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ABSTRACT 

The integration of large language models (LLMs) into clinical decision-making remains a critical challenge, especially in 

high-risk domains such as neurosurgery. This study presents a novel framework that leverages instruction-tuned LLMs 

optimized using Proximal Policy Optimization (PPO) reinforcement learning to assist brain surgery through procedural 

alignment and decision support. We begin by fine-tuning a transformer-based LLM on domain-specific surgical protocols 

and neurosurgical dialogue datasets using supervised instruction tuning. To further enhance procedural adherence and 

mitigate hallucinations, we introduce a reward model guided by expert-annotated signals such as factual accuracy, stepwise 

protocol fidelity, and relevance to surgical context. PPO is employed to iteratively refine the model's responses through a 

feedback loop, optimizing both language coherence and domain-specific reliability. Experimental evaluations on simulated 

neurosurgical benchmarks demonstrate that our model outperforms both instruction-tuned and PPO-only baselines in terms 

of procedural accuracy and decision support relevance. The results indicate that reinforcement learning with human feedback, 

when tailored to surgical requirements, significantly improves trustworthiness and alignment in LLM outputs. This research 

contributes a critical step toward the deployment of explainable, reliable AI assistants for neurosurgical procedures. 

 

Keywords: Instruction tuning, Large language models, Brain surgery, Proximal Policy Optimization, Reinforcement 

learning, Procedural alignment, Decision support, Hallucination mitigation, RLHF, Medical AI 

1. INTRODUCTION 

Brain surgery is among the most complex and high-risk procedures in modern medicine, demanding precision, rapid 

decision-making, and seamless coordination between surgical team members. Errors or delays in judgment can lead to 

irreversible consequences, including loss of function or life. In this context, artificial intelligence (AI) has shown promise in 

enhancing surgical planning, image interpretation, and intraoperative guidance. However, most AI models remain limited in  
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their understanding of procedural flow, contextual reasoning, and dynamic adaptation to intraoperative scenarios (Topol, 

2019). The lack of real-time, trustworthy, and context-aware AI assistants remains a significant barrier to the deployment of 

AI in neurosurgical decision-making. 

Recent advancements in large language models (LLMs) have demonstrated remarkable capabilities in understanding, 

generating, and reasoning over complex text inputs across domains. Instruction tuning, which refines LLM behavior using 

task-specific prompts and desired outputs, has significantly improved model alignment with human expectations (Ouyang et 

al., 2022). Yet, instruction-tuned models alone may fall short in adapting to dynamic clinical environments like neurosurgery, 

where responses must be updated continuously based on feedback. To address this, reinforcement learning—particularly 

Proximal Policy Optimization (PPO)—offers a powerful approach to refine model behavior through a feedback loop, 

optimizing not just accuracy but alignment with expert judgment (Schulman et al., 2017). 

Despite these innovations, few models are tailored for surgical contexts. Generic instruction-tuned models lack domain-

specific training, and existing reinforcement learning frameworks are rarely tested in real-time surgical decision support 

tasks. This gap is particularly pronounced in brain surgery, where procedural alignment—i.e., the model’s ability to follow 

and assist with the structured sequence of surgical steps—is crucial for clinical reliability and trust (Lundstrom et al., 2022). 

The objective of this research is to develop an instruction-tuned LLM fine-tuned with PPO to support neurosurgeons in 

procedural guidance and decision-making. By integrating domain-specific surgical protocols, expert-validated prompts, and 

real-time reinforcement feedback, our model aims to reduce hallucinations, improve procedural fidelity, and offer contextual 

decision support. This approach marks a step forward in creating intelligent, aligned, and safe AI assistants capable of 

operating in high-stakes medical environments. 

2. RELATED WORK 

Instruction tuning has become central to aligning large language models (LLMs) with specific tasks, enhancing 

controllability and user intent alignment. InstructGPT, for example, applied supervised fine-tuning followed by Proximal 

Policy Optimization (PPO)-based reinforcement learning from human feedback (RLHF), significantly improving output 

helpfulness and safety across general tasks (Ouyang et al., 2022). Likewise, FLAN-T5 expanded instruction tuning to a broad 

range of task types but lacks reinforcement learning mechanisms and domain specificity (Chung et al., 2022). As illustrated 

in Table 1, both models exhibit low procedural alignment and limited integration in clinical or high-risk domains such as 

neurosurgery. 

PPO is one of the most widely adopted reinforcement learning algorithms due to its robustness and stability in policy updates. 

Its use in healthcare has included treatment planning, personalized medicine, and diagnostic path optimization (Schulman et 

al., 2017; Yu et al., 2021). While PPO enables effective learning from complex reward structures, its application to language-

based real-time decision-making remains nascent. As shown in Table 1, healthcare PPO implementations often demonstrate 

moderate medical integration but are rarely extended to surgical contexts requiring procedural alignment. 

LLMs deployed in clinical settings face the persistent challenge of hallucination—i.e., confidently stating incorrect or 

unverified information. Med-PaLM was among the first efforts to align LLMs with medical expert responses and safety 

requirements using curated datasets (Singhal et al., 2023). While the model improves factuality and trustworthiness in 

question answering, it remains static and lacks procedural reasoning, as indicated by its moderate procedural alignment in 

Table 1. Additionally, it does not employ reinforcement learning methods like PPO to iteratively improve reliability. 

Neurosurgical decision support systems have traditionally used static rule-based engines, image-guided navigation, and 

database retrieval systems. While useful in structured scenarios, they fall short in complex or evolving surgical workflows 

where flexible, context-aware reasoning is essential. As shown in Table 1, these systems score high in domain integration 

and procedural alignment but are limited by their lack of LLM integration and adaptability, presenting a compelling 

opportunity for hybrid solutions that incorporate instruction tuning and PPO-driven learning. 

 

Approach / 

Model 

Domain Focus Reinforcement 

Learning 

Medical 

Integration 

Procedural 

Alignment 

Limitations 

InstructGPT General-purpose 

tasks 

Yes (PPO-based) Limited Low Not specialized for 

healthcare; prone 

to hallucinations 

FLAN-T5 Instruction-

following across 

domains 

No Minimal Low Poor factual 

consistency in 

high-stakes 

domains 
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PPO in 

Healthcare 

Reinforcement 

learning in 

treatment policies 

Yes (PPO or 

DDPG) 

Moderate Moderate Requires precise 

reward modeling; 

limited real-time 

support 

Med-PaLM Medical Q&A and 

reasoning 

No Strong Moderate Static Q&A; lacks 

intraoperative 

adaptability 

Surgical 

Decision 

Support 

Systems 

Task-specific 

neurosurgical 

tools 

Rarely used High High Limited scalability 

and lack of LLM 

integration 

Table 1. Related Work Comparison 

This comparative analysis (Table 1) reinforces the novelty of our work, which combines instruction tuning with PPO-based 

reinforcement learning to deliver a real-time, adaptable, and clinically reliable LLM for brain surgery support. 

3. METHODOLOGY 

This section describes the end-to-end methodology for building a Proximal Policy Optimization (PPO) enhanced instruction-

tuned large language model (LLM) to assist in brain surgery through procedural alignment and decision support. 

3.1 Data Preparation 

The training corpus includes three data streams: 

1. Surgical Protocols and Operative Notes: These are structured documents that outline step-by-step brain surgery 

procedures. 

2. Validated Q&A Datasets: Derived from medical examinations (e.g., MedQA, MedMCQA) and augmented with 

neurosurgical literature. 

3. Expert Annotation: A panel of neurosurgeons annotates data for procedural correctness, hallucination risks, and 

response quality. 

Annotations are used to provide supervision signals and later guide reward modeling. 

3.2 Base Model Selection and Instruction Tuning 

We begin with a transformer-based model such as LLaMA or GPT-NeoX due to their scalability and open-access 

architectures. The instruction tuning stage uses domain-specific prompts derived from surgical scenarios, medical questions, 

and intraoperative decision points. 

Instruction Prompt Example 

Prompt: “You are assisting in a craniotomy. What are the next three procedural steps after dural incision?” 

Expected Output: “(1) Retract the dura mater, (2) Identify the cortical surface, (3) Plan entry based on preoperative imaging.” 

Tuning is performed using supervised learning to minimize cross-entropy between model outputs and expert references. 

3.3 PPO Reinforcement Learning for Procedural Alignment 

Following instruction tuning, the model undergoes reinforcement learning to optimize for trustworthiness and procedural 

adherence.  

A reward model is designed using: 

● Expert Feedback: Binary or scalar scores based on procedural correctness. 

● Factual Consistency: Penalization of hallucinations or medically incorrect outputs. 

● Relevance Scoring: Matching output steps to correct surgical sequences. 

The PPO algorithm iteratively updates a policy πθ using a clipped objective to ensure stable optimization. 

 

Initialize policy πθ and value network Vϕ 

for each training iteration do: 
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    Collect batch of prompts and generate outputs using πθ 

    Compute reward r using expert feedback and procedural metrics 

    Estimate advantage A = r - Vϕ(s) 

    Update policy πθ using clipped PPO objective: 

        L_CLIP = min(πθ/πθ_old * A, clip(πθ/πθ_old, 1-ε, 1+ε) * A) 

    Update value network Vϕ to minimize (Vϕ(s) - r)^2 

    Update reward model periodically with new human-labeled examples 

end for 

Table 2. Pseudocode of the Proposed Approach 

 

Figure 1. Refining Surgical Data for AI Models 

The training pipeline illustrated in the figure represents a structured framework for developing a domain-specialized large 

language model (LLM) designed to assist in brain surgery through procedural alignment and decision support. The process 

begins with the collection of curated surgical data, including operative notes, clinical protocols, and medically validated 

Q&A datasets. This data is annotated with expert input to capture procedural nuances and eliminate ambiguous responses. 

The base model—either LLaMA or GPT-NeoX—is first fine-tuned through supervised learning to internalize fundamental 

neurosurgical terminology and procedural reasoning. Building on this, the model undergoes instruction tuning, where it 

learns to respond accurately to domain-specific prompts that reflect intraoperative decision points and stepwise surgical 

guidance. To further enhance its procedural precision and trustworthiness, a reward model is constructed using expert 

evaluations, focusing on factors such as factual accuracy, procedural fidelity, and safety. This reward signal feeds into a 

Proximal Policy Optimization (PPO) loop that iteratively refines the model’s policy through a stable reinforcement learning 

framework. PPO incorporates the policy, value function, and advantage estimator to adjust the model's responses toward 

more aligned and clinically appropriate outputs. The final phase of the pipeline involves human-in-the-loop evaluation, where 

neurosurgeons assess the model's behavior across various held-out tasks, ensuring quality control and providing additional 

feedback for fine-grained tuning. This closed-loop architecture ensures the LLM evolves into a procedurally reliable and 

context-aware assistant capable of supporting neurosurgical workflows in real-time. 

The evaluation of the proposed instruction-tuned large language model (LLM), optimized using Proximal Policy 

Optimization (PPO), is conducted across three targeted tasks designed to measure its efficacy in assisting brain surgery. The 

first task assesses procedural alignment accuracy, where the model’s generated surgical steps are compared against expert-

annotated reference sequences to determine how well it adheres to clinically validated protocols. This metric is critical for 

ensuring that the model supports surgeons with logically consistent and contextually accurate guidance during operative 

procedures. The second task evaluates decision support reliability in simulated neurosurgical scenarios. These scenarios are 

curated to reflect realistic intraoperative situations, and the model's responses are reviewed by domain experts to assess 

whether they contribute meaningful, safe, and context-appropriate decisions. The third task focuses on hallucination detection 

and truthfulness, using benchmark tools such as TruthfulQA and MedQA. These frameworks quantify the rate at which the 

model produces incorrect or fabricated content, an essential consideration for deploying AI in high-stakes medical 

environments. 

To validate performance, the proposed system is benchmarked against multiple baselines, including InstructGPT, Med-



G Ramana Murthy, Dr. A. Jansi Rani, Lavanya S, Dr. P Ravi Kumar, 

Dr. K. Karunambiga 
 

pg. 170 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 5 

 

PaLM, PPO-tuned models without instruction tuning, and models trained with supervised fine-tuning (SFT) only. These 

baselines provide a spectrum of general-purpose and medically tuned models for comparison. Evaluation metrics include 

BLEU scores for linguistic fidelity, factual accuracy to measure alignment with medical ground truth, perplexity to assess 

model confidence and fluency, human expert scoring to evaluate clinical reliability, and response time to ensure suitability 

for real-time surgical assistance. This multi-dimensional evaluation framework ensures that the proposed LLM is not only 

capable of producing fluent language but also meets stringent clinical standards for accuracy, safety, and procedural 

coherence in brain surgery contexts. 

Figure 4.1 illustrates the comparative performance of five models across three core evaluation tasks: procedural accuracy, 

decision support quality, and hallucination rate. The proposed model—trained with both instruction tuning and Proximal 

Policy Optimization—achieved the highest scores in procedural accuracy (0.84) and decision support reliability (0.88), 

significantly outperforming baselines such as InstructGPT and Med-PaLM. It also demonstrated the lowest hallucination rate 

(0.10), indicating high factual alignment and minimal fabrication in surgical contexts. By contrast, PPO-only and supervised 

fine-tuning (SFT) alone produced moderate results but lacked synergy across all tasks. This benchmark visualization 

confirms that the integration of instruction tuning and PPO is critical to enhancing model performance in high-stakes domains 

like brain surgery. 

Figure 4.2 presents the computational efficiency and linguistic fluency of each model evaluated in the brain surgery context. 

Figure 4.2a shows the mean response time, where the proposed model demonstrates the fastest output generation at 2.4 

seconds, suggesting its practical viability for real-time surgical support. 

 

Figure 4.1. Benchmark Performance Comparison Across Tasks 

PPO-only and SFT-only models are slightly slower, while InstructGPT lags at 3.4 seconds due to its general-purpose tuning. 

Figure 4.2b compares perplexity, a key metric of language confidence and fluency. Lower perplexity indicates that the model 

is less uncertain in its predictions. The proposed model achieved the lowest perplexity of 8.3, outperforming all baselines 

and confirming its superior alignment with surgical language. In contrast, InstructGPT and Med-PaLM display higher 

perplexity, indicating less stable and more generic responses. Together, these subfigures highlight the proposed model's 

ability to deliver fast and confident outputs in high-stakes, time-sensitive environments. 

Figure 4.3 illustrates an ablation study comparing the performance of three training strategies: Instruction Tuning Only, PPO 

Only, and the Combined Model (Instruction Tuning + PPO). This analysis helps isolate the contribution of each component 

to the overall system performance. 
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Figure 4.2a. Mean Response Time & Model Perplexity 

In terms of procedural accuracy, the combined model achieved the highest score (0.84), compared to 0.75 for instruction 

tuning and 0.70 for PPO alone. This confirms that instruction tuning contributes significantly to aligning the model with 

domain-specific tasks. For decision support reliability, PPO-only surprisingly scored higher (0.74) than instruction tuning 

alone (0.71), suggesting PPO’s strength in response adaptability. However, the combined model still excelled at 0.88 by 

synergizing both alignment and adaptive feedback. 

The most pronounced improvement was observed in hallucination mitigation, where the combined model reduced 

hallucination rate drastically to 0.10, compared to 0.66 and 0.60 for instruction tuning and PPO-only setups, respectively. 

This underscores the importance of coupling instruction-aware alignment with reinforcement-guided correction mechanisms 

to produce safe and reliable outputs for neurosurgical applications. 

Figure 4.4 analyzes the types of hallucinations generated by three different models when tasked with assisting brain surgery. 

Four primary hallucination categories were identified: fabricated anatomy, incorrect procedural sequencing, surgical tool 

misuse, and inapplicable clinical advice. 

 

Figure 4.3. Ablation Study: Instruction Tuning vs PPO vs Combined 

The proposed model—trained using instruction tuning and Proximal Policy Optimization—shows significant reduction in 

all hallucination types. For instance, hallucinations involving fabricated anatomy dropped from 22% in InstructGPT and 18% 

in Med-PaLM to only 6% in the proposed model. Similarly, incorrect step ordering, a critical error in procedural guidance, 

was reduced from 26% (InstructGPT) to 7% (ours). Other risky behaviors such as tool misuse and irrelevant 
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recommendations followed the same downward trend, indicating enhanced procedural reliability. 

 

Figure 4.4. Distribution of Hallucination Types in Model Outputs 

This figure validates that combining reinforcement learning with expert-aligned instruction tuning is highly effective at 

minimizing potentially harmful or misleading outputs in surgical settings. It also highlights the specific kinds of errors that 

must be systematically evaluated and suppressed in clinical AI applications. 

Figure 4.5 presents an analysis of procedural deviations, categorized by four critical phases in brain surgery: incision, 

craniotomy, tumor resection, and closure. Each model was evaluated over 50 samples per phase, and deviations were 

manually annotated by neurosurgical experts. The figure reveals that the proposed model—trained using PPO and instruction 

tuning—exhibited consistently fewer deviations across all phases. For example, during tumor resection, the most complex 

and high-risk phase, the deviation count dropped to 4 in the proposed model compared to 12 in InstructGPT and 11 in Med-

PaLM. Similarly, in the craniotomy phase, deviations reduced to 3 from 10 and 9, respectively. 

These results highlight how combining instruction tuning with reinforcement learning not only improves general language 

understanding but also ensures greater procedural fidelity in stepwise surgical tasks. The marked reduction in phase-specific 

errors demonstrates that reinforcement with domain-shaped reward signals effectively aligns model outputs with real-world 

surgical protocols. 

 

Figure 4.5. Procedural Deviations Categorized by Surgical Phase 

Figure 4.6 evaluates each model's ability to maintain correct procedural order in multi-step surgical scenarios. These 
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sequences are crucial in real-world operations where even minor step misalignment could lead to serious complications. The 

figure reports the percentage of correctly ordered procedural steps out of 100 annotated sequences per model. 

The proposed model, trained with both instruction tuning and PPO, achieved a sequencing accuracy of 89%, significantly 

outperforming all baselines. In comparison, Med-PaLM scored 74%, and InstructGPT scored only 68%, reflecting the 

limitations of general-purpose instruction tuning in handling specialized surgical flows. The PPO-only and SFT-only models 

showed moderate performance but failed to maintain higher-order consistency, particularly during complex transitions 

between surgical phases. 

This result reinforces the value of our hybrid approach, where instruction tuning establishes domain alignment, and PPO 

fine-tunes sequencing sensitivity based on reward feedback for procedural logic. Figure 4.6 thus provides strong quantitative 

evidence that the proposed model can serve as a dependable assistant in step-critical surgical environments like neurosurgery. 

 

 

Figure 4.6. Consistency of Procedural Sequencing in Multi-Step Surgical Tasks 

 

Figure 4.7. Human Expert Evaluation Scores on Model Outputs 

Figure 4.8 presents a detailed visualization of the reinforcement learning dynamics during the training phase of the proposed 

model using Proximal Policy Optimization (PPO). The graph consists of two components: the reward trajectory and the loss 

curves of the policy and value networks across 100 training epochs. 

The blue curve illustrates the average reward received by the model, which steadily increases during early epochs and 

stabilizes around epoch 60. This indicates that the model is effectively learning to generate outputs that align with domain-

specific reward signals, which are based on expert-defined criteria such as procedural correctness, factual consistency, and 

safety. The convergence of the reward curve demonstrates that the PPO-based learning has reached a stable optimum where 
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further training does not significantly improve performance—highlighting effective reward shaping and signal clarity. 

The secondary axis displays the policy loss (red dashed line) and value loss (green dash-dotted line). Both curves show a 

decreasing trend, suggesting that the model is becoming more confident in its policy decisions and more accurate in 

predicting expected rewards. The declining policy loss reflects increased reliability in output generation, while the falling 

value loss confirms the internal critic's improved ability to estimate long-term returns from a given action. 

Together, these patterns validate the stability and effectiveness of the PPO training loop. The convergence of both reward 

and loss signals ensures that the model has learned to balance reward maximization with prediction consistency—an essential 

property for safe deployment in real-time neurosurgical decision support. This figure provides empirical evidence that 

reinforcement learning significantly contributes to both the performance and trustworthiness of the instruction-tuned 

language model. 

 

Figure 4.8. PPO Reward Curve and Policy Stability Over Training Epochs 

The integration of instruction tuning and Proximal Policy Optimization (PPO) within the proposed model offers substantial 

advancements in procedural fidelity and task reliability for brain surgery decision support. PPO plays a central role in 

reinforcing procedural correctness by learning from structured rewards tied to expert-validated surgical sequences. Unlike 

static fine-tuning approaches, PPO allows the model to iteratively adapt and align its outputs with high-stakes domain 

expectations, reducing deviations and hallucinations during complex multi-step tasks. This reinforcement-driven training 

enhances the model’s ability to generate precise, contextually anchored instructions that are critical in time-sensitive and 

high-risk environments such as neurosurgery. 

Instruction tuning contributes a complementary strength by embedding domain-specific linguistic and logical patterns into 

the model's foundation. By exposing the LLM to real surgical prompts and medically relevant dialogue, instruction tuning 

ensures that the model understands not only the language of surgery but also its expected task structures. This significantly 

boosts the model’s zero-shot generalization within known procedural bounds, making it better suited for clinical deployment 

than general-purpose LLMs. 

However, the model is not without limitations. One major challenge lies in the design of the reward model, which must 

accurately quantify expert preferences, penalize hallucinations, and remain adaptable to evolving procedural standards. 

Additionally, while the model performs well on known protocols, its ability to generalize to unseen or rare surgical variations 

remains an open question. These limitations point to the need for continual fine-tuning with new data and evolving clinical 

feedback. 

Ethical considerations are also critical when deploying AI systems in neurosurgery. The use of sensitive surgical records 

raises concerns about patient privacy and data protection, particularly when training data involves real operative notes. 

Furthermore, the interpretability of model outputs must be ensured to avoid blind trust by clinicians in recommendations that 

could contain subtle errors. Ensuring transparency, explainability, and compliance with medical regulations will be essential 

for safe adoption in operating room settings. 

This discussion underscores that while the proposed architecture offers a significant leap toward intelligent, context-aware 

surgical assistance, it must be continuously refined, ethically governed, and clinically validated to ensure its safe and effective 

integration into real-world neurosurgical practice. 
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4. CONCLUSION AND FUTURE WORK 

This research article presents a novel architecture that combines instruction tuning with Proximal Policy Optimization (PPO) 

to create a domain-adapted large language model (LLM) for procedural alignment and decision support in brain surgery. By 

training the model on structured surgical data and refining its behavior through reinforcement learning, we demonstrate 

significant improvements in procedural sequencing accuracy, decision support reliability, and hallucination mitigation 

compared to existing baselines such as InstructGPT and Med-PaLM. The model consistently outperformed others across 

both quantitative benchmarks and qualitative evaluations, achieving high scores in human expert assessments and strong 

convergence behavior during training. Its ability to maintain domain-specific structure while adapting to task feedback 

highlights the synergistic value of integrating instruction tuning with PPO. 

Despite its strengths, the model’s current scope is limited to text-based prompts and surgical protocols. Future work will 

explore the integration of multimodal data, such as surgical video feeds, radiology images, and sensor telemetry, to enable 

richer contextual understanding and intraoperative adaptability. This will involve aligning textual reasoning with visual and 

temporal cues—a key step toward building comprehensive AI surgical assistants. Additionally, we aim to optimize the 

system for real-time deployment in operating rooms, focusing on latency, trust calibration, and seamless human-AI 

interaction. Finally, the methodology can be extended to support other surgical domains such as cardiothoracic, orthopedic, 

and robotic-assisted surgeries by adapting the reward models and instruction data to their procedural standards. 

In conclusion, the proposed system lays a solid foundation for intelligent, instruction-following LLMs capable of supporting 

high-stakes surgical workflows. Its performance and adaptability affirm its potential to evolve into a safe, efficient, and 

explainable AI tool for next-generation surgical teams. 
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