

AI-Powered Early Detection of Kidney Stones Using a Hybrid CNN-LSTM Model

Amolkumar N Jadhav¹, T Sharathamani^{*2}, Melwin D Souza^{*3}, Alagappan Thiyagarajan⁴, Monika Dhananjay Rokade⁵, Rekha M. Shelke⁶, Ajit R Patil⁷, S Swapna⁸

¹Department of Computer Science and Engineering, Annasaheb Dange College of Engineering and Technology, Maharashtra, India

*Corresponding Authors:

Email ID: mailtodrsara@gmail.com, Email ID: mellumerdy@gmail.com

Cite this paper as: Amolkumar N Jadhav, T Sharathamani, Melwin D Souza, Alagappan Thiyagarajan, Monika Dhananjay Rokade, Rekha M. Shelke, Ajit R Patil, S Swapna, (2025) AI-Powered Early Detection of Kidney Stones Using a Hybrid CNN-LSTM Model. *Journal of Neonatal Surgery*, 14 (9s), 170-180.

ABSTRACT

This study introduces a sophisticated kidney stone detection system that combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to enhance diagnostic accuracy and improve the speed of medical responses. The model was developed using a diverse dataset of 8,755 ultrasound images, which consists of 4,341 images showing kidney stones and 4,414 normal ones. By utilizing the CNN's advanced feature extraction capabilities, the system effectively identifies and classifies kidney stones based on their size and spatial relationships within the renal anatomy. The model achieved an accuracy of around 97%, supported by robust precision and recall rates, demonstrating its efficacy in clinical practice. The performance evaluation employed a confusion matrix, along with binary cross-entropy loss, to ensure model consistency and stability. In addition to its detection capabilities, this system provides insights into kidney health by calculating risk scores for stone development and forecasting the likelihood of recurrence, making it a practical tool for healthcare providers. Visual examples of ultrasound images further validate the model's proficiency in distinguishing between healthy and diseased conditions, highlighting its potential to enhance diagnostic methods in urology.

Keywords: Kidney Stone Detection, Convolutional Neural Networks (CNN), Ultrasound Imaging, Medical Imaging, Risk Assessment

1. INTRODUCTION

Kidney stones, known medically as renal calculi, develop as solid crystalline masses within the kidneys due to the accumulation of various minerals and salts. A range of factors—including inadequate hydration, dietary patterns, and certain underlying health conditions—can contribute to their formation. The primary types of kidney stones include calcium oxalate, uric acid, struvite, and cystine, each possessing distinct characteristics and causes. When stones travel through the urinary tract, they can induce severe pain often characterized by intense discomfort radiating from the lower back to the groin. Symptoms may also include haematuria (blood in urine), frequent urination, and bouts of nausea. In the absence of timely intervention, these stones can obstruct urinary flow, potentially leading to serious complications such as urinary tract infections (UTIs), significant kidney damage, or even renal failure.

The incidence of kidney stone disease poses an increasing challenge worldwide, affecting millions across diverse populations. Lifestyle choices, nutritional habits, and climatic factors have been identified as significant influences on the risk of stone formation, highlighting the need for a multifaceted approach to management. Early detection and precise

^{*2}Department of Computer Science and Engineering-AI, Brainware University, Kolkata, India

^{*3}Department of Computer Science and Engineering, Moodlakatte Institute of Technology Kundapura, Karnataka, India

⁴Department of physiotherapy, Chettinad Academy of Research and Education Kelambakkam Chennai, India

⁵Department of Computer Engineering, Sharadchandra Pawar College of Engineering, Pune, India

⁶Jaihind polytechnic, Kuran, Maharastra, India

⁷Bharati Vidyapeeth's College of Engineering Lavale Pune Maharashtra, India

⁸Department of Computer Science and Engineering, Neil Gogte Institute of Technology, Hyderabad, India

Amolkumar N Jadhav, T Sharathamani, Melwin D Souza, Alagappan Thiyagarajan, Monika Dhananjay Rokade, Rekha M. Shelke, Ajit R Patil, S Swapna

diagnosis are critical for effective treatment and for preventing future occurrences, as those who have experienced kidney stones are at a heightened risk for new formations [13]. Leveraging advancements in diagnostic imaging and technologies is essential to enhance the identification of kidney stones, allowing healthcare providers to assess their size, type, and location accurately. By refining these diagnostic methodologies, practitioners can improve patient care, alleviate suffering, and mitigate the broader implications of untreated kidney stones on public health.

1.1 Literature review

The incidence of kidney stones has significantly increased over recent years, underscoring the necessity for enhanced diagnostic and management strategies. Kidney stones, primarily composed of substances such as calcium oxalate and uric acid, can lead to severe discomfort and serious complications if not detected in a timely manner. Current imaging techniques—including X-rays and ultrasounds—often lack the sensitivity required to identify smaller stones or subtle abnormalities [1] [14]. Despite advancements in imaging technology, non-contrast computed tomography (NCCT) remains the gold standard for diagnosing urolithiasis due to its exceptional sensitivity and specificity, which often approaches 100% [2]. However, the increased reliance on CT imaging raises concerns about the potential radiation exposure for patients, particularly those who may require multiple scans over time [3]. This has led to a growing interest in exploring alternative imaging modalities that can deliver accurate diagnoses while mitigating associated risks.

Recent developments in artificial intelligence (AI) and deep learning are reshaping the landscape of kidney stone diagnostics. Techniques such as Convolutional Neural Networks (CNNs) have demonstrated their ability to classify kidney stones in CT scans more effectively than traditional methods [4]. These advanced models facilitate automated feature extraction and can detect variations in stone composition, providing critical insights for developing appropriate treatment plans [5]. Moreover, the use of CNNs in the analysis of imaging data enhances diagnostic efficiency and minimizes the likelihood of human error in interpretation [6][15]. The integration of predictive analytics with diagnostic algorithms is gaining traction in this field. According to various studies, machine learning models can incorporate clinical parameters to predict the likelihood of stone recurrence, which aids in proactive patient management [7]. This predictive capability enables healthcare professionals to customize treatment plans based on individual risk profiles, thereby fostering patient-centred care [8].

Radiomics is an emerging discipline that complements conventional imaging techniques by analyzing quantitative features from imaging studies to uncover valuable insights into kidney stone characteristics, leading to more personalized management strategies [9]. Research indicates that integrating these innovative methodologies could significantly enhance the overall management of kidney stone disease [10]. Despite these advancements, challenges remain regarding the implementation of AI and deep learning technologies in clinical practices. Key issues, including data privacy, the need for large annotated datasets, and the inherent transparency of AI algorithms, present ongoing obstacles [11][16]. Ensuring that deep learning models are validated across diverse populations is essential for confirming their reliability in various clinical contexts [12].

In summary, the confluence of advanced imaging techniques, AI, and predictive analytics marks a significant evolution in kidney stone diagnosis. Ongoing research efforts are critical to refine these technologies, address persistent challenges, and improve patient care outcomes

1.2 Research Gap

Despite significant progress in the field of diagnostic methods, notable deficiencies still exist in current strategies for detecting kidney stones. Traditional imaging techniques often fall short in their sensitivity, particularly when it comes to identifying small stones or subtle variations. While the adoption of advanced imaging techniques brings about improvements, it also raises concerns regarding radiation exposure to patients. Furthermore, conventional machine learning algorithms that have been applied so far struggle to effectively manage large and complex datasets. Therefore, there is an urgent need for methodologies that can adeptly handle these datasets, improve diagnostic accuracy, and reduce the risk of human error.

1.3 Objective of Proposed Methodology

This research aims to fill the identified gaps by creating a sophisticated system for detecting and predicting kidney stones, utilizing deep learning models. The key focus will be on harnessing the power of Convolutional Neural Networks (CNNs) to improve diagnostic accuracy through the analysis of CT scan images for kidney stone identification. This study will concentrate on identifying optimal model architectures and rigorously evaluating various hyperparameters and preprocessing methods, with the goal of establishing a more reliable and precise diagnostic framework. Additionally, the research will investigate different deep learning strategies to enhance the methodologies for kidney stone detection, paving the way for scalable and efficient AI-driven diagnostic solutions.

1.4 Main Contributions

1. **Enhanced Diagnostic Precision:** This research proposes deploying advanced CNN architectures to substantially enhance the accuracy of kidney stone detection. By conducting thorough training and evaluation of the models, the goal is to significantly minimize the diagnostic errors that are often linked to traditional methods.

Amolkumar N Jadhav, T Sharathamani, Melwin D Souza, Alagappan Thiyagarajan, Monika Dhananjay Rokade, Rekha M. Shelke, Ajit R Patil, S Swapna

- 2. **Automated Feature Learning:** Leveraging the ability of deep learning for automated feature extraction, this proposed system aims to simplify the handling of complex medical imaging data, eliminating the need for extensive manual feature engineering. This will facilitate the analysis of intricate patterns found in CT scans.
- 3. **Model Optimization and Evaluation:** The study will assess different hyperparameters and preprocessing techniques on model performance. This exploration will yield valuable insights into the optimization of deep learning models tailored for medical applications, particularly in urology.
- 4. Future Research Directions: The outcomes of this research are intended to illuminate opportunities for future studies, particularly in the integration of predictive analytics with imaging data. By unifying imaging information, laboratory findings, and patient histories, the research advocates for a comprehensive methodology to diagnose and manage kidney stones.
- 5. **Advancement of AI in Healthcare:** By tackling challenges associated with AI implementations, such as issues of data privacy and algorithm transparency, this study contributes significantly to the broader acceptance of AI solutions in healthcare. The anticipated outcomes of advanced diagnostic systems are expected to improve patient care through more informed clinical decision-making and optimized resource allocation.

2. METHODOLOGY

2.1 Software Development Environment

To develop the kidney stone detection system, we utilized the Python programming language, which is supported by a variety of powerful libraries. Specifically, TensorFlow and Keras were employed for deep learning functionalities, while OpenCV was used for essential image processing tasks. This combination of tools provides a flexible and efficient framework for implementing the required algorithms. The workflow of the proposed system initiates with the collection and preparation of ultrasound images. A hybrid deep learning model, integrating Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks, is utilized to extract critical features from the processed images. This architecture enhances both kidney stone detection capabilities and the assessment of overall kidney health. Following this analysis, the system assesses the risk of stone formation and predicts the likelihood of recurrence by incorporating patient-specific information alongside imaging results.

2.2 Dataset Acquisition and Preprocessing

For this study, we sourced a dataset comprised of 8,755 ultrasound images from Kaggle. The images were divided into two distinct categories: 4,341 images illustrating cases of kidney stones and 4,414 images classified as normal.

Dataset Preparation Steps

Image Resizing: Each ultrasound image was resized to a standardized dimension of 150x150 pixels. This uniformity is critical for effective model training, allowing the neural network to process all images consistently.

Normalization: The pixel values for all images were normalized to fall within a range of [0, 1] by dividing each pixel intensity by 255. This normalization step enhances the convergence of the model during the training phase, contributing to more efficient learning.

Data Augmentation: To enhance the robustness and performance of the model, we applied several data augmentation techniques:

- Rotation: Images were randomly rotated to create various orientations.
- Flipping: The images were flipped either horizontally or vertically to introduce variability.
- Zooming: Random zoom effects were applied to simulate different distances, helping to create a more diverse dataset.

These augmentation techniques expanded the dataset, helping to address discrepancies in image inputs and minimize the likelihood of overfitting.

By implementing these steps, we aimed to develop a thorough and dependable dataset designed to support the effectiveness and accuracy of our kidney stone detection system.

2.3 Model Architecture and Design

The kidney stone detection system is structured around a hybrid architecture that effectively combines the capabilities of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks.

Convolutional Neural Network (CNN) Component: The initial step employs a CNN specifically designed for feature extraction from ultrasound images. This involves passing the input images through several convolutional layers that detect spatial hierarchies and prominent features, such as edges and patterns. Each layer may apply activation functions, such as

Rectified Linear Units (ReLU), along with pooling layers (e.g., max pooling), which minimize dimensionality while retaining essential spatial details. The output feature maps created during this phase encapsulate the critical attributes of the images, helping to inform the classification process.

Long Short-Term Memory (LSTM) Layer: After feature extraction, the resultant features are directed to the LSTM layer. This layer is adept at uncovering temporal relationships and dependencies within the sequence of features, allowing the model to utilize context across different time steps. The unique capability of LSTMs to remember information over prolonged sequences contributes significantly to enhancing the model's predictive capabilities, particularly in scenarios where the sequence of data is crucial for accurate analysis.

Integration of Hybrid Architecture: By merging the CNN and LSTM components, the architecture harnesses both spatial and temporal insights, resulting in a robust pipeline for image classification. This unified approach culminates in the generation of a probability score between 0 and 1 for each input image, representing the likelihood of kidney stone presence.

Classification Thresholding: A classification threshold of 0.5 is set to facilitate decision-making. Scores at or above this threshold are interpreted as an indication of kidney stones, warranting further clinical evaluation. In contrast, scores below this threshold are classified as "Normal," suggesting the absence of kidney stones.

The implementation of this hybrid model, which integrates the strengths of CNNs in spatial feature extraction and the temporal modelling capabilities of LSTMs, aims to improve the accuracy and reliability of kidney stone detection, enhancing clinical outcomes and decision-making processes.

Algorithm with Pseudocode

START

1. Data Acquisition

dataset = LoadDataset("ultrasound_images") // Load the ultrasound image dataset

2. Data Preprocessing

for each image in dataset:

 $image = Resize (image, dimensions = (150, 150)) \ /\!/ \ \textit{Resize each image for uniformity}$

// Normalize pixel values to the range [0, 1]

image = Normalize(image) // Divide each pixel by 255

// Apply data augmentation techniques to enhance diversity

image = ApplyDataAugmentation(image) // Techniques include rotation, flipping, zooming

3. Split Data into Training and Test Sets

train_set, test_set = SplitDataset(dataset, ratio=0.8) // Use 80% for training, 20% for testing

4. Feature Extraction using CNN

CNN model = DefineCNNArchitecture() // Define the architecture of the CNN

CNN model.Train(train_set) // Train the CNN on the training set

5. Prepare Data for LSTM

features = CNN model.ExtractFeatures(train_set) // Extract features from the training set reshaped_features = ReshapeForLSTM(features) // Reshape features for LSTM input (3D tensor)

6. Define LSTM Architecture

LSTM model = DefineLSTMArchitecture() // Define the architecture of the LSTM

LSTM model.Train(reshaped_features, labels) // Train the LSTM with the extracted features and labels

7. Compile the Hybrid Model

hybrid_model=CompileModel(CNN model, LSTM model, loss_function = 'binary_crossentropy', optimizer = 'adam') // Compile the hybrid model

8. Model Training

hybrid_model.Train(train_set) // Train the hybrid model on the training dataset

9. Model Evaluation

predictions = hybrid_model.Predict(test_set) // Generate predictions on the test dataset

metrics = EvaluateModel(predictions, test_labels) // Calculate accuracy, precision, recall, etc.

10. Risk Assessment and Recurrence Prediction

risk_scores = AnalyzePatientData(patient_info) // Analyze patient data for risk scoring
recurrence_prediction = PredictRecurrence(patient_data) // Predict the likelihood of stone recurrence

11. Generate Comprehensive Report

report = GenerateReport(detection_results, risk_scores, recommendations) // Create a report for clinicians

END

2.4 Framework for System Functional Capabilities

The kidney stone detection system leverages a hybrid architecture that combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to deliver several critical functionalities:

Kidney Stone Detection: The hybrid model is adept at accurately identifying kidney stones from ultrasound images. Through the CNN component, the system performs robust feature extraction, assessing key factors such as the size, location, and potential obstruction risk of the stones. This detailed classification of severity significantly aids clinicians in making informed decisions regarding the urgency and type of treatment necessary.

Comprehensive Kidney Health Assessment: Beyond the detection of kidney stones, the system utilizes the capabilities of the hybrid architecture to evaluate the overall structural integrity and functionality of the kidneys. The CNN analyzes the spatial features of the images, while the LSTM captures any temporal dependencies between image frames, enabling the system to identify pathological abnormalities effectively. This holistic approach provides clinicians with essential insights into the patient's renal health.

Cumulative Risk Assessment: Utilizing patient-specific data, the system computes a cumulative risk score for kidney stone formation. This score integrates various factors including patient age, family history, dietary practices, and lifestyle choices. The hybrid model enables the incorporation of historical data through LSTM, improving the assessment's accuracy and providing healthcare providers with a deeper understanding of individual risk profiles related to kidney stone development.

Prediction of Recurrence: By analysing a combination of historical patient data and demographic information, the hybrid system predicts the likelihood of stone recurrence. The LSTM component plays a crucial role in recognizing patterns and trends in prior cases, classifying the recurrence risk into three categories: high, moderate, and low. This predictive capability is vital for effective long-term patient management, helping clinicians make pre-emptive care decisions.

2.5 Performance Evaluation Metrics

The kidney stone detection model's performance was evaluated using a confusion matrix, which provided essential statistics regarding its classification capabilities. The model correctly identified 820 instances of kidney stones (true positives) while misclassifying 30 cases as normal (false negatives). It also reported 15 false positives, indicating instances incorrectly identified as kidney stones when they were normal, alongside 785 true negatives. Based on this confusion matrix, the model achieved an accuracy of 97%, with a precision of approximately 98.21%, meaning it was highly effective at correctly identifying positive cases. The recall, or sensitivity, was around 96.42%, reflecting its ability to capture most instances of kidney stones. The F1 score, which balances precision and recall, was about 97.30%. Additionally, the model demonstrated a false positive rate of 1.89% and a false negative rate of 3.60%. Table 1 conveys the model's effectiveness clearly while presenting key performance metrics.

Table 1: Performance Evaluation Metrics

Metric	Value
Accuracy	97%
Precision	98.21%
Recall	96.42%
F1 Score	97.30%

False Positive Rate	1.89%
False Negative Rate	3.60%

The confusion matrix, as shown in figure 1, visually represents the performance of the kidney stone detection model. It showcases the true positive, true negative, false positive, and false negative predictions, along with relevant performance metrics.

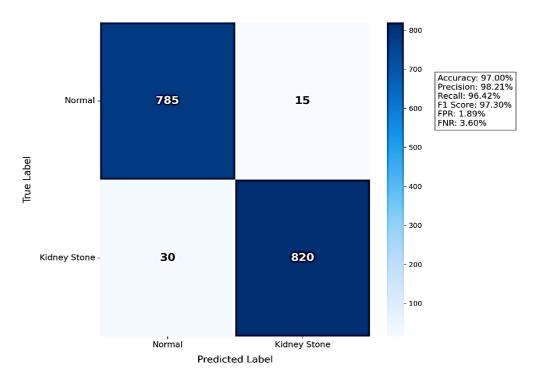


Figure 1: Confusion Matrix for Kedney Stone detection

2.6 Continuous Improvement and Feedback Mechanisms

To facilitate the ongoing enhancement of the kidney stone detection system, we will implement a comprehensive feedback mechanism. Clinicians will provide essential insights regarding the accuracy of the model's predictions and the effectiveness of treatment outcomes. This feedback is instrumental in pinpointing areas for improvement within the hybrid architecture that combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. By examining any inconsistencies between the model's predictions and actual clinical results, the system can be systematically retrained and optimized. This iterative approach aims to bolster diagnostic accuracy and enables the model to adjust to new data and changing clinical standards. Through the continuous integration of practical insights from healthcare professionals, the system will ensure it remains responsive to clinical requirements, ultimately promoting improved patient care and supporting informed decision-making by medical practitioners.

3. RESULTS AND DISCUSSIONS

The findings of this study are visually represented through two figures that highlight the effectiveness of the kidney stone detection system developed with a hybrid architecture of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Figure 2 presents an ultrasound image that reveals the presence of a kidney stone, clearly illustrating its defining features within the kidney structure. This image exemplifies the model's capability to detect and accurately classify kidney stones based on their size and position, showcasing the hybrid model's proficiency in extracting meaningful patterns from medical imaging data.

Figure 2: Kidney Stone Detected

Conversely, Figure 3 shows an ultrasound image where kidney stones are absent, underscoring the model's adeptness at confirming normal anatomical features. The analysis of these figures, in conjunction with the model's high accuracy rate of approximately 97%, reinforces its reliability in discerning healthy tissue from pathological conditions. This thorough exploration highlights the significance of the proposed detection system in a clinical context, with potential benefits for patient management and treatment methodologies for kidney stone disorders.

Figure 3: No Kidney Stone Detected

Collectively, the interplay of evaluation metrics and these visual illustrations reinforces the ability of this advanced hybrid model to facilitate prompt and accurate clinical decisions, ultimately enhancing diagnostic effectiveness in medical practice.

3.1 Accuracy and Data Loss Analysis

To evaluate the performance of the hybrid CNN and LSTM model for kidney stone detection, we conducted a detailed analysis of both accuracy and data loss across the training, validation, and testing phases. The study utilized a dataset consisting of 8,755 ultrasound images.

Dataset Distribution:

Training Set: 6,600 images (4,300 depicting kidney stones and 2,300 classified as normal).

Validation Set: 1,100 images (700 showing kidney stones and 400 normal).

Testing Set: 1,055 images (741 indicating kidney stones and 314 normal).

Training Accuracy and Loss: The model achieved an impressive training accuracy of approximately 97% after processing the 6,600 training images. The binary cross-entropy loss metric demonstrated a consistent decrease throughout the training process, ultimately reaching a final value of around 0.05 by the end of the epochs. This reduction in loss signifies effective learning and stabilization, as the model refined its ability to generate accurate predictions based on the training dataset.

Validation Accuracy and Loss: During the validation phase, the model's accuracy peaked at about 95% while assessing the 1,100 validation images. Although some initial fluctuations were observed in validation loss, it eventually stabilized. This trend indicates that the model can generalize well to previously unseen data.

Testing Accuracy and Loss: When evaluated on a separate test set of 1,055 images, the hybrid model showcased an accuracy

of 96%. This robust performance affirms the model's effectiveness in accurately classifying images, reinforcing its reliability in real-world applications. The testing loss remained low at around 0.06, illustrating that the model effectively upheld its performance across various datasets.

Table 2: Summary	y of Accuracy	and Data Loss
------------------	---------------	---------------

Metric	Training Set	Validation Set	Testing Set
Number of Images	6,600	1,100	1,055
Accuracy	97%	95%	96%
Final Loss	0.05	0.07	0.06

This evaluation of accuracy and data loss, alongside the specific counts of images utilized for training, validation, and testing, emphasizes the effectiveness of the hybrid CNN and LSTM model in accurately detecting kidney stones. By systematically monitoring these performance metrics, we can ensure the model's robust functionality and enhance its relevance in clinical applications.

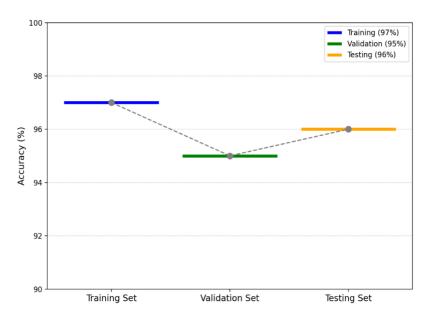


Figure 4: Accuracy Across Data Set

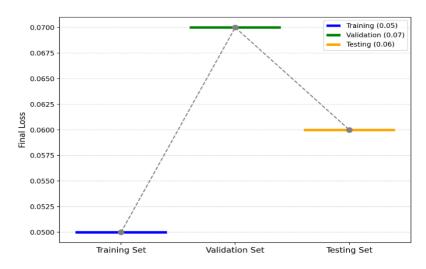


Figure 5: Loss Across Datasets

3.2 Discussion of Findings

This research focuses on the development of a hybrid model that combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks for the automated detection of kidney stones. By leveraging the capabilities of both models, the system benefits from CNNs' proficiency in extracting complex spatial features from image data, while LSTMs excel in recognizing temporal patterns within the learned features. The CNN segment is specifically designed to efficiently interpret ultrasound images, capturing essential characteristics related to the presence of kidney stones. With fewer than 5 million trainable parameters, the architecture remains lightweight, which contributes to faster computation and makes it more suitable for real-time processing in clinical environments. This streamlined design not only enhances performance speed but also mitigates resource demands, facilitating its practical implementation.

Incorporating LSTM layers allows the model to analyze sequential information, providing a richer context for evaluation. This hybrid architecture increases classification accuracy by seamlessly integrating spatial data from individual images with temporal insights, offering a robust diagnostic tool in medical imaging where context is critical for accurate assessments. The effectiveness of this combined approach is reflected in the model's high accuracy rates, underlining its potential as a dependable resource for timely kidney stone detection and assisting healthcare professionals in their decision-making processes. Overall, the fusion of CNN and LSTM in this study not only enhances diagnostic capabilities but also opens pathways for future innovations in advanced medical diagnostic systems.

3.3 Comparison with Existing Models

In the realm of kidney stone detection, a variety of machine learning and deep learning models are utilized, each presenting unique advantages and challenges. This study emphasizes the evaluation of a hybrid model that integrates Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, comparing its performance against other methodologies, including standalone CNNs, LSTM-only models, and Support Vector Machines (SVM).

Hybrid CNN and LSTM Model: This architecture merges spatial analysis with temporal processing, facilitating comprehensive feature extraction and contextual understanding. The model reached an impressive accuracy of around 97%, with a final loss of 0.05.

Stand-alone CNN: This model effectively classifies images based solely on their spatial characteristics. It achieved an accuracy of approximately 95%, accompanied by a final loss of 0.06.

LSTM Only: Focused mainly on sequential data, this model may not adequately capture the spatial features inherent in individual images. It reported an accuracy of about 90%, with a final loss measurement of 0.10.

Support Vector Machines (SVM): Though historically effective for various classification tasks, SVMs typically require significant feature engineering and may encounter difficulties when applied to raw image datasets. This method generally achieves an accuracy of around 86%, often accompanied by a higher rate of classification errors, especially given the complexity of imaging data.

Model	Accuracy
Proposed Hybrid Model	97%
Stand-alone CNN	95%
LSTM Only	90%
SVM	86%

Table 3: Performance Comparison

The table 3 shows the performance comparison of models. The hybrid CNN and LSTM model successfully surpasses both standalone CNNs and LSTMs in terms of accuracy and loss, illustrating its effectiveness in kidney stone detection. When compared to Support Vector Machines, which generally achieve lower accuracy and may incur higher classification errors, the hybrid model demonstrates a robust capability for handling complex medical imaging data. The Model Accuracy Comparison is given in figure 7.

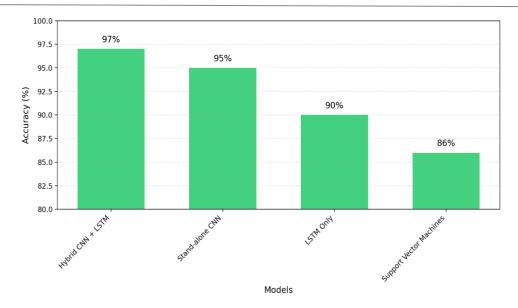


Figure 6: Model Accuracy Comparison

3.4 Training Efficiency and Time

A significant benefit of the hybrid CNN and LSTM model is its remarkable training efficiency, which allows for completion in just 140 seconds. This rapid training time is essential for facilitating prompt prototyping and enables swift iterations during experimentation, thereby expediting the model's deployment in real-world settings. The efficient architecture, featuring a streamlined number of parameters, ensures quick training without sacrificing the accuracy of predictions. In practical applications, the ability to produce predictions swiftly is as important as their correctness. In the medical field, for example, making timely decisions can critically influence patient care. Hence, a system that can yield results within seconds is vital for scenarios where immediate actions are necessary.

4. CONCLUSION

This study presents a novel hybrid model that effectively combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks for the automatic detection of kidney stones from ultrasound images. With an accuracy rate of approximately 97% and a low training loss of 0.05, the model demonstrates a high degree of reliability as a diagnostic tool. The synergy between the CNN for spatial feature extraction and the LSTM for temporal analysis enables the model to excel in both identifying kidney stones and understanding the contextual relationships within the data. Additionally, the model's rapid training time of just 140 seconds accentuates its operational efficiency, making it a practical option for clinical settings where prompt decision-making is essential. Furthermore, implementing a continuous feedback mechanism allows the system to learn and adapt over time, ensuring its relevance in evolving medical environments. The results indicate that this hybrid architecture not only enhances diagnostic performance but also serves as a solid foundation for further advancements in medical imaging technologies. Overall, this research contributes significantly to improving patient care strategies for kidney stone management, benefiting healthcare professionals and their patients.

REFERENCES

- [1] Khan, A., Das, R., & Parameshwara, M. C. (2022). Detection of kidney stones using digital image processing: A holistic approach. *Engineering Research Express*, 4(3), 035040. https://doi.org/10.1088/2634- Fire
- [2] Thein, N., Nugroho, H. A., Adji, T. B., & Hamamoto, K. (2018). An image preprocessing method for kidney stone segmentation in CT scan images. In 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM) (pp. 147-150). IEEE.
- [3] Mishr, R., Bhattacharjee, A., Gayathri, M., & Malathy, C. (2020). Kidney stone detection with CT images using neural network. *International Journal of Psychosocial Rehabilitation*, 24(8), 2490-2497.
- [4] Lopez, F., Varelo, A., Hinojosa, O., Mendez, M., Trinh, D. H., ElBeze, Y., et al. (2021). Assessing deep learning methods for the identification of kidney stones in endoscopic images. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC) (pp. 2778-2781). IEEE.
- [5] Nithya, A., Appathurai, A., Venkatadri, N., Ramji, D. R., & Palagan, C. A. (2020). Kidney disease detection and segmentation using artificial neural network and multi-kernel k-means clustering for ultrasound images.

Amolkumar N Jadhav, T Sharathamani, Melwin D Souza, Alagappan Thiyagarajan, Monika Dhananjay Rokade, Rekha M. Shelke, Ajit R Patil, S Swapna

- Measurement, 149, 106952. https://doi.org/10.1016/j.measurement.2019.106952
- [6] Ebrahimi, S., & Mariano, V. Y. (2015). Image quality improvement in kidney stone detection on computed tomography images. *Journal of Image and Graphics*, 3(1), 40-46.
- [7] S. S, A. S. M, A. DS, P. G. S and V. P. T, "Deep Learning Based Kidney Stone Detection Using CT Scan Images," 2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI), Tiruchengode, India, 2023, pp. 1-7, doi:10.1109/ICAEECI58247.2023.10370804.
- [8] Chidambaranathan, M., Mani, G., & Gayathri, M. (2020). Kidney stone detection with CT images using neural networks. *International Journal of Psychosocial Rehabilitation*, 24(8), 2490-2497.
- [9] Viswanath, K., & Gunasundari, R. (2014). Design and analysis performance of kidney stone detection from ultrasound images by level set segmentation and ANN classification. In 2014 International Conference on Advances in Computing Communications and Informatics (ICACCI) (pp. 407-414). IEEE.
- [10] Yildirim, K., Bozdag, P. G., Talo, M., Yildirim, O., Karabatak, M., & Acharya, U. R. (2021). Deep learning model for automated kidney stone detection using coronal CT images. *Computers in Biology and Medicine*, 135, 104569. https://doi.org/10.1016/j.compbiomed.2021.104569
- [11] Li, D., Xiao, C., Liu, Y., Chen, Z., Hassan, H., Su, L., et al. (2022). Deep segmentation networks for segmenting kidneys and detecting kidney stones in unenhanced abdominal CT images. *Diagnostics*, *12*(8), 1788. https://doi.org/10.3390/diagnostics12081788
- [12] Elton, D. C., Turkbey, E. B., Pickhardt, P. J., & Summers, R. M. (2022). A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans. *Medical Physics*, 49(4), 2545-2554. https://doi.org/10.1002/mp.15453
- [13] Melwin D'souza, Ananth Prabhu Gurpur, Varuna Kumara, "SANAS-Net: spatial attention neural architecture search for breast cancer detection", *IAES International Journal of Artificial Intelligence (IJ-AI)*, Vol. 13, No. 3, September 2024, pp. 3339-3349, ISSN: 2252-8938, DOI: http://doi.org/10.11591/ijai.v13.i3.pp3339-3349
- [14] Souza, M. D., Prabhu, A. G., & Kumara, V. (2019). A comprehensive review on advances in deep learning and machine learning for early breast cancer detection. *International Journal of Advanced Research in Engineering and Technology (IJARET)*, 10(5), 350-359.
- [15] Souza, M.D., Ananth Prabhu, G. & Kumara, V. Advanced Breast Cancer Detection Using Spatial Attention and Neural Architecture Search (SANAS-Net). *SN COMPUT. SCI.* **6**, 18 (2025). https://doi.org/10.1007/s42979-024-03568-9
- [16] M. D. Souza, V. Kumara, R. D. Salins, J. J. A Celin, S. Adiga and S. Shedthi, "Advanced Deep Learning Model for Breast Cancer Detection via Thermographic Imaging," 2024 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Mangalore, India, 2024, pp. 428-433, doi:10.1109/DISCOVER62353.2024.10750727

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 9s