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ABSTRACT 

Post-surgical complications significantly impact patient recovery, hospital resource utilization, and healthcare costs. Early 

prediction of such complications enables timely interventions, reducing morbidity and mortality rates. Traditional predictive 

models rely on handcrafted features and domain-specific knowledge, often limiting their accuracy and adaptability. In this 

study, we propose a deep neural network (DNN) approach for predicting post-surgical complications using multimodal 

clinical data, including structured electronic health records (EHRs), unstructured clinical notes, and medical imaging. Our 

framework integrates convolutional neural networks (CNNs) for imaging analysis, recurrent neural networks (RNNs) for 

sequential patient records, and transformer-based models for clinical text processing. A multimodal fusion layer combines 

these diverse data representations, capturing intricate relationships between different modalities. We trained and validated 

our model on a large hospital dataset containing records from 50,000 surgical patients. Experimental results show that our 

approach outperforms traditional machine learning models, achieving an accuracy of 92.3%, a precision of 91.7%, and an 

AUC-ROC score of 0.94. We also employ SHAP (SHapley Additive exPlanations) to enhance model interpretability, 

identifying key predictive factors such as preoperative vitals, surgical procedure details, and early post-operative lab results. 

Our findings demonstrate that deep learning models, particularly multimodal fusion networks, significantly improve the 

prediction of post-surgical complications. Future research will focus on expanding datasets, addressing data imbalance, and 

improving model explainability for clinical adoption. Our study highlights the potential of deep learning to transform surgical 

outcome prediction and improve patient care. 
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1. INTRODUCTION 

Post-surgical complications represent a major concern in modern healthcare, contributing to increased morbidity, prolonged 

hospital stays, and higher healthcare costs. These complications, which may include infections, sepsis, pulmonary embolism, 

cardiac events, or organ dysfunction, can significantly impact patient recovery and overall surgical success. Predicting such 

complications early can facilitate timely interventions, reducing the likelihood of adverse outcomes and improving patient 

care [1]. However, accurate prediction remains a challenge due to the complexity and variability of patient responses to 

surgery. Traditional predictive models for post-surgical complications rely on statistical techniques such as logistic 

regression, decision trees, and Bayesian models. These models use structured electronic health record (EHR) data, including 

patient demographics, medical history, laboratory results, and vital signs [2]. While these approaches provide a foundation 

for clinical decision-making, they suffer from several limitations. First, they require extensive feature engineering, which 

depends on domain expertise and may overlook complex interactions among variables. Second, they are often unable to 

effectively incorporate unstructured data, such as clinical notes and imaging, which contain valuable contextual information 

about a patient’s condition [3]. Third, traditional models struggle with generalization across different patient populations and 

surgical procedures, limiting their applicability in diverse clinical settings. Recent advancements in artificial intelligence 

(AI) and deep learning have transformed predictive modeling in healthcare. Deep neural networks (DNNs) have 

demonstrated superior performance in a wide range of medical applications, including disease diagnosis, patient risk 

assessment, and treatment outcome prediction [4]. The ability of DNNs to learn hierarchical representations from raw data, 

without the need for manual feature extraction, makes them well-suited for complex clinical prediction tasks. Furthermore, 

deep learning models can process and integrate multimodal data sources, enabling a more comprehensive analysis of patient 

health status [5]. In this study, we propose a deep learning framework for predicting post-surgical complications using 

multimodal clinical data. Our approach combines structured EHR data, unstructured clinical notes, and medical imaging to 

enhance predictive accuracy. The key components of our methodology include: 

1. Convolutional Neural Networks (CNNs) for Imaging Data: Medical imaging, such as X-rays and CT scans, 

plays a critical role in post-surgical assessment. CNNs are highly effective in extracting spatial patterns and 

abnormalities from medical images [6]. In our model, we employ a pre-trained ResNet-50 architecture to extract 

imaging features that contribute to complication risk prediction. 

2. Recurrent Neural Networks (RNNs) for Sequential Data: Post-surgical patient records, including vitals and lab 

test results, exhibit temporal dependencies. RNNs, particularly Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) networks, are well-suited for capturing time-dependent patterns in sequential medical data 

[7]. By leveraging RNNs, our model can identify early warning signs of complications based on historical patient 

data. 

3. Transformer-Based NLP Models for Clinical Notes: Unstructured text, such as surgeon reports and nursing 

notes, contains rich contextual information that may not be captured by structured data alone. We utilize 

transformer-based language models, such as Bidirectional Encoder Representations from Transformers (BERT), to 

extract meaningful representations from clinical notes [8]. This allows our model to incorporate textual insights into 

the predictive process. 

4. Multimodal Fusion Layer: The outputs from CNNs, RNNs, and transformers are combined through a fusion layer 

that integrates the different data modalities. This step ensures that the model considers both structured and 

unstructured patient information when making predictions. 

We train and evaluate our model on a large-scale hospital dataset comprising records from 50,000 surgical patients. Our 

results demonstrate that deep learning-based multimodal integration significantly outperforms traditional machine learning 

models. Our approach achieves a predictive accuracy of 92.3%, with a precision of 91.7% and an AUC-ROC score of 0.94 

[9]. Additionally, we employ SHapley Additive exPlanations (SHAP) to interpret model predictions, identifying the most 

influential factors contributing to post-surgical complications. Despite the promising results, several challenges remain. Data 

imbalance, where severe complications are less frequent than mild cases, can affect model performance [10]. Computational 

complexity poses limitations for real-time deployment in hospital environments.  



Shraddha Gendlal Vaidya, Dr. K. M. Gaikwad, Dr. Pragati Patil Bedekar, Dr. Manoj L. Bangare, 

Associate Professor, Shalaka Prasad Deore, Ramesh Adireddy 
 

pg. 751 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 9s 

 

 

Figure 1. Basic Block Schematic of Surgery System using Deep Neural Architecture 

Future research will focus on addressing these challenges by exploring data augmentation techniques, optimizing model 

architectures, and integrating real-time patient monitoring systems. Our study highlights the potential of deep neural networks 

in transforming post-surgical complication prediction (As demonstrated in the above Figure 1). By leveraging multimodal 

clinical data and advanced deep learning techniques, our approach provides a more accurate and interpretable solution for 

risk assessment, ultimately improving patient outcomes and surgical decision-making. 

2. AN OVERVIEW OF LITERATURE 

Valvular heart disease is a growing concern, particularly among the aging population, requiring improved diagnostic tools 

and treatment strategies [11]. Research highlights the impact of permanent pacemaker implantation on patients with low left 

ventricular ejection fraction following transcatheter aortic valve replacement (TAVR), indicating potential effects on long-

term cardiac function [12]. Studies analyzing the adverse effects of TAVR have identified complications such as conduction 

disturbances, vascular issues, and paravalvular regurgitation, underscoring the need for procedural advancements. 

Meanwhile, artificial intelligence is playing an increasing role in healthcare, with deep learning approaches enhancing kidney 

disease recognition, disease-gene association predictions, and cardiovascular disease detection from mammograms [13]. The 

integration of Internet of Things (IoT) in smart healthcare is transforming patient monitoring and diagnostics, despite 

challenges related to data security and interoperability. The adoption of electronic health records has seen significant 

progress, yet challenges persist in nationwide implementation. Recent advancements in healthcare technologies, particularly 

the use of convolutional neural networks for retinal image classification and AI-driven calcium quantification for TAVR, are 

improving diagnostic accuracy and patient outcomes [14]. Studies have also focused on predictors of conduction disturbances 

and permanent pacemaker implantation post-TAVR, leading to better risk assessment models. Research on aortic valve 

calcium scores continues to evolve, refining risk prediction for mortality, cardiovascular events, and conduction disturbances 

in patients undergoing TAVR with new-generation prostheses [15]. Collectively, these developments underscore the critical 

role of technology and data-driven approaches in modern healthcare, paving the way for enhanced patient care and improved 

treatment outcomes. 

Table 1. Summarizes the Literature Review of Various Authors 

Area Methodology Key 

Findings 

Challenges Pros Cons Application 

Valvular 

Heart 

Disease in 

China 

Data analysis 

of older 

patients with 

valvular heart 

disease 

High 

prevalence 

among aging 

population; 

need for 

Limited access 

to advanced 

treatments in 

some areas 

Provides 

valuable 

epidemiological 

data 

May not be 

generalizable to 

other regions 

Enhancing 

disease 

management 

and 

treatment 
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improved 

management 

planning 

Pacemaker 

Impact 

After 

TAVR 

Clinical study 

on patients 

with low 

ejection 

fraction post-

TAVR 

Pacemaker 

implantation 

affects long-

term cardiac 

function 

Need for better 

patient 

selection 

criteria 

Identifies risks 

associated with 

TAVR 

Requires 

further research 

for validation 

Improving 

post-TAVR 

patient 

management 

Adverse 

Effects of 

TAVR 

Meta-analysis 

of TAVR 

complications 

Identified 

risks like 

conduction 

disturbances 

and vascular 

issues 

Need for 

improved 

prosthetic 

valve design 

Provides a 

comprehensive 

review of 

TAVR risks 

Some studies 

may have 

methodological 

differences 

Refining 

procedural 

techniques 

and patient 

safety 

Deep 

Learning 

for Kidney 

Disease 

Prediction 

AI-based 

image 

processing 

for kidney 

disease 

detection 

Deep 

learning 

improves 

early 

detection 

accuracy 

Need for high-

quality training 

data 

Enhances early 

diagnosis 

Requires 

computational 

resources 

Automated 

kidney 

disease 

prediction 

Multimodal 

Deep 

Learning 

for Disease-

Gene 

Associations 

AI model 

integrating 

multiple data 

sources 

Improved 

accuracy in 

predicting 

disease-gene 

relationships 

Handling large, 

diverse datasets 

Enhances 

genetic research 

Requires data 

standardization 

Precision 

medicine 

and targeted 

therapies 

IoT for 

Smart 

Healthcare 

Review of 

IoT-based 

healthcare 

technologies 

IoT 

enhances 

patient 

monitoring 

and 

diagnostics 

Data security 

and 

interoperability 

issues 

Enables remote 

monitoring 

Privacy 

concerns 

Smart health 

monitoring 

systems 

 

The research on valvular heart disease emphasizes the growing prevalence among older populations and the necessity for 

improved treatment strategies. Studies on transcatheter aortic valve replacement (TAVR) shed light on its associated risks, 

such as conduction disturbances and the need for permanent pacemakers, leading to advancements in procedural techniques 

and risk assessment. Artificial intelligence applications, including deep learning for disease prediction and image analysis, 

demonstrate significant potential in enhancing early diagnosis and precision medicine (As shown in the above Table 1). The 

integration of IoT in healthcare is transforming patient monitoring and diagnostics, although challenges like data security 

and interoperability remain. 

3. ADVANCES IN ML AND DNN FOR CLINICAL PREDICTION 

In recent years, the healthcare domain has witnessed a paradigm shift with the advent of machine learning (ML) and deep 

learning (DL) technologies, especially in clinical prediction tasks. These innovations have significantly improved the 

accuracy and reliability of diagnostic and prognostic systems, making them indispensable in modern medicine. Deep neural 

networks (DNNs) have emerged as powerful tools capable of modeling complex, nonlinear relationships within large and 

heterogeneous clinical datasets. The increasing availability of multimodal health data—ranging from structured electronic 

health records (EHRs) to unstructured clinical notes, medical imaging, and physiological signals—has further accelerated 

the adoption of DNNs in clinical settings. Traditional statistical models such as logistic regression or Cox proportional 

hazards models have long been used for clinical predictions, including the risk of complications, mortality, or disease 

progression. However, these models often rely on linear assumptions and a limited number of features, which restricts their 

performance in handling high-dimensional, noisy, and nonlinear clinical data. In contrast, modern DNN architectures can 

process vast and diverse data sources while learning hierarchical representations that uncover subtle patterns, interactions, 

and temporal dynamics often missed by conventional methods. One notable advancement is the use of convolutional neural 
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networks (CNNs) in medical imaging. CNNs have been effectively applied to detect abnormalities such as tumors, lesions, 

and anatomical anomalies in modalities like X-rays, CT scans, and MRIs. These networks have demonstrated performance 

on par with, and in some cases superior to, human experts. For instance, CNNs have been employed to predict post-operative 

complications by analyzing preoperative imaging data alongside surgical planning details. The ability of CNNs to 

automatically learn relevant features from pixel-level inputs without manual intervention has proven transformative for 

radiological assessments. In parallel, recurrent neural networks (RNNs) and their variants like long short-term memory 

(LSTM) and gated recurrent units (GRUs) have shown remarkable promise in modeling temporal patterns in sequential 

clinical data. These architectures are particularly well-suited for tracking changes in vital signs, lab test results, and 

medication administration over time—enabling the prediction of adverse outcomes such as sepsis, readmission, or post-

operative complications. LSTM networks have been successfully used to predict patient deterioration by continuously 

analyzing streams of physiological data in intensive care units (ICUs), offering clinicians an early warning system for timely 

intervention. Furthermore, transformer-based architectures, initially popularized in natural language processing, have 

recently been adapted for clinical applications. Models like BERT (Bidirectional Encoder Representations from 

Transformers) and its healthcare-specific variants (e.g., ClinicalBERT) can analyze unstructured text from clinical notes, 

discharge summaries, and surgical reports to extract context-rich information relevant to post-surgical outcomes. These 

transformer models can understand the semantic and syntactic nuances of medical language as described in table 2, making 

them highly effective for tasks like complication detection, clinical coding, and outcome prediction. Another significant 

advancement is the integration of multimodal learning frameworks, which combine diverse data types such as imaging, 

EHRs, genomics, and wearable sensor data. These approaches leverage DNN architectures that can jointly learn from 

heterogeneous inputs, enabling holistic patient modeling and improved prediction accuracy. For example, a multimodal DNN 

might use CNNs to process imaging data, LSTMs for time-series EHR data, and transformers for clinical notes, all fused 

within a unified architecture to predict the likelihood of post-operative complications. The rise of attention mechanisms and 

explainable AI (XAI) tools has further enhanced the trustworthiness of DNNs in clinical contexts. Attention layers allow 

models to highlight the most influential features or time points that contribute to a prediction, aiding clinicians in 

understanding and validating the model’s reasoning. Tools like SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-agnostic Explanations) provide post hoc interpretability, addressing one of the major criticisms of deep 

learning as a “black-box” method. 

Table 2. ML and DNN Advances in Clinical Prediction 

ML/DNN Technique Primary 

Clinical 

Application 

Data Type Used Key Advantage Example Use Case 

CNN (Convolutional 

Neural Networks) 

Medical image 

analysis 

Imaging data (X-

rays, CT, MRI) 

Automatically 

extracts relevant 

features from raw 

images 

Detecting tumors or 

predicting post-

operative complications 

from preoperative scans 

RNN, LSTM, GRU Temporal 

prediction of 

patient health 

Time-series EHRs, 

vitals, lab results 

Models temporal 

dependencies and 

sequential patterns 

ICU patient 

deterioration and early 

sepsis detection 

Transformer Models 

(e.g., ClinicalBERT) 

Text-based 

outcome 

prediction 

Unstructured text 

(clinical notes, 

discharge 

summaries) 

Understands complex 

medical language 

Complication detection 

via surgical reports 

Multimodal DNN 

Architectures 

Holistic patient 

modeling 

Imaging + EHR + 

genomics + sensors 

Integrates 

heterogeneous data 

for higher accuracy 

Predicting post-surgical 

complications using 

multimodal inputs 

Explainable AI (e.g., 

Attention, SHAP, 

LIME) 

Model 

interpretability 

Any DNN input 

type 

Enhances trust and 

transparency of 

predictions 

Identifying key risk 

factors contributing to 

adverse outcomes 

The convergence of deep learning methodologies and clinical data science has led to a new era of precision prediction in 

healthcare. These advancements not only promise improved patient outcomes through early identification of risks but also 

pave the way for personalized treatment planning, efficient resource allocation, and reduced healthcare costs. As research 

continues to evolve, the focus is now shifting toward ensuring the robustness, fairness, and real-world applicability of these 

models across diverse patient populations and clinical environments. 
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4. DEEP NEURAL NETWORK ARCHITECTURE 

The deep neural network architecture employed in this study was carefully designed to accommodate the multimodal nature 

of clinical data, including structured electronic health records (EHRs), unstructured clinical notes, time-series physiological 

signals, and medical imaging. The architecture integrates multiple specialized subnetworks—each optimized for a particular 

data modality—into a unified multimodal deep learning framework capable of learning complex interactions between 

features from diverse sources. The final model leverages a late-fusion strategy with attention mechanisms, allowing each 

data stream to contribute meaningfully to the prediction of post-surgical complications. For structured and tabular data, such 

as demographic details, comorbidities, lab test values, and surgical risk scores, a feedforward deep neural network (DNN) 

was used. The architecture consists of multiple fully connected layers with batch normalization and dropout for 

regularization. Nonlinear activation functions (ReLU) were applied at each hidden layer to learn complex feature 

representations. The final output from this subnetwork is a dense feature embedding that represents the patient's structured 

profile. For time-series data like intraoperative vitals or post-operative monitoring data (e.g., heart rate, blood pressure, 

oxygen saturation), we implemented a long short-term memory (LSTM) network. LSTMs are highly effective in modeling 

sequential dependencies and temporal trends in patient physiology. The network was structured with two stacked LSTM 

layers followed by a dense layer to generate a fixed-length representation of the time-series segment. This temporal encoding 

captures trends such as sudden fluctuations or gradual deterioration, which are often precursors to complications. The 

unstructured text data, comprising operative notes, discharge summaries, and nursing documentation, was processed using a 

transformer-based language model, specifically ClinicalBERT. This model, pre-trained on biomedical corpora and fine-tuned 

on clinical text, provides contextual embeddings of medical narratives. ClinicalBERT was chosen over conventional RNN 

or LSTM-based models because of its superior ability to capture long-range dependencies and medical semantics. For each 

patient, relevant sections of the notes were aggregated, tokenized, and passed through the ClinicalBERT encoder to obtain a 

high-dimensional textual representation.  

 

Figure 1. Multimodal Deep Neural Network Architecture for Predicting Post-Surgical Complications 

Medical imaging data, such as preoperative or postoperative scans, were processed using a convolutional neural network 

(CNN) based on the ResNet-50 architecture. CNNs are well-established for image classification and feature extraction tasks. 

In this context, the model was pretrained on large-scale medical imaging datasets and fine-tuned on our complication-specific 

labels as shown in figure 1. The output of the CNN subnetwork is a dense feature vector representing key visual indicators 

like fluid accumulation, surgical site anomalies, or structural abnormalities. Once individual modality-specific 

representations were generated, they were fused using a late-fusion approach. This involves concatenating the output 

embeddings from the structured DNN, LSTM, ClinicalBERT, and CNN modules. The concatenated feature vector was then 
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passed through a series of fully connected layers with self-attention mechanisms to learn cross-modal interactions and 

prioritize the most informative features. The final output layer used a sigmoid activation function to predict the probability 

of post-surgical complications, enabling binary classification. Model training was conducted using the Adam optimizer with 

an initial learning rate scheduler and binary cross-entropy as the loss function. Early stopping based on validation AUC was 

employed to prevent overfitting. Hyperparameters, including learning rate, layer dimensions, dropout rates, and fusion 

strategies, were tuned using a grid search combined with cross-validation. The modular nature of the architecture ensures 

scalability and flexibility. Each subcomponent can be enhanced or replaced independently as more advanced models or better 

datasets become available. The multimodal fusion framework not only enhances predictive performance but also improves 

the model’s ability to provide interpretable and clinically actionable outputs, laying the groundwork for future real-world 

deployment. 

5. DATA SOURCES FOR SYSTEM DESIGN 

For the purpose of predicting post-surgical complications using deep neural networks, the study draws upon a comprehensive 

collection of multimodal clinical data obtained from a tertiary care hospital’s integrated health information system. The 

datasets include structured and unstructured data elements spanning multiple phases of the patient journey: preoperative, 

intraoperative, and postoperative. Key sources include electronic health records (EHRs), medical imaging (e.g., CT, MRI, 

X-rays), vital signs monitoring, lab test results, operative notes, and in select cases, genomic profiles for patients involved in 

precision medicine programs. Structured data comprises demographic attributes (age, gender, BMI), comorbidity indicators 

(e.g., diabetes, hypertension, cardiovascular disease), medication history, surgical risk scores, and laboratory values (e.g., 

blood glucose, creatinine, white blood cell count). Time-series data, such as intraoperative blood pressure trends or heart rate 

variability post-surgery, are also included to capture dynamic physiological changes. Unstructured data includes narrative 

clinical notes such as pre-surgical assessments, operative reports, discharge summaries, and nursing notes. These documents 

are rich in context-specific details and temporal clues regarding patient conditions, surgical events, and complications. 

Inclusion criteria for the dataset focused on adult patients (≥18 years) who underwent major elective surgeries with 

postoperative follow-up records extending at least 30 days. Exclusion criteria involved emergency cases (due to incomplete 

data capture), patients with missing or corrupted imaging or textual records, and those with rare or undocumented 

complication types. All data were anonymized to comply with HIPAA and institutional ethics regulations. Preprocessing 

involved multiple steps to ensure data quality and model readiness. Structured data underwent missing value imputation 

using median/mode or predictive imputation based on other patient features. Categorical features were one-hot encoded or 

embedded depending on their cardinality. Outlier detection was performed using statistical thresholds and domain expert 

review. Time-series data were interpolated, normalized, and aligned across fixed time windows. Medical images were 

preprocessed using standard methods: resizing, intensity normalization, and, where necessary, noise reduction and 

segmentation. Textual data were cleaned to remove headers, stop words, and irrelevant symbols before tokenization and 

embedding. 

6. PROPOSED HYBRID MODEL FOR SYSTEM IMPLEMENTATION 

To effectively leverage the predictive power of deep learning for identifying post-surgical complications, we propose a hybrid 

multimodal deep neural network model designed for real-world clinical system implementation. This hybrid model integrates 

specialized neural sub architectures for each type of clinical data and incorporates an intelligent fusion mechanism that aligns 

and combines heterogeneous information to form a cohesive representation of patient risk. The system is modular, scalable, 

and designed to operate in both retrospective analysis and real-time decision support environments. The hybrid model 

consists of four core components: (1) the Structured Data Encoder, (2) the Sequential Time-Series Module, (3) the Clinical 

Text Encoder, and (4) the Imaging Feature Extractor. Each of these components processes data from a specific modality and 

produces intermediate feature embeddings that are subsequently unified in a Fusion and Attention Layer to generate final 

predictions. 
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Figure 2. Proposed System Design Block 

Once individual features are extracted, the Fusion Layer concatenates them into a unified multimodal representation. To 

enhance cross-modal interactions and ensure the most informative signals are prioritized, a Self-Attention Mechanism is 

applied as depicted in figure 2. This layer assigns dynamic weights to each modality based on its contextual relevance for a 

given prediction, allowing the system to adaptively focus on the most critical inputs (e.g., text in one case, imaging in 

another). The fused representation is then passed through a fully connected classification head, consisting of two dense layers 

followed by a sigmoid-activated output neuron, producing a probability score indicating the likelihood of a post-surgical 

complication. The model is trained end-to-end using binary cross-entropy loss and optimized with the Adam optimizer. 

Layer -1] Structured Data Encoder (SDE): 

This component processes static and categorical patient data, such as demographics, preoperative lab results, medication 

history, comorbidities, and procedural information. A fully connected feedforward neural network, composed of three hidden 

layers with ReLU activation and dropout regularization, transforms the raw input into a dense vector embedding. This 

encoded representation captures nonlinear interactions and complex feature combinations that may signal risk. 

Layer -2] Sequential Time-Series Module (STM): 

Vital signs and physiological parameters collected intraoperatively and postoperatively are handled by an LSTM-based 

architecture. The model takes time-stamped readings and learns temporal patterns indicative of emerging complications, 

such as hypoxia, hemorrhage, or sepsis. A two-layer LSTM with hidden states feeding into a temporal attention layer ensures 

that critical moments in the patient timeline are emphasized during prediction. 

Layer -3] Clinical Text Encoder (CTE): 

Narrative medical notes, including surgical reports and discharge summaries, are processed using a transformer-based 

language model. In our implementation, Clinical BERT—fine-tuned on the hospital’s own corpus—is used to generate rich 

semantic embeddings. This model allows the system to understand not only keywords but also contextual and temporal 

relationships within medical narratives. The output is a sentence-level embedding representing the semantic summary of the 

patient’s documentation. 

Layer -4] Imaging Feature Extractor (IFE): 

Radiological images are passed through a pretrained CNN model, such as ResNet-50, tailored to detect surgical site 

infections, fluid collections, or anatomic abnormalities. Transfer learning ensures the model is adapted to the specific imaging 

modalities used in the clinical setting. The CNN produces feature vectors representing high-level visual patterns associated 

with complications. 

Regularization techniques such as dropout and L2 norm penalties help mitigate overfitting. From a system implementation 

standpoint, the hybrid model is wrapped within a microservices architecture, enabling real-time data ingestion, preprocessing, 

prediction, and visualization within electronic medical record (EMR) systems. This design ensures compatibility with 
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hospital IT infrastructure and allows clinicians to receive alerts or complication risk scores seamlessly during routine care. 

The model can be updated and retrained periodically using new data, allowing it to adapt to evolving clinical practices and 

patient populations. By integrating data from multiple clinical channels and leveraging deep learning’s capacity for pattern 

recognition, this proposed hybrid model sets the foundation for a robust, accurate, and deployable system for predicting post-

surgical complications in diverse healthcare environments. 

7. RESULTS AND DISCUSSION 

The proposed deep learning model was trained and evaluated using a dataset comprising 50,000 surgical patient records. The 

data was split into 70% training, 15% validation, and 15% testing to ensure robust performance assessment. Our model's 

predictive accuracy was compared against traditional machine learning approaches, including logistic regression and random 

forests. The deep neural network integrating CNNs, RNNs, and transformers achieved a predictive accuracy of 92.3%, 

significantly outperforming logistic regression (76.2%) and random forests (82.5%). Additionally, the model demonstrated 

a precision of 91.7%, a recall of 90.9%, and an AUC-ROC score of 0.94, indicating its strong ability to distinguish between 

patients with and without post-surgical complications. 

Table 3. Model Performance Comparison 

Model Accuracy (%) Precision (%) Recall (%) AUC-

ROC 

Logistic Regression 76.2 74.8 70.5 0.78 

Random Forest 82.5 81.0 79.2 0.84 

CNN + LSTM 89.1 88.5 87.8 0.91 

CNN + Transformer (Proposed Model) 92.3 91.7 90.9 0.94 

This data compares the effectiveness of different machine learning and deep learning models in predicting post-surgical 

complications. The results show that our proposed CNN + Transformer model achieves the highest accuracy (92.3%), 

significantly outperforming traditional models like logistic regression (76.2%) and random forests (82.5%). The AUC-ROC 

score of 0.94 indicates the model’s strong ability to distinguish between patients with and without complications. 

Additionally, the deep learning models (CNN + LSTM and CNN + Transformer) consistently outperform traditional 

approaches, demonstrating the advantages of automated feature extraction and multimodal learning (As shown in the above 

Table 3). These results confirm that deep neural networks are more effective at handling complex clinical data than traditional 

statistical models. 

 

Figure 4. Graphical View of Model Performance Comparison 

Ablation studies were conducted to evaluate the contribution of different data modalities to the overall performance. When 

using only structured EHR data, the model's accuracy dropped to 85.2%, highlighting the importance of incorporating 



Shraddha Gendlal Vaidya, Dr. K. M. Gaikwad, Dr. Pragati Patil Bedekar, Dr. Manoj L. Bangare, 

Associate Professor, Shalaka Prasad Deore, Ramesh Adireddy 
 

pg. 758 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 9s 

 

unstructured clinical notes and imaging. Similarly, removing imaging data resulted in a performance decrease to 87.1%, 

while excluding clinical text processing led to an accuracy reduction to 88.3% (As demonstrated in the above Figure 4). 

These results confirm that the integration of multimodal clinical data enhances predictive accuracy, as each data type 

contributes unique and valuable information to the prediction process. 

Table 4. Impact of Data Modality on Prediction Performance 

Data Modality Used Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

AUC-

ROC 

Only Structured EHR Data 85.2 84.1 82.5 0.87 

Only Imaging Data 82.7 81.3 79.8 0.85 

Only Clinical Notes 83.5 82.0 80.6 0.86 

EHR + Imaging 87.1 86.2 85.0 0.89 

EHR + Clinical Notes 88.3 87.5 86.1 0.90 

EHR + Imaging + Clinical Notes (Proposed Model) 92.3 91.7 90.9 0.94 

This data highlights the importance of integrating multiple data modalities (EHRs, clinical notes, and imaging) for improving 

prediction accuracy. The model trained only on structured EHR data achieved 85.2% accuracy, indicating that relying solely 

on numerical and categorical patient data limits predictive performance. When imaging data and clinical notes were 

incorporated separately, accuracy improved slightly (82.7% and 83.5%, respectively) (As shown in the above Table 4). 

However, when all three modalities were combined, the proposed model achieved the highest accuracy (92.3%), 

demonstrating that multimodal fusion significantly enhances predictive capabilities. This finding emphasizes that deep 

learning models benefit from utilizing diverse data sources to capture different aspects of patient health. 

 

Figure 5. Graphical View of Impact of Data Modality on Prediction Performance 

To improve model interpretability, we employed SHapley Additive exPlanations (SHAP), which identified the most 

influential features affecting post-surgical complications. The top contributing factors included preoperative vital signs (heart 

rate, oxygen saturation, blood pressure), surgical procedure details, early post-operative lab results (white blood cell count, 

inflammatory markers), and key terms extracted from clinical notes indicating potential complications (As demonstrated in 

the above Figure 5). These insights provide valuable clinical guidance for identifying high-risk patients early. 
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Table 5. Most Influential Features in Prediction (Based on SHAP Analysis) 

Rank Feature Name SHAP Value Contribution (%) 

1 Preoperative Blood Pressure 18.2 

2 Post-Operative White Blood Cell (WBC) Count 15.6 

3 Inflammatory Markers (CRP, ESR) 14.8 

4 Heart Rate Variability 13.4 

5 Key Clinical Terms in Notes (e.g., "infection," "fever") 12.9 

This data presents the top five clinical factors that contribute most to the model’s prediction, based on SHapley Additive 

exPlanations (SHAP). Preoperative blood pressure (18.2%) is the most influential feature, indicating its strong correlation 

with post-surgical complications. White blood cell (WBC) count (15.6%) and inflammatory markers (14.8%) are also critical, 

as they help detect infections and inflammatory responses. Heart rate variability (13.4%) is another key factor, reflecting the 

body’s response to surgical stress (As shown in the above Table 5). Clinical terms in notes (12.9%), such as "infection" and 

"fever," play a significant role in predicting complications, demonstrating the importance of natural language processing 

(NLP) in extracting meaningful insights from unstructured clinical text. 

 

Figure 6. Graphical View of Top 5 Most Influential Features in Prediction (Based on SHAP Analysis) 

The results demonstrate that deep neural networks (DNNs) can effectively predict post-surgical complications with higher 

accuracy than traditional machine learning models. The ability to process multimodal data—including structured EHRs, 

unstructured text, and medical images—enhances predictive power by capturing a comprehensive view of patient health 

status. This multimodal integration is a significant advancement over conventional approaches, which often rely on only one 

type of clinical data. One of the key strengths of our model is its ability to detect complications at an early stage, potentially 

allowing clinicians to intervene before adverse events escalate. By leveraging sequential patient data through RNNs 

(LSTM/GRU), the model captures temporal patterns that signal gradual deterioration in patient health (As demonstrated in 

the above Figure 6). The inclusion of transformer-based NLP models enables the extraction of critical contextual information 

from clinical notes, such as mentions of post-operative infections or signs of organ dysfunction that may not be explicitly 

reflected in structured EHR data. 

Table 6. Error Analysis – Misclassification Rates by Complication Type 

Complication Type True Positive Rate (Recall) (%) False Positive Rate (%) False Negative Rate (%) 

Surgical Site Infection 92.1 5.4 7.9 

Pulmonary Complications 90.8 6.2 9.2 
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Cardiovascular Events 88.6 7.1 11.4 

Renal Dysfunction 87.9 7.5 12.1 

Sepsis 89.4 6.9 10.6 

This data evaluates the model’s performance in predicting different types of post-surgical complications, analyzing both 

false-positive and false-negative rates. The model performs best in predicting surgical site infections (recall: 92.1%), 

indicating high sensitivity in detecting wound-related complications. Pulmonary complications and sepsis also show strong 

recall values (90.8% and 89.4%), meaning the model can effectively identify most cases. However, performance is slightly 

lower for cardiovascular events (88.6%) and renal dysfunction (87.9%), suggesting these complications may be harder to 

predict due to variability in patient responses (As shown in the above Table 6). The false-negative rates are highest for renal 

dysfunction (12.1%), indicating potential challenges in capturing early warning signs for kidney-related issues. Future 

improvements can focus on data augmentation and additional feature selection to further enhance detection accuracy for 

these complication types. 

 

Figure 7. Graphical View of Error Analysis – Misclassification Rates by Complication Type 

Despite these advantages, some challenges remain. One limitation is the data imbalance issue, where severe complications 

occur less frequently than mild cases. This imbalance may affect model performance by causing it to favor predicting non-

complication cases over rare but critical complications. Future work will explore synthetic data generation and oversampling 

techniques to address this issue. Another challenge is computational complexity. The integration of CNNs, RNNs, and 

transformers requires significant computational resources, making real-time deployment in hospital environments 

challenging. Optimization techniques such as model pruning, knowledge distillation, and edge computing integration could 

help reduce inference time without sacrificing accuracy. Model interpretability remains a crucial factor for clinical adoption 

(As demonstrated in the above Figure 7). While SHAP analysis provides insights into feature importance, further work is 

needed to develop intuitive visual explanations that can be easily understood by clinicians. Future research should focus on 

integrating explainable AI (XAI) techniques to enhance trust and usability in clinical decision-making. This study 

demonstrates that deep learning-based multimodal models significantly improve the prediction of post-surgical 

complications, offering a powerful tool for risk stratification and early intervention. As AI continues to evolve in healthcare, 

further advancements in data integration, model efficiency, and interpretability will be essential to ensure the practical 

adoption of these predictive systems in real-world clinical settings. 

8. CONCLUSION 

This study presents a comprehensive deep learning-based approach for predicting post-surgical complications using 

multimodal clinical data, including structured EHRs, unstructured clinical notes, and medical imaging. The proposed hybrid 

model, which integrates CNNs, LSTMs, and transformer-based language models through a multimodal fusion framework, 

demonstrates superior predictive performance compared to traditional machine learning techniques. By achieving an 

accuracy of 92.3% and an AUC-ROC score of 0.94, the model showcases its potential to significantly improve early 

identification of high-risk surgical patients. Through ablation studies and SHAP-based interpretability analysis, the model’s 

robustness and transparency are further validated, identifying key features such as preoperative vitals, inflammatory markers, 
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and textual indicators of complications. These insights contribute to actionable clinical decision-making and support timely 

intervention, which can ultimately reduce morbidity, mortality, and healthcare costs. The integration of deep learning into 

surgical risk prediction marks a pivotal step toward precision medicine and smarter healthcare systems. However, challenges 

such as data imbalance, model explainability, and computational scalability must be addressed to enable real-world 

deployment. Future research will focus on augmenting datasets, optimizing model architectures for speed and efficiency, and 

incorporating real-time patient monitoring data. Additionally, enhancing clinician-facing interpretability tools will be critical 

for building trust and encouraging adoption in diverse clinical environments. In conclusion, this work highlights the 

transformative potential of deep neural networks in improving surgical outcomes. The use of multimodal data not only 

enhances prediction accuracy but also reflects a more holistic understanding of patient health, paving the way for more 

intelligent and proactive healthcare systems. 
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