Therefore, categorization techniques 

are frequently utilized in numerous medical diagnostic systems incorporating image processing [3]. Using the tool can lower 

the testing pressure, and CKD affects the structure and function of the kidneys. Complications from a prolonged condition 

can include weakened bones, high blood pressure, anemia, nerve damage, problems with the heart or blood vessels, etc. [4]. 

Various stages of the disease are caused by the glomerular filtration rate (GFR). In addition to having a high risk of 

cardiovascular and end-stage kidney illnesses, both of which can be avoided by identifying and treating those who are at risk 

early, the incidence of CKD has increased dramatically. The disease can now be effectively assessed in the first step using 

predictive analytics techniques [5]. The most widely used method for detecting renal illness these days is machine prediction 

analysis. It is a health risk for developing and rising nations in their early phases. This means that some of the adverse effects  
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of CKD could not show up until crucial kidney function is impaired. CKD treatment focuses on controlling the primary cause 

of the illness in its early stages to reduce the progression of kidney danger.  

The start of CKD and numerous other clinical characteristics are associated with epidemiology. To ascertain whether CKD 

is used, nephrologists typically use blood and urine tests [6]. Age, diabetes, obesity, and genetics can all have an impact on 

CKD. The kidneys filter creatinine, a waste product of normal muscle breakdown, from the blood. However, the pee test will 

reveal that the urine still contains protein. Specifically, the kidney filter typically does not transport blood components like 

albumin, a kind of protein, into the urine [7]. Albumin in the urine test indicates kidney filter impairment, which may be a 

sign of CKD. The IoMT portal prototype for the wireless embedded health monitoring framework is described in this study.  

This research offers several analytics methods for early prediction of renal disease. These models might be integrated into a 

suggested architectural monitoring system to solve the deficiency of health analytics within the system of observation that is 

in place now [8]. Monitoring or evaluating a patient's health status is generally possible considering different physiological 

indicators. For challenging chronic conditions like diabetes and kidney disease, this means depending on the disease's 

physiological parameters, which are insufficient to identify or forecast its emergence [9] – [10].  

The Lightweight Layered Network (LLNet) with Stochastic Gradient Descent (SGD) has been suggested in this research to 

classify and diagnose CKD. As the vector machine developed and kidney mitosis was seen, the proposed model retrieved 

the network properties fed into the machine. By removing characteristics from CT scans, a pre-trained LLNet was extensively 

trained to detect kidney cancer. The appropriate information set samples are displayed alongside a discussion of LLnet-based 

automatic technique. Additional analysis of the LLNet with the SGD model's local and global contextual variables revealed 

that the system could detect kidney cancer more quickly by employing LLNet inside the lightweight layer. Initial training of 

the LLnet model and SGD training were done using patches. Finally, the system and the samples were directly calibrated. It 

combines a sophisticated LLNet model training strategy with patches of neighboring samples in a single pass. The random 

field has removed false positives following the LLNet with SGD modalities. This research's primary findings are: 

✓ The Lightweight Layered Network (LLNet) with Stochastic Gradient Descent (SGD) was suggested to identify and 

forecast chronic kidney illness. 

✓ The ability to predict CKD using blood or urine tests and evaluate their accuracy and relevance. When using 

predictive analytics techniques to predict CKD early, choose the most significant and representative parameters.  

✓ The study determined the CKD-associated risks that can stop the illness from progressing to its final stage of 

development.  

✓ The statistical evaluations were conducted to evaluate the result's accuracy further.  

This was how the rest of the paper looked: Background information and current approaches for predicting chronic renal 

disease were reviewed in Sections 1 and 2. The adaptive hybridized deep convolutional neural network was suggested in 

section 3 to diagnose and detect CKD early. Section 4 displays the experiment's findings. The recommended article is finally 

concluded in part 5.  

2. RELATED WORKS 

Researchers and medical professionals have paid close attention to forecasting CKD. In this section, researchers 

comprehensively analyzed pertinent literature that looked at predictive analytics techniques to evaluate the risk of CKD [11].  

The studies included here help us better grasp the state of the art, current practices, and developments in this crucial field of 

medicine. By examining earlier research, we can detect weaknesses and shortcomings in the existing methods and determine 

how we may enhance and expand upon them. First, the authors took advantage of studies using data from 551 CKD patients 

that Apollo Hospitals, India, gave [12]. RPART, SVM, LOGR, and MLP [13] – [16] were the four predictive analytics 

algorithms evaluated. Several performance indicators, including sensitivity, specificity, accuracy, and AUC, are used in the 

study to determine the models. These criteria thoroughly assess the models' power to discriminate between people with CKD 

and normal people. The MLP model achieved the highest classification rate TPR (0.9897) and AUC (0.995), whereas the 

LOGR model obtained the highest ACC (0.981) [17]. A study involving 551 individuals with pathologically verified CKD 

was carried out by [18]. Their information was gathered from the Shanghai Huadong Hospital's Department of Nephrology, 

affiliated with Fudan University [19]. They have created an online application that uses five demographic factors and thirteen 

blood markers to assess patients' proteinuria progression. Of the nine models they used to develop web applications, Elastic 

Net, Lasso, Ridge, and LR were among the linear models that demonstrated the strongest predictive power, 79% F1 scores, 

and approximately 82% accuracy [19]. 

The UCI predictive analytics collection provided the information set that Ekanayake and Herath examined [20]. Conventional 

neural networks, DT, RF, XGBoost, extra trees, and AdaBoost were among the eleven classification models considered for 

training.  The decision tree (100%), random forest (100%), XGB (100%), additional trees (100%), AdaBoost (100%), and 

conventional neural network (97.5%) classifiers [21] – [25] were chosen according to the highest test accuracy possible for 

each of the three information sets. However, according to feature importance analysis, the classifier with the most additional 
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trees demonstrated the least amount of distortion towards particular characteristics. Bhattacharya et al. thoroughly explained 

improving disease categorization in medical image analysis through GAN-based data augmentation [26]. A 60.3% test 

accuracy is the only characteristic of the convolutional neural network (CNN) model, whereas their GAN-augmented CNN 

approach achieved 65.3% by tackling the issues of data imbalance and over-fitting [27]. A comprehensive analysis of 

predictive analytics algorithms' applications, particularly LR, DT, and KNN, to the prediction of chronic renal disease was 

conducted by [28]. With 96.25% and 97% accuracy, respectively, their models indicated that logistic regression and the 

decision tree technique might be applied to optimize the prediction of prolonged health effects of renal illness. 

The author investigated various predictive analytics tools to forecast the probability of CKD [29]. They highlighted the 

importance of resolving data imbalance to develop reliable predictive models by looking at class balancing strategies, 

including the SMOTE, Stacking the LMT, Rotation Forest, Decision Tree, Random Forest, Random Tree, AdaBoostM1, 

SGD, Naive Bayes, SVM, LR, ANN, KNN, J48, and the Bayesian networks (BayesNet), as well as the classification 

techniques were among the predictive analytics models used for their purpose [30]. Their findings demonstrated that, with 

an AUC of 100%, the Rotation Forest outperformed the other models and achieved the maximum accuracy. In summary, 

there are four primary issues to be aware of while working with medical information sets. Missing values or incomplete cases 

are the first. Approximately 45% of the UCI online machine-learning information set libraries  have incomplete records. 

Furthermore, most of the previously listed literature frequently has issues with data class imbalance and insufficient data 

record volume. The accuracy of popular predictive analytics models described in the literature above is compiled [30].  

3. METHODOLOGY 

Accurately predicting patient survival in CKD and the existence of the disease is the goal of the suggested architecture, which 

is depicted in Fig 1. Predictive modeling, automated hyper-parameter tuning, feature selection using a provided approach 

with ANOVA and chi-squared testing, pre-processing, and data collecting from four distinct information sets are all included. 

Six distinct performance assessments round out the process, ultimately determining whether cardiovascular disease exists. 

3.1. Data set 

The UCI repository is utilized in the proposed model. The medical information of 400 patients, 250 of whom have CKD and 

150 of whom do not, is represented by 25 attributes (1 class, 11 numeric, and 14 nominal attributes). The features used in 

this study are age, bp, sg, al, su, sbc, pc, pcc, ba, bgr, bu, su, sod, pot, hemo, pcv, wbcc, rbcc, htn, dm, cad, appet, pc, anr, 

and class. 

 

Fig 1: Block diagram of the proposed model 
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3.2. Pre-processing 

Before analysis or modeling, pre-processing is essential to guarantee the reliability and correctness of the data.  Through the 

detection and management of mistakes, outliers, and missing variables, it improves prediction performance and lowers 

computing costs. Finding the most pertinent data for model training is the goal of feature selection, which enhances prediction 

performance and lowers computing complexity. To improve prediction accuracy and generalization, model prediction and 

hyper-parameter tuning require crucial processes such as optimizing model parameters, choosing the optimal algorithm, and 

assessing performance metrics.  

3.3. Feature selection 

The curse of dimensionality must be addressed via feature selection to avoid sparsity and computational inefficiency. It 

improves model generalization and reduces overfitting by eliminating superfluous or irrelevant features. Focusing on the 

most informative features enhances the model's performance and interpretability. Faster training and inference are also made 

possible, maximizing computer resources. In this case, we use a layered feature selection procedure.  

3.4. Prediction model 

To find out if two or more groups differ statistically significantly, a statistical technique called an analysis of variance, or 

ANOVA for short, examines their averages. It is employed to carry out the preliminary feature selection. During the 

evaluation of relevant attributes for modeling, the F-value is the ratio of intra-group variation to inter-group variance and is 

computed to assess each feature's significance to the target variable. Higher F-values indicate that a feature is more pertinent 

to the target variable. The F-value for every feature in the information set is determined in the first tier. Higher F-value 

features are kept for additional examination in the second tier. To assess the significance of mean differences between two 

or more groups in an information set, ANOVA uses two statistical metrics: the F-statistic and the p-value. The two variances 

that comprise the F-statistic are the variance between groups and the variance within groups. It calculates the degree to which 

the group means differ from one another and from within the groups. The F-statistic is more prominent when group means 

have more significant differences. The probability that the observed F-statistic (or one more extreme) would be obtained 

under the null hypothesis is evaluated based on the p-value linked to the F-statistic, which assumes that the group means are 

equal.  The null hypothesis is rejected when the observed differences between group averages are unlikely to result from 

random chance, as demonstrated by a small p-value, often below a chosen significance level, like 0.05. 

3.5. Layered Network model 

With additional refinement, the second layer is operated by 𝑋2, a statistical metric used to ascertain the link or independence 

between two category variables. It measures how different the observed and expected frequencies of the variables are from 

each other under the assumption of independence. The chosen features from Layer 1 are subjected to the 𝑋2 technique in the 

second layer. The difference between the observed and anticipated frequencies under the independence null hypothesis is 

calculated. The test statistic has a chi-squared distribution; the higher the chi-squared value, the less probable the association 

is the product of chance. The dual-tier feature selection method combines the benefits of 𝑋2 and ANOVA. Combining these 

two methods results in a more thorough evaluation of feature relevance. ANOVA is good at finding important continuous 

features, whereas 𝑋2 emphasizes how important categorical features are. A more trustworthy and consistent feature selection 

procedure can be developed by combining the two approaches to handle information sets with various feature types better. 

Algorithm 1, which uses a dual-tier hybrid two-filter feature selection method, thoroughly explains how our model functions 

internally during the feature selection process. Because our classification goal was binary and the information set was linearly 

separable, a tree-based classifier was the best option for our approach.  

 

 

Fig 2. LLNet architecture 
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3.5. Lightweight Layered Network (LLNet) 

Microsoft created the Light weight model, a robust gradient boosting system well-known for its remarkable speed and 

accuracy. Designed to facilitate the efficient training of large information sets, the boosting with layered network has unique 

features, including Radiant Boosting, which ensures a strong ensemble for prediction tasks by correcting faults from previous 

trees. Its leaf-wise technique increases training efficiency, which ranks splits according to maximum reward. Interestingly, 

LLNet provides smooth support for categorical features, removing the requirement for pre-processing—a benefit for 

information sets such as our CKD sample. LLnet is widely used in classification, regression, and ranking problems and is 

well known for its exceptional performance, scalability, and efficiency. For a single instance 𝑖, the LLNet prediction by Eq. 

1 is 𝑦̂𝑖, which is the predicted value for the 𝑖𝑡ℎ instance, 𝑓𝑘(𝑥𝑖), which is the forecast made by the k^th tree for the feature 

selection 𝑖𝑡ℎ instance 𝑥𝑖, and 𝐾, which is the total number of trees.  

𝑦̂𝑖 =  ∑ 𝑓𝑘(𝑥𝑖)

𝑘

𝑘=1

 

(1) 

3.3. Hyper-parameter tuning 

Stochastic Gradient Descent (SGD) has received much praise for its user-friendly interface, flexible features, and leading-

edge optimization methods in the predictive analytics world. SGD is an open-source library for maximum accuracy in NLP 

tasks, optimizing predictive analytics and deep learning hyper-parameters. SGD's versatile and efficient interface can 

automate the search for optimal hyper-parameters or the variables that control the training process of predictive analytics 

and neural network architectures, including, but not limited to, learning rate and number of layers, and dropout rate. Utilizing 

a range of optimization algorithms, such as Bayesian and evolutionary algorithms, SGD efficiently searches the hyper-

parameter space to determine the collection of hyper-parameters that maximizes or minimizes a specific objective function. 

Without requiring human trial and error, users can quickly and efficiently adjust their models for better performance. 

4. NUMERICAL RESULTS AND STATISTICAL ANALYSIS 

ANOVA is beneficial when evaluating the statistical significance of numerical aspects in connection to categorical goal 

variables, like the diagnosis or absence of CKD. On the other hand, the Chi-Square test is perfect for assessing how 

independent categorical features are. Combined, these two feature selection techniques guarantee that the model contains 

only the most pertinent features. ANOVA is beneficial when determining the statistical significance of numerical data 

concerning categorical goal variables, like the existence or absence of CKD. The Chi-Square test, on the other hand, works 

well for determining if category features are independent. Combining these two feature selection techniques guarantees that 

the model contains only the most pertinent features. With its histogram-based method, LLNet, a gradient-boosting framework 

renowned for its effectiveness, performs exceptionally well when processing numerical and categorical data. Unlike the 

level-wise growth method employed by algorithms, LLNet novel leaf-wise growth strategy, which concentrates on 

developing the leaf with the highest delta loss, enables it to attain more precision with fewer repetitions. The histogram-

based algorithm and leaf-wise growth method of LLNet significantly increase its speed and efficiency. By modifying 

important parameters like learning rate, number of leaves, and feature percentage, SGD's hyper-parameter tuning improves 

LLNet's performance even more. This fine-tuning is necessary and computationally efficient to increase the model's accuracy 

and produce accurate CKD disease predictions. For healthcare applications necessitating quick and precise predictive 

capabilities. crucial, sophisticated boosting algorithms, optimized hyper-parameters, and efficient feature selection guarantee 

the model's accuracy and efficiency (See Fig 3 to Fig 12). 

Table 1: Proposed LLNets with existing approaches 

Approaches Accuracy F1-score Recall Precision Execution time 

(s) 

CNN 73 72 74 69 84 

Temporal model 74 68 93 52 205 

DNN 80 86 80 80 85 

LSTM 81 80 81 79 26 

PNets 98 97 97.5 98.2 13 

LLNet 99.1 98 98.1 98.4 10 
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Table 2: Proposed LLNets with SGD 

Approaches Accuracy F1-score Recall Precision Execution time 

(s) 

CNN 73 72 74 69 84 

Temporal model 74 68 93 52 205 

DNN 80 86 80 80 85 

LSTM 81 80 81 79 26 

PNets 98 97 97.5 98.2 13 

LLNet 99.5 98.1 98.3 98.5 9 

 

Table 3: Proposed LLNets with epochs 5 

Approaches Epochs Accuracy F1-score Recall Precision Execution 

time (s) 

CNN  

 

5 

85 85 84 86 125 

Temporal 

model 

78 79 82 76 153 

DNN 94 95 91 92 72 

LSTM 90 91 92 91 83 

PNets 98.3 97.6 97.5 98.5 12 

LLNets  98.4 97.9 97.8 98.9 9 

 

Table 4: Proposed LLNets with epochs 10 

Approaches Epochs Accuracy F1-score Recall Precision Execution 

time (s) 

CNN  

 

10 

86 86 87 86 37 

Temporal 

model 

88 88 89 87 49 

DNN 84 93 95 92 71 

LSTM 93 94 96 93 55 

PNets 99.1 98.6 99.5 99.4 13 

LLNets  99.2 98.7 99.6 99.5 9 

 

Table 5: Proposed LLNets with epochs 20 

Approaches Epochs Accuracy F1-score Recall Precision Execution 

time (s) 

CNN  

 

90 91 90 90 83 

Temporal 89 89 87 87 72 
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model 20 

DNN 94 94 95 84 84 

LSTM 95 96 93 95 89 

PNets 99.5 99.6 99.5 99 15 

LLNets  99.6 99.6 99.6 99.1 10 

 

Table 6: CV analysis 

Folds Accuracy 

1 97 

2 97.9 

3 98.5 

4 98.8 

5 99 

6 99.5 

7 99.5 

8 99.5 

9 99.6 

10 99.7 

 

 

Fig 3: Comparison of proposed vs. Existing  

CNN  TM  DNN  LSTM  Pnets  LLNet

Accuracy 73 74 80 81 98 99.1

F1-score 72 68 86 80 97 98

Recall 74 93 80 81 97.5 98.1

Precision 69 52 80 79 98.2 98.4

Execution time 84 205 85 26 13 10

0

50

100

150

200

250

V
a

lu
es

 i
n

 %

Comparison of proposed vs. existing



Suhaila.K K, Dr. Elamparithi.M, Dr. Anuratha.V 
 

pg. 862 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 10s 

 

 

Fig 4: Comparison of LLNet with SGD 

 

Fig 5: Comparison of LLNet based on epochs 5 

 

Fig 6: Comparison of LLNet based on epochs 10 
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Fig 7: Comparison of LLNet based on epochs 20 

 

Fig 8: 10-fold CV comparison 

 

Fig 9. Accuracy comparison 
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Fig 10. Loss comparison 

 

Fig 11. Confusion matrix 

 

Fig 12. ROC comparison 
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4.1. Computation Time  

The computation time represents the average processing time needed to train a deep learning or predictive analytics model 

to identify the optimal hyper-parameters for every technique. The testing time is the average time required to complete each 

information set's cross-validation test sets. The computation time for each of the suggested models is displayed in Table 2 to 

Table 6. Even though the testing duration was comparable to the conventional algorithms examined in the studies, the results 

demonstrate that deep learning algorithms typically require significantly more extended training. Deep learning methods are 

not worth adopting for tiny information sets like the one examined in this paper because the performance metrics (accuracy, 

recall, etc.) are so close. Most tests take about the same time to execute, although LTSM and Simple DNN take longer. This 

suggests no discernible difference between the conventional ML algorithms once the model has been trained. 

5. CONCLUSION 

Combining predictive analytics and computer vision algorithms enhances the predictive modeling for chronic renal disease. 

Lightweight Layered Network (LLNet) with Stochastic Gradient Descent (SGD) were among the existing predictive 

analytics algorithms used in the thorough analysis, in addition to sophisticated deep learning algorithms. After carefully 

applying a CKD information set from the UCI data collection, the models showed remarkable F1-score, accuracy, recall, and 

precision. Because of the small quantity of the information set, it is crucial to decrease the randomization of the train-test 

splits. The findings were validated using a 10-fold cross-validation. Finally, the proposed Lightweight Layered Network 

(LLNet) with Stochastic Gradient Descent (SGD) would be the best options considering the variety of algorithms available 

to contemporary practitioners since they combine high-quality metrics with reasonably priced training and test runtimes. 

However, in the future, the work is hybridization of deep learning approaches with optimization approach to attain global 

prediction outcomes. 
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