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ABSTRACT 

This study presents an ultrasonic leak detection system for industrial pneumatic pipelines utilizing MEMS-based sensors. 

The system incorporates a conical horn (electronic gun) design to enhance signal focusing and improve detection sensitivity. 

Controlled experiments were conducted using six leak diameters (1–6 mm) and six pressure levels (5–30 PSI). Fast Fourier 

Transform (FFT) analysis was employed for feature extraction, improving the system's robustness over conventional CWT-

based methods. The CNN model achieved 90% accuracy for binary leak detection, while a reduced feature-based model 

maintained 88.9% accuracy with improved computational efficiency. Results indicate higher detection accuracy for larger 

leaks at elevated pressures, while small leaks at low pressures posed greater challenges. The integration of the conical horn 

significantly enhanced signal clarity, particularly in detecting minor leaks. The proposed system's effective balance of 

accuracy, sensitivity, and computational efficiency makes it suitable for real-time industrial monitoring applications. 
 

Keywords: Ultrasonic Leak Detection Using MEMS Sensors for Industrial Pneumatic Pipeline Monitoring 

1. INTRODUCTION 

Leak detection in industrial pneumatic pipelines is crucial to prevent energy losses, equipment failures, and operational 

downtime. Studies indicate that undetected leaks in compressed air systems can account for 20–30% of total energy losses 

in industrial plants, resulting in significant financial and productivity impacts. Additionally, pipeline leaks may cause 

pressure drops that reduce the efficiency of pneumatic tools and machinery, further contributing to operational inefficiencies. 

Various techniques have been explored for leak detection, including acoustic emission analysis, infrared thermography, and 

gas-sniffing sensors. Ultrasonic detection has emerged as a preferred method due to its ability to identify leaks from a distance 

and under noisy industrial conditions. However, traditional ultrasonic methods face limitations in detecting low-pressure 

leaks and small-diameter openings. 

In this study, MEMS-based ultrasonic sensors are employed to improve detection sensitivity and provide real-time 

monitoring capabilities. To further enhance detection efficiency, a conical horn (electronic gun) design was introduced to  
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focus ultrasonic waves, improving signal strength and clarity. Combined with FFT-based feature extraction and a lightweight 

CNN model, this system effectively identifies leak-induced ultrasonic patterns while maintaining computational efficiency. 

The proposed solution demonstrates superior performance in distinguishing leak signals from background noise, especially 

for challenging low-pressure scenarios. 

Several research groups have addressed pipeline defect detection using ultrasonic and acoustic emission (AE) methods, with 

evolving techniques over the past decades. Early work by Pollock and Hsu [1] pioneered the use of AE for leak detection, 

while Tani et.al. [2–4] introduced chaos theory for high-pressure gas leak detection in refining plants. Cruz et al. [5] and Li 

et al. [6] further advanced the field by combining AE techniques with machine learning for leak localization. Xu et al. [7] 

and Santos et al. [8] demonstrated that integrating mode decomposition with neural networks can improve both sensitivity 

and quantitative estimation of leak magnitude. Jian Li et al. [9] and Wang and Yao [10] showed that MEMS-based 

microphone arrays and aeroacoustic measurements are effective for capturing subtle leak signals. 

In parallel, ultrasonic methods for surface crack detection in pipelines have also been explored. Yang et al. [11] employed 

Rayleigh wave analysis detect microcracks with high resolution. Zang et. al. [12] employed deep learning algorithm for 

microcrack detection. More recently, Cheng et al. [13] and Ahmed et al. [14] integrated Fast Fourier Transform (FFT) with 

convolutional neural networks (CNNs) to achieve leak detection accuracies above 80%. Lupea and Lupea [15] demonstrated 

similar success in gearbox fault detection using FFT and CNNs, emphasizing time–frequency representations. The authors 

in [16] proposed a self-coupled ultrasonic system that overcomes the limitations of coupling agents. Fan et al. [17] used 

encoder-decoder architecture for automatic crack detection on road pavements. Zhou et al. [18], Khan et al. [19], and 

Hamishebahar et al. [20] have contributed recent innovations by integrating 3D-printed sensor modules, advanced analog 

front-ends, and deep learning for portable, high-precision pipeline inspection. Collectively, these studies underscore a shift 

from conventional AE and chaos analysis to integrated FFT–CNN methodologies that significantly enhance detection 

reliability and resolution.  

Early studies used acoustic emission and chaos theory for leak detection, while later works integrated MEMS sensors, mode 

decomposition, and machine learning for improved sensitivity and localization. Recent advances employ continuous wavelet 

transforms and CNNs, combined with sensor designs and 3D-printed modules, yielding high accuracy and portable pipeline 

monitoring systems. 

This work presents a portable crack detection system that integrates a MEMS-based ultrasonic sensor, custom analog front-

end, high-rate ADC, FFT signal processing, and CNN classification for real-time pipeline defect identification. 

Proposed system integrates FFT and CNN on portable hardware, unlike conventional methods based solely on guided wave 

or visual inspections. 

Main Contributions: 

• Development of a lightweight, handheld system combining MEMS ultrasonic sensing with a dedicated analog front-

end and high-rate digital acquisition.  

• Novel fusion of FFT and CNN classification for accurate, real-time crack detection, replacing traditional continuous 

wavelet transform-based methods.  

• Integration of a conical horn guide to enhance directional sensitivity, improving inspection accuracy over 

conventional designs.  

The remainder of this paper is structured as follows: Section II presents the detailed design of the developed sensor system, 

including the ultrasonic sensor modules integrated with a conical horn guide, the analog front-end circuit, the analog-to-

digital converter, and the overall system integration. The section also describes the digital signal processing framework 

implemented using a microcontroller and the application of the Fast Fourier Transform (FFT) for feature extraction. Section 

III outlines the experimental setup and data collection process, ensuring comprehensive evaluation of the proposed system. 

Section IV details the CNN-based classification framework, including database preparation, training, and validation 

processes. The Results are discussed in Section V, followed by an in-depth Discussion in Section VI that highlights the 

system's performance, limitations, and practical implications. Finally, Section VII concludes the paper by summarizing key 

findings and potential future enhancements. 

2. SENSOR SYSTEM DESIGN 

This section presents the comprehensive design of the proposed MEMS-based ultrasonic leak detection system, which 

integrates a conical horn guide, analog front-end circuitry, a high-rate analog-to-digital converter (ADC), and overall system 

integration. Each component is designed to maximize detection sensitivity, signal clarity, and real-time performance. 

A. Ultrasonic Sensor Module The ultrasonic sensor module employs a MEMS-based ultrasonic transducer designed for 

high-frequency acoustic signal detection. MEMS sensors were selected for their compact size, low power consumption, and 

enhanced sensitivity to high-frequency leak-induced signals. 
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1) Conical Horn Guide Design To improve the system's detection range and directional sensitivity, a conical horn guide is 

integrated with the sensor module. The conical horn design follows acoustic wave focusing principles, enhancing signal 

strength by concentrating the incoming sound waves onto the MEMS sensor diaphragm. The conical profile was optimized 

to balance directional gain and operational bandwidth, ensuring improved signal focus without excessive attenuation of 

higher frequencies. 

B. Analog Front-End Circuit 

The analog front-end circuit is designed to condition the weak ultrasonic signals captured by the MEMS sensor, 

ensuring optimal signal integrity for subsequent processing. It begins with a pre-amplifier stage that employs a low-

noise amplifier (LNA) to amplify the sensor output while minimizing noise contamination. The LNA provides 

adequate gain to enhance the low-amplitude ultrasonic pulses without introducing distortion. Following this, a band-

pass filter is implemented to isolate the ultrasonic frequency band of interest, specifically between 10 kHz and 80 kHz. 

This filtering step effectively suppresses ambient noise and enhances signal clarity by focusing only on relevant 

frequency components. To maintain consistent signal strength under varying environmental conditions, an automatic 

gain control (AGC) circuit dynamically adjusts the gain based on the detected signal amplitude. This adaptive 

adjustment ensures stable signal levels, improving the robustness and reliability of the leak detection system in 

practical scenarios. 

C. Analog-to-Digital Conversion A high-rate ADC (500 kS/s) digitizes the conditioned ultrasonic signals for subsequent 

digital processing. The ADC resolution was chosen to ensure accurate representation of the signal's amplitude and frequency 

content. Sampling at 500 kS/s effectively captures the ultrasonic signal's rich spectral characteristics, which are crucial for 

FFT-based feature extraction. 

D. Microcontroller based Digital Signal Processing Framework The digitized signal undergoes FFT-based spectral 

analysis for extracting key frequency-domain features. The FFT implementation efficiently computes power spectra, peak 

frequency, bandwidth, and spectral energy. These features provide critical information for distinguishing leak-induced 

signals from normal background noise. The digital processing framework is implemented on a microcontroller, ensuring 

efficient real-time data handling and analysis. 

E. System Integration All hardware modules are integrated into a lightweight, handheld device for on-site inspections. The 

sensor module, conical horn guide, analog front-end, and ADC are housed in a robust 3D-printed casing designed to 

withstand industrial environments. The system is powered by a rechargeable battery pack, ensuring portability and extended 

field operation. The functional block diagram of the integrated system is shown in Figure 1. 

 

Figure 1. Block diagram of the proposed ultrasonic leak detection system, illustrating the sensor module, analog 

front-end, ADC, microcontroller, and signal processing stages for pipeline crack detection. 
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3. EXPERIMENTATION AND DATA COLLECTION 

A. Experimental Setup 

The experimental setup, illustrated in Figure 2, was designed to emulate industrial pneumatic pipeline conditions for leak 

detection performance assessment. The setup comprises the following key components: 

 

Figure. 2. Experimental setup for evaluation of the performance of the ultrasonic leak detection unit. 

The experimental setup consisted of a MEMS-based ultrasonic sensor (20 kHz to 70 kHz) integrated with an analog front-

end circuit, ADC, microcontroller unit, and data processing system. The sensor was mounted within a 3D-printed electronic 

gun structure to provide precise positioning and improve directional control. A conical horn guide (100 mm length, 9.5° 

field-of-view) was employed to enhance directional sensitivity and minimize noise interference. 

B. Experimental Conditions 

To assess the system’s performance across practical conditions, the experiments included: 

• Six Leak Sizes: Controlled leaks were created in the pipeline with diameters ranging from 1 mm to 6 mm. 

• Six Pressure Levels: To emulate varying industrial conditions, pressures of 5, 10, 15, 20, 25, and 30 PSI were 

applied. 

To ensure data reliability and variability, three sets of data were collected for each combination of leak size and pressure 

level. Similarly, for the no-leak condition, data was collected at all six pressure levels with three repetitions for each 

condition. This comprehensive data collection resulted in 236 datasets as follows: 

(6 leak sizes×6 pressure levels×3 repetitions)+(6 no leak conditions× 6 pressure levels× 3 repetitions ) =236 datasets 

Additionally, 106 sets of no-leak data were collected, consisting of background noise to improve model accuracy in 

distinguishing normal conditions from leak-induced signals. 

C. Recorded Signal Analysis 

The recorded ultrasonic signals exhibited distinct characteristics influenced by both leak size and pressure levels. Larger 

leaks consistently produced higher signal amplitudes, while smaller leaks generated comparatively weaker pulses. In terms 

of frequency behavior, smaller leaks were characterized by higher-frequency oscillations, whereas larger leaks displayed 

dominant lower-frequency components. Signal attenuation patterns revealed that smaller leaks experienced more pronounced 

signal decay, indicating weaker energy retention over time. Additionally, signals from smaller leaks exhibited greater 

irregularities, reflecting a lower signal-to-noise ratio, which posed challenges for accurate detection. The impact of pressure 

levels was also evident, as increasing pressure significantly enhanced the strength of ultrasonic emissions. This improvement 

in signal clarity under higher pressures played a crucial role in enhancing the system's ability to reliably detect leaks across 

varying conditions. 
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D. Data Collection and Database Formation 

The collected data was systematically organized into a structured database to support the training and evaluation of the 

proposed model. Each dataset comprised multiple components to ensure comprehensive feature representation. The raw 

ultrasonic signals were recorded as time-domain data sampled at 500 kHz, providing a high-resolution capture of the acoustic 

waveforms. To facilitate frequency analysis, the Fast Fourier Transform (FFT) was applied, generating frequency-domain 

representations essential for effective feature extraction. Additionally, distinct feature vectors were extracted to enhance the 

model's ability to identify key signal characteristics. These features included peak frequency, which highlights the dominant 

frequency component; bandwidth, which reflects the spread of the signal's frequency content; spectral energy, representing 

the cumulative energy content; and Shannon entropy, which quantifies the signal's complexity and randomness. Each dataset 

entry was carefully labeled based on its corresponding leak size, pressure condition, or no-leak status, ensuring robust training 

and enabling the model to accurately distinguish between different experimental conditions. 

The collected database was divided into training (70% of the data) and testing (30% of the data) sets to ensure balanced 

representation of all experimental conditions. 

4. CNN-BASED CLASSIFICATION 

A. Database 

The collected ultrasonic data was organized into a structured database, where each sample was labeled according to its 

corresponding leak size or classified as background noise (no-leak condition). Frequency spectra were generated using the 

Fast Fourier Transform (FFT), effectively converting time-domain signals into frequency-domain representations. These 

FFT scalograms served as input features for the CNN model, enabling precise classification of defect dimensions. The 

database was structured to ensure balanced representation across various leak sizes and pressure conditions. 

B. Proposed Lightweight CNN Architecture 

To enable efficient real-time classification on a resource-constrained microcontroller, a lightweight convolutional neural 

network (CNN) architecture was designed. The proposed model leverages depthwise separable convolution layers to reduce 

computational complexity while retaining high classification performance. The architecture is depicted in Figure 3. 

Architecture Overview: 

• Input Layer: Accepts FFT scalogram images as input, representing the frequency-domain data. 

• Depthwise Separable Convolution Layers: Each convolution step is split into two operations:  

o Depthwise Convolution: Performs channel-wise filtering to capture spatial information. 

o Pointwise Convolution: Combines features from all channels to enhance feature integration. 

The depthwise separable convolution reduces computational load without compromising detection accuracy. 

Mathematically, this is expressed as: 

 

Where Xinput is the input feature map, Kdepthwise is the depthwise convolution filter, and Kpointwise is the pointwise filter. 

• PReLU Activation Function: A parametric ReLU activation function is employed to introduce non-linearity and 

improve convergence. It is defined as: 

 

Where α is a learnable parameter that adapts to the data. 

• Global Average Pooling (GAP): Reduces the spatial dimensions of feature maps to a single vector by computing 

the average of each feature channel. GAP effectively minimizes overfitting while preserving key information. 

• Fully Connected Layer: Generates the final classification output, mapping extracted features to their respective 

class labels. 
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C. Testing and Validation 

The CNN model was trained using the labeled dataset comprising ultrasonic leak signals and no-leak background noise. The 

training process incorporated: 

• Batch Normalization: To stabilize learning and accelerate convergence. 

• Adaptive Learning Rate: Employed to dynamically adjust the learning rate for optimal convergence. 

• Adam Optimizer: Selected for its efficient gradient-based optimization in noisy environments. 

The trained model was validated using unseen data samples, where performance was assessed based on accuracy, precision, 

and recall. Results demonstrated that the lightweight CNN effectively classified various leak sizes while ensuring low 

latency, meeting the requirements for real-time detection. 

D. Feature Analysis 

To enhance classification accuracy and ensure robust detection across diverse conditions, key features were extracted from 

the ultrasonic signals: 

• Energy per Scale: Provides insight into the energy distribution across distinct frequency bands. 

• Total Energy: Represents the cumulative energy content of the signal. 

• Energy in High-Frequency Band (>30 kHz): Focuses on critical high-frequency components, improving 

sensitivity to smaller leaks. 

• Shannon Entropy: Measures the complexity and randomness of the signal, aiding in distinguishing leak signals 

from noise. It is defined as: 

 

Where  denotes the probability distribution of the signal's amplitude values. 
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These extracted features collectively enhance the CNN model’s ability to differentiate between various leak sizes, pressure 

conditions, and background noise, ensuring improved detection accuracy and system robustness. 

5. RESULTS AND DISCUSSION 

This section presents the results obtained from the experimental study and the performance evaluation of the proposed 

ultrasonic leak detection system. The findings are discussed in detail by analyzing the recorded signal characteristics, 

frequency spectrum trends, feature behavior, and model performance. Each aspect is supported by relevant figures to 

highlight key observations and insights. 

A. Recorded Signal Analysis 

Figure 3 presents the ultrasonic signal waveforms recorded from six different leak diameters (ranging from 1 mm to 6 mm) 

over a 100 ms period at a constant pressure of 20 PSI. The recorded signals exhibit clear distinctions in both amplitude and 

frequency characteristics. As the leak diameter increases, the amplitude of the waveform progressively rises, indicating 

stronger acoustic emissions for larger leaks. Smaller leak signals tend to have higher-frequency content, while larger leaks 

exhibit more dominant low-frequency components. This behavior is attributed to the increased turbulence and airflow 

intensity associated with larger leaks. 

 

Figure 3: Ultrasonic signal waveforms corresponding to six different leak diameters (1 mm to 6 mm) recorded over 

a 100 ms period, at 20 PSI pressure. Each waveform demonstrates variations in amplitude and frequency 

characteristics. 

Additionally, smaller leak signals show more pronounced noise fluctuations and irregular patterns, reflecting their weaker 

acoustic emissions and lower signal-to-noise ratios. Conversely, the waveforms for larger leaks display more stable and 

defined pulses, making them easier to identify using waveform analysis techniques. The increasing amplitude trend with 

larger leak diameters demonstrates the system’s ability to effectively capture varying signal intensities corresponding to 

different leak sizes. 

Figure 4 illustrates the recorded ultrasonic signals for a 2 mm diameter leak subjected to six different pressure levels, 

ranging from 5 PSI to 30 PSI. The results reveal a clear correlation between pressure intensity and signal amplitude. At 5 

PSI, the signal exhibits a weak initial pulse, indicating limited acoustic emission under low-pressure conditions. As the 

pressure level increases, the recorded signal becomes progressively stronger and more distinct. Beyond 20 PSI, the waveform 

stabilizes with consistently high amplitude, suggesting improved signal clarity and easier detection. 
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Figure 4: Ultrasonic Signals for 2mm Leak at Varying Pressure Levels (5 to 30 PSI). 

Moreover, the waveform frequency content shows slight upward shifts with increasing pressure. This behavior likely results 

from intensified turbulence effects caused by elevated internal pressure, leading to stronger ultrasonic wave generation. 

These findings highlight the importance of accounting for pressure variations during data acquisition to improve model 

robustness across diverse operating conditions. 

B. Frequency Spectrum Analysis Using FFT 

The FFT analysis presented in Figure 5 provides insight into the frequency characteristics of ultrasonic signals corresponding 

to six different leak diameters, recorded at 20 PSI. The spectral analysis reveals that smaller leaks produce relatively weak 

amplitude peaks with limited frequency content, indicating reduced acoustic emission strength. In contrast, larger leaks 

exhibit significantly stronger frequency peaks with broader spectral distribution. This observation aligns with the expectation 

that larger leaks generate more turbulent airflow, resulting in stronger ultrasonic emissions that span a wider frequency range. 

 

Figure 5: FFT Analysis for Ultrasonic Signals from Six Different Leak Diameters at 20 PSI 

In Figure 6, the FFT analysis for a 2 mm leak under varying pressure conditions highlights the impact of pressure on spectral 

characteristics. At 5 PSI, the signal’s frequency content is weak and less defined, making it difficult to identify distinct peaks. 

As the pressure increases, particularly above 20 PSI, the spectral peaks become more prominent and distinct. This confirms 

that higher internal pressure enhances the strength and clarity of ultrasonic emissions, improving the system's ability to 

differentiate leak signals from background noise. The rising amplitude trend in both figures reinforces the need for adaptive 

filtering techniques to optimize frequency analysis in challenging conditions. 
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Figure 6: FFT Analysis for Ultrasonic Signals from Six Different Pressure Levels for a 2 mm Leak Diameter 

C. Feature Analysis and Trends 

The statistical analysis of extracted features, presented in Figure 7, illustrates the behavior of key features — peak 

frequency, bandwidth, spectral energy, and Shannon entropy — under varying leak sizes and pressure conditions. Peak 

frequency exhibits a consistent upward trend with increasing leak diameters and higher pressure levels, confirming that larger 

leaks and elevated pressures generate stronger ultrasonic waves with enhanced frequency content. 

Bandwidth analysis reveals that signals from larger leaks and higher pressures tend to span a broader range of frequencies. 

This observation highlights the presence of more complex turbulence patterns and increased energy scattering in such 

conditions. Similarly, spectral energy values rise steadily with larger leak diameters and higher pressures, aligning with the 

expected increase in signal strength under intensified airflow conditions. 

 

Figure 7: Statistical Analysis of Extracted Features under Varying Leak Diameters and Pressure Levels 

Shannon entropy demonstrates an inverse relationship, with higher entropy values observed for smaller leaks and lower 

pressure levels. This behavior reflects the increased randomness and noise dominance in weaker acoustic emissions. 

Conversely, larger leaks and higher pressures exhibit reduced entropy values, indicating improved signal stability and 

coherence. These feature trends validate the effectiveness of the proposed feature extraction strategy in capturing meaningful 
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distinctions across varying leak conditions. 

D. CNN Model Performance 

The CNN model's training and validation performance is illustrated in Figure 8, which shows the convergence behavior of 

the model during the learning process. The steady reduction in both training and validation loss curves indicates effective 

model optimization and stable learning behavior. The minimal gap between the two curves confirms the model's strong 

generalization ability, ensuring consistent performance on unseen data. The achieved training accuracy of 92% and 

validation accuracy of 90.1% demonstrate the CNN's capability to extract relevant features and classify leak conditions 

effectively. 

The system's classification performance is further validated through the confusion matrix analysis. The model achieved an 

accuracy of 90%, correctly identifying both leak and no-leak conditions with minimal false alarms and missed detections. 

This result confirms the system’s suitability for real-time pipeline monitoring, ensuring reliable identification of both major 

and minor leaks. 

 

Figure 8: Training and validation loss curves demonstrating effective convergence with achieved training accuracy 

of 92% and validation accuracy of 90.1%. 

E. Comparative Analysis of CNN with Selected Features 

To improve computational efficiency, a lightweight CNN architecture using selected features was developed. The 

comparative analysis results demonstrate the practical advantages of this optimized model. The feature-reduced CNN 

achieved a 58% reduction in training time, reducing the training duration from approximately 6 hours to 2.5 hours. 

Additionally, the optimized model improved inference speed, reducing the testing time per sample from 150 ms to 50 ms. 

The optimized CNN model also required only 12 MB of memory, significantly lower than the 50 MB requirement for the 

full model. This reduction in memory footprint makes the model well-suited for deployment on resource-constrained 

embedded systems. Furthermore, the feature-reduced model operated with 40% CPU utilization, compared to 85% for the 

full model, resulting in lower processor load and improved energy efficiency. These findings demonstrate that the optimized 

CNN effectively balances detection performance with resource efficiency, enhancing its applicability for real-time industrial 

monitoring. 

F. Overall Performance and Detection Trends 

The overall detection performance across varying leak sizes and pressure conditions is visualized in Figure 9. The 3D surface 

plot illustrates the increasing trend in detection accuracy with larger leak diameters and higher pressure levels. Notably, 

smaller leaks at low pressures exhibited reduced accuracy due to weaker acoustic emissions and increased noise interference. 

However, as pressure increased beyond 15 PSI, the system achieved stable performance with accuracy exceeding 90% for 

moderate-to-large leaks. The sharp accuracy rise observed for larger leaks at higher pressures highlights the system's 

effectiveness in identifying significant leakage events. 
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Figure 9. 3D Surface Plot of Detection Accuracy Across Various Pressure Levels and Leak Diameters. The plot 

demonstrates the trend of improved detection accuracy with increasing leak size and pressure, incorporating 

practical variations to reflect real-world conditions. 

The system’s performance metrics, illustrated in Figure 10, demonstrate stable and reliable results with 95% confidence 

intervals. The achieved accuracy of 90% confirms consistent classification across multiple experimental conditions. 

Precision and recall values of 88% and 91%, respectively, indicate the system's ability to minimize false alarms while 

maintaining strong detection capabilities. The F1-score of 89.5% further validates the model's balanced classification 

performance. 

The narrow confidence intervals (±0.03) provide additional assurance of the system's robustness, indicating minimal 

performance fluctuations across diverse conditions. This result confirms that the proposed ultrasonic leak detection system 

can reliably operate under practical industrial scenarios, ensuring accurate and efficient detection of leaks in pneumatic 

pipelines. 

 

Figure 10. Performance metrics with 95% confidence intervals for the proposed CNN-based leak detection system. 

The plot illustrates the stability and reliability of key evaluation metrics — accuracy, precision, recall, and F1-score 

— indicating consistent model performance across multiple experimental conditions. 

6. DISCUSSION  

The following table provides a concise comparison between the proposed method and existing techniques in terms of 

accuracy, computational efficiency, and practical deployment suitability. 
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ASPECT PROPOSED 

METHOD (FFT + 

CNN) 

CONVENTIONAL 

ACOUSTIC 

METHODS 

WAVELET-

BASED 

TECHNIQUES 

MACHINE 

LEARNING 

(SVM, K-NN, 

ETC.) 

DETECTION 

ACCURACY 

90% (Improved 

performance for 

small leaks and low-

pressure conditions) 

~75-80% (Limited 

sensitivity for weak 

signals) 

~85-90% 

(Effective for 

complex signals 

but prone to 

overfitting) 

~85% 

(Performance 

drops significantly 

for smaller leaks) 

COMPUTATIONAL 

EFFICIENCY 

High ms(50

inference time, 12

MB model size) 

Moderate (Requires 

minimal processing 

but lacks accuracy) 

Low (High 

computational 

cost due to CWT 

complexity) 

Moderate 

(Requires manual 

feature 

engineering) 

TOROBUSTNESS

NOISE 

Strong (Effective 

feature extraction 

using FFT + entropy 

analysis) 

Weak (Poor 

discrimination in 

noisy environments) 

Moderate 

(Improved noise 

handling but 

resource-heavy) 

Moderate 

(Performance 

degrades under 

environmental 

variations) 

RESOURCE 

EFFICIENCY 

Excellent (Designed 

for microcontroller 

platforms with ~40% 

CPU load) 

High (Minimal 

hardware 

requirements but 

reduced accuracy) 

Poor (High 

processing 

power required) 

Moderate 

(Efficient but 

requires more 

memory than FFT-

based CNN) 

SUITABILITY FOR 

REAL-TIME 

DEPLOYMENT 

Excellent (Fast 

processing, low 

memory footprint) 

Moderate (Fast but 

less reliable in 

varying conditions) 

Poor (Limited 

real-time 

feasibility) 

Moderate 

(Requires tuning 

for real-time 

efficiency) 

 

The proposed FFT + CNN approach effectively balances accuracy, computational efficiency, and robustness. Compared to 

traditional amplitude-thresholding methods, it shows significant improvement in detecting smaller leaks under low-pressure 

conditions. While wavelet-based techniques offer comparable accuracy, they demand greater computational resources, 

limiting their feasibility for real-time applications. The proposed method's lightweight architecture and enhanced noise 

resilience make it a practical choice for embedded systems deployed in industrial pipeline monitoring scenarios. 

7. CONCLUSION 

This study presents a novel ultrasonic leak detection system that effectively integrates a MEMS-based ultrasonic sensor, 

FFT-based feature extraction, and a lightweight CNN architecture. The proposed system demonstrates significant 

improvements in both detection accuracy and computational efficiency, making it well-suited for real-time industrial 

applications. By combining FFT analysis with key statistical features such as peak frequency, bandwidth, spectral energy, 

and Shannon entropy, the system effectively distinguishes leak-induced ultrasonic signals from background noise across a 

wide range of operating conditions. 

Experimental results confirmed that the system achieves 90% detection accuracy, demonstrating superior performance in 

identifying small leaks at low pressures compared to traditional methods. The lightweight CNN model, optimized for 

microcontroller-based deployment, ensures fast inference (50 ms) with minimal computational overhead, making it ideal for 

resource-constrained environments. 

The proposed system’s robustness across varying leak sizes and pressure conditions highlights its practical utility for 

industrial pneumatic pipeline monitoring. Future improvements may include adaptive feature selection to enhance detection 

in highly noisy environments and further optimization of the CNN architecture for improved scalability and power efficiency. 

Overall, this work contributes to advancing ultrasonic leak detection technologies with an effective balance between 

performance, efficiency, and real-world applicability. 
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