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ABSTRACT 

In the era of big data, safeguarding the privacy and security of sensitive healthcare information is predominant. This research 

paper investigates the integration of differential privacy and federated learning to create a robust framework for privacy-

preserving analysis of fungal infection data. The proposed framework ensures the confidentiality of individual patient data 

while enabling collaborative analysis across multiple healthcare organizations. Differential privacy mechanisms are 

employed to provide strong privacy guarantees, ensuring that the inclusion of individual data does not compromise overall 

privacy. Federated learning facilitates decentralized data processing, minimizing the risk of data breaches by keeping data 

on local premises.  

Extensive experiments and simulations were conducted using real-world fungal infection datasets to assess the framework's 

effectiveness and feasibility. The results indicate that the framework effectively preserves data privacy while maintaining 

better performance metrics in fungal infection detection. The framework demonstrated a significant reduction in privacy 

risks without compromising the quality of the analytical outcomes. This study's findings contribute to advancing privacy-

preserving methodologies in healthcare data analysis, promoting secure data-sharing and collaborative efforts within the 

healthcare system. 

 

Keywords: Differential Privacy, FedAvg, Federated learning, Health data privacy, Privacy Protection. 

1. INTRODUCTION 

Differential privacy is a concept and framework in the field of privacy-preserving data analysis and statistics. It addresses 

the challenge of extracting valuable insights from sensitive datasets while protecting the privacy of individual contributors. 

The fundamental goal of differential privacy is to ensure that the inclusion or exclusion of a single individual's data does not 

significantly affect the outcome of a computation or analysis. 
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In simpler terms, it provides a mathematical definition of privacy that allows for the robust analysis of data while minimizing 

the risk of revealing sensitive information about any specific individual within the dataset. This is particularly crucial in 

today's data-driven world, where vast amounts of personal information are collected and analyzed for various purposes, such 

as research, policy-making, and machine learning. 

The core principle of differential privacy is based on the concept of adding controlled noise to the data or the results of 

computations, making it more challenging for an external observer to identify the contribution of any single individual. The 

noise ensures that the statistical properties of the data remain intact while providing a level of protection against potential 

privacy breaches (al. D. C., 2022). 

Key components and principles of differential privacy include: 

• Privacy Guarantee: Differential privacy provides a quantifiable measure of privacy, typically denoted by a parameter 

ε (epsilon). A smaller ε value implies a stronger privacy guarantee. 

• Randomized Response: To achieve differential privacy, data is often randomized or perturbed through techniques 

like adding noise, shuffling, or introducing randomness into the data collection process. 

• Data Aggregation: Aggregating data at a higher level, such as summarizing statistics, can help in protecting individual 

privacy by preventing the extraction of detailed information about specific individuals. 

• Formal Framework: The concept is formalized through mathematical definitions and equations, allowing researchers 

and practitioners to rigorously evaluate and guarantee the level of privacy provided by a particular mechanism. 

Differential privacy has gained significant attention and adoption, especially in contexts where privacy concerns are 

paramount, such as healthcare, finance, and government data analysis. As technology continues to advance, the importance 

of differential privacy in balancing data utility and individual privacy is expected to grow. Researchers and practitioners 

continually explore new techniques and applications to enhance the effectiveness and practicality of differential privacy in 

real-world scenarios (al. C. W., 2020). 

Federated Learning is a machine learning approach that enables training models across decentralized and distributed devices 

or servers while keeping data localized. The central idea is to train a global model collaboratively without exchanging raw 

data between devices or a central server. This approach is particularly valuable in scenarios where data privacy and security 

are crucial, such as in healthcare, finance, and Internet of Things (IoT) applications. 

One of the key challenges addressed by Federated Learning is the need to train models on data that cannot be easily 

centralized due to privacy concerns, legal constraints, or the sheer volume of information distributed across multiple devices. 

Instead of sending raw data to a central server for training, Federated Learning allows devices to compute model updates 

locally and share only the updates with the central server or other devices. This way, the raw data remains on the local 

devices, providing a higher level of privacy and security (Welling, 2013). 

"Fed Avg" or Federated Averaging is a specific algorithm used in Federated Learning to aggregate model updates from 

multiple devices. The process involves the following steps: 

Step -1 Initialization: A global model is initialized on a central server. 

Step -2 Local Training: Each device or client trains the model locally on its own data. This local training can involve 

multiple iterations to improve the model's performance. 

Step -3 Model Update: After local training, the device computes the difference or update between its local model and the 

global model. 

Step -4 Aggregation: The model updates from all participating devices are aggregated on the central server. In Federated 

Averaging, this aggregation is often done by computing the average of the model updates. 

Step -5 Global Model Update: The aggregated update is applied to the global model on the central server. 

Iterative Process: Steps 2 to 5 are repeated for multiple rounds, allowing the global model to gradually improve without the 

need for centralizing raw data. 

Federated Averaging provides a mechanism for collaborative learning while preserving privacy. By averaging the updates 

from multiple devices, it mitigates the impact of potentially noisy or outlier updates, ensuring a more robust and accurate 

global model. 

Federated Learning, including algorithms like Federated Averaging, has gained attention for its applications in various 

domains, offering a privacy-preserving alternative to traditional centralized machine learning approaches. 

 

 



Mr. Kanhaiya Jee Jha, Dr. Gaurav Kumar Ameta, Dr. Esan P Panchal, 

Keyurbhai A. Jani, Pramod Tripathi, Dr. Shruti B. Yagnik 
 

pg. 144 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 2 

 

2. PROPOSED WORK 

Federated learning has proven to be a potent tool for handling diverse medical datasets in real-world scenarios, employing a 

cluster of machines for its operations. Through experiments conducted on CloudLab, a dedicated testbed for research in 

networking and distributed computing, various deep learning models and federated optimization strategies were assessed. 

Notably, Inception-v3 and EfficientNetB0 consistently emerged as the top-performing models, achieving high accuracy on 

test sets. Among the federated optimization strategies, FedAvg demonstrated superior performance, with FedAvgM closely 

following as the second-best strategy in the evaluations. This research underscores the effectiveness of federated learning in 

the medical domain and the significance of selecting appropriate models and optimization techniques for optimal outcomes. 

(1. M. Abadi, 2016) 

To safeguard patient data, a proposed solution integrates homomorphic encryption with federated learning to design and 

implement a privacy-protected diabetes prediction system. Experimental results reveal that this approach not only overcomes 

information silos among hospitals but also successfully gathers patient information from various healthcare institutions while 

ensuring robust privacy protection. This innovative and practical work holds significant relevance in the current social 

context, offering potential solutions for diabetes treatment in the medical domain. Furthermore, it is poised to provide novel 

insights into multi-party data integration across diverse fields in the future. (Islam) 

Due to the escalating number of privacy breaches concerning personal data, there's a growing necessity to develop methods 

that prioritize user privacy. In response, an algorithm has been introduced, employing a federated approach to predict whether 

a patient is experiencing breast cancer by utilizing data from multiple hospitals. This method ensures the protection of user 

data by allowing hospitals to securely train their models without transmitting sensitive information to a central server. A 

comparison with the standard approach was conducted to assess the performance of the federated approach. The results 

indicated that the federated learning model achieved accuracy levels comparable to the traditional model. While this approach 

has advantages, it also has limitations, which are comprehensively discussed in this paper, providing an overview of the 

concept of federated learning. (Adam) 

The integration of Federated Learning and Software-Defined Networking (SDN) aims to establish an effective malware 

detection method and implement a mitigation mechanism, fostering the creation of a robust and automated healthcare sector 

network system with enhanced privacy preservation features. The constant evolution of new malware attacks on hospital 

Information and Communication Technologies (ICEs) has left the healthcare industry in a perpetual state of uncertainty. The 

vast array of opportunities presented by daily advancements in medical devices and their interconnected coordination remains 

largely overlooked by many healthcare operators and patients, contributing to a lack of focused direction. (Deng, 2012) 

This solution involves the participation of four clients in the form of hospital networks, constructing a federated learning 

experimental architecture with diverse geographical representation to achieve the highest possible accuracy rate while 

ensuring privacy preservation. Leveraging logistic regression with cross-entropy for detection, SDN plays a crucial role in 

the latter part of the research, facilitating the initial development phases of the system and implementing malware mitigation 

based on policy enforcement. (Mammen, 2021) 

The comprehensive evaluation concludes with a system that not only demonstrates accuracy but also emphasizes the 

importance of privacy. This challenges the necessity of continuing with traditional centralized systems that, despite offering 

various functionalities, fall short in ensuring privacy. (S. Vishnu, 2020) 

Federated Learning (FL) is a decentralized approach to machine learning, allowing individual devices to train global models 

without exchanging raw data. This work extends the original FL algorithm, Federated Averaging (FedAvg), by incorporating 

consensus theory. In contrast to typical FL algorithms, the resulting approach, termed FedLCon, eliminates the need for a 

coordinating server—preventing a single point of failure and the necessity for universal trust among clients. Additionally, 

the consensus framework is applied to the Adaptive Federated Learning (AdaFed) algorithm, an extension of FedAvg 

featuring an adaptive model averaging procedure. Performance comparison tests are conducted within the context of a real-

world COVID-19 detection scenario. (Goyal, 2019)Federated Learning (FL) facilitates the collaborative learning of a global 

predictive model among multiple users without revealing their individual datasets. Despite the adoption of privacy-

preserving schemes to safeguard local updates, a significant challenge arises when users with suboptimal updates impede the 

convergence rate and compromise the model's utility. While some recent efforts aim to address both privacy and irregular 

user issues simultaneously, existing methods still fall short in terms of accuracy and efficiency. This is primarily attributed 

to the inefficiency caused by complex cryptographic algorithms and the inadequacy of strategies to effectively remove 

irregular users, impacting model usability. 

To tackle these challenges, we introduce SAP-IU, a novel and efficient federated learning scheme that concurrently addresses 

irregular user removal and privacy protection. Our approach begins with the design of TrustIU, a unique removal algorithm 

for irregular users, which calculates user weights using the cosine metric. This ensures that the global model predominantly 

reflects the contributions of high-quality data. We further implement a secure weighted aggregation protocol for TrustIU to 

safeguard users' sensitive information, including local updates and data quality. Additionally, our scheme remains robust to 

user dropouts throughout the entire training process. Comprehensive experiments demonstrate that SAP-IU outperforms 
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previous approaches in terms of training accuracy and efficiency (AB, 2020). 

The present computer-aided diagnosis systems utilizing deep learning methods have become crucial in the realm of medical 

imaging. Collaborative disease diagnosis across multiple medical institutions has gained popularity, but the extensive 

annotations required impose a substantial burden on medical experts. Moreover, centralized learning systems face challenges 

related to privacy protection and model generalization. In response to these issues, we introduce two federated active learning 

approaches for collaborative disease diagnosis across multiple centers: Labeling Efficient Federated Active Learning 

(LEFAL) and Training Efficient Federated Active Learning (TEFAL) (R. Shao, 2019). 

LEFAL employs a task-agnostic hybrid sampling strategy, considering data uncertainty and diversity simultaneously, to 

enhance data efficiency. TEFAL assesses client informativeness using a discriminator to improve client efficiency. 

Evaluation on the Hyper-Kvasir dataset for gastrointestinal disease diagnosis reveals that, with only 65% of labeled data, 

LEFAL achieves 95% performance on the segmentation task compared to using the entire labeled dataset. Additionally, on 

the CC-CCII dataset for COVID-19 diagnosis, TEFAL attains an accuracy of 0.90 and an F1-score of 0.95 with only 50 

iterations in the classification task. Extensive experimental results demonstrate that our proposed federated active learning 

methods surpass state-of-the-art approaches in both segmentation and classification tasks for collaborative disease diagnosis 

across multiple centers (Perepu, 2020). 

The historical medical data of patients plays a crucial role in advancing healthcare by enabling intelligent health diagnosis 

and disease prediction. Traditional intelligent health diagnosis systems often collect data from various medical institutions 

or laboratories and utilize machine learning algorithms for disease prediction. However, these systems face challenges as 

medical institutions may possess incomplete patient data due to consultations with different specialists across various 

hospitals during the treatment process (B. Liu, 2020). 

To address this issue, we introduce a secure and intelligent federated learning framework for health diagnosis, integrating a 

blockchain-based incentive mechanism and a marketplace facilitated by non-fungible tokens (NFTs). NFTs are utilized to 

establish clear ownership and accessibility parameters for patient data, with an NFT marketplace managing access to 

historical medical records. An elaborate incentive mechanism, considering factors like data quality, relevance, and frequency 

of data uploads, etc., is implemented to reward or penalize patients based on their contributions to the global model. (T. Li, 

2018) 

The Polyak-averaging technique is employed for aggregating local models into a cohesive global model. Extensive analysis 

demonstrates that our proposed model achieves performance comparable to centralized machine learning models while 

ensuring enhanced security and access to superior data. The results highlight the effectiveness of the blockchain-based 

incentive mechanism in promoting patient participation and improving the overall quality of the global model (Agarap, 

2018). 

The Industrial Internet of Things (IIoT) is a vital part of Industry 4.0, where smart technologies play a big role. When we use 

machine learning along with IIoT, we get a thriving smart industry. But there's a challenge: the data used to train these 

machine learning models has sensitive information. Sharing this data can lead to leaks of important information, putting data 

security and privacy at risk in IIoT (Y. Zhao, 2018). 

To tackle this issue, we suggest a privacy-preserving data aggregation scheme for IIoT called FLPDA, which is based on 

federated learning. The idea is to aggregate data while protecting individual user model changes, preventing reverse analysis 

attacks from industry administration centers. In each round of data aggregation, we use the PBFT consensus algorithm to 

choose an IIoT device in the aggregation area as the starting point and aggregation node. To ensure data fault tolerance and 

secure sharing, we combine the Paillier cryptosystem and secret sharing (al., 2019). 

Through security analysis and performance evaluation, we find that our scheme effectively safeguards data privacy and can 

withstand various attacks. Importantly, it has lower communication, computational, and storage requirements compared to 

existing schemes. In simpler terms, our approach helps keep your data private and secure, and it's more efficient than other 

methods currently in use (W. Luo, 2013). 

When we connect the Internet of Things (IoT) deeply with the medical field, it creates what we call the Internet of Medical 

Things (IoMT). In IoMT, doctors use patient data collected from mobile devices, analyzed with the help of smart systems 

using artificial intelligence (AI), to treat diseases. But sometimes, the traditional AI systems can have flaws that might 

accidentally share patient privacy data (al, 2020). 

To solve this, we suggest using a privacy-focused method called federated learning (FL) for IoMT. FL helps create a global 

model for disease diagnosis by bringing together data from different parties. However, FL still has trouble defending against 

inference attacks where someone tries to figure out sensitive information. In our approach, we propose a way to enhance 

privacy in disease diagnosis using FL for IoMT. 

Here's how it works: First, we rebuild medical data using a special technique called a variational autoencoder. Then, we add 

a layer of differential privacy noise to protect against inference attacks. This data is used to train local disease diagnosis 
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models, keeping patients' information private. Additionally, to encourage people to join in and share their data for FL, we 

suggest a reward system (Goetz, 2020). 

We tested our method using the arrhythmia database from the Massachusetts Institute of Technology and Beth Israel Hospital 

(MIT-BIH). The results showed that our approach lowers the chances of reconstructing patient medical data while still 

maintaining accurate heart disease diagnosis. In simple terms, our method makes sure patient data stays private while 

effectively diagnosing heart diseases (al K. K.-Q., 2022). 

3. MOTIVATION FOR PROPOSAL 

With the increase in data breaches and privacy concerns related to the sharing of sensitive information, there is a pressing 

need for secure methods of data analysis and sharing. By focusing on privacy-enhancing techniques for disease data, you 

can address a relevant and timely issue. 

Exploring the intersection of differential privacy, federated learning, and federated averaging in the context of disease data 

privacy may lead to new insights, approaches, and solutions that could have a significant impact on the field and drive 

innovation in privacy-preserving technologies. 

By combining these privacy-enhancing techniques in the analysis of disease data, researchers can unlock new possibilities 

for collaboration and insights while upholding the privacy rights of individuals. This approach not only addresses current 

concerns regarding data privacy but also has the potential to drive innovation in the development of privacy-preserving 

technologies for a range of applications beyond disease data. 

4. DATASET 

Dataset contains 4920 data points with 134 attributes. Attributes data types include float64 (1), int64 (132) and object (1). 

Few attributes are listed below 
 

Itching high_fever Phlegm 

skin_rash sunken_eyes throat_irritation 

nodal_skin_eruptions Breathlessness redness_of_eyes 

continuous_sneezing Sweating sinus_pressure 

Shivering Dehydration runny_nose 

Chills Indigestion Congestion 

joint_pain Headache chest_pain 

stomach_pain yellowish_skin weakness_in_limbs 

Acidity dark_urine fast_heart_rate 

ulcers_on_tongue Nausea pain_during_bowel_movements 

muscle_wasting loss_of_appetite pain_in_anal_region 

Vomiting pain_behind_the_eyes bloody_stool 

burning_micturition back_pain irritation_in_anus 

 

The target variable ‘Prognosis’ having following class names  

['Fungal infection' 'Allergy' 'GERD' 'Chronic cholestasis' 'Drug Reaction’ ‘Peptic ulcer disease' 'AIDS' 'Diabetes 

''Gastroenteritis' 'Bronchial Asthma' 'Hypertension ' 'Migraine' 'Cervical spondylitis’ ‘Paralysis (brain hemorrhage)' 'Jaundice' 

'Malaria' 'Chicken pox ''Dengue' 'Typhoid' 'hepatitis A' 'Hepatitis B' 'Hepatitis C ''Hepatitis D' 'Hepatitis E' 'Alcoholic 

hepatitis' 'Tuberculosis ''Common Cold' 'Pneumonia' 'Dimorphic hemorrhoids(piles)' 'Heart attack ''Varicose veins' 

'Hypothyroidism' 'Hyperthyroidism' 'Hypoglycemia ''Osteoarthristis' 'Arthritis' '(vertigo) Paroymsal Positional Vertigo 

''Acne' 'Urinary tract infection' 'Psoriasis' 'Impetigo']. Fig 1 shows the data distribution over each class of target variable 

‘prognosis’ and fig 2 shows Correlation between various attributes. 
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Fig 1– Data distribution over each class of target variable ‘prognosis’ (kaggle, n.d.) 

 

Fig 2 – Correlation between various attributes (kaggle, n.d.) 

5. PROPOSED ARCHITECTURE AND SOLUTION 

Federated Learning is a machine learning approach that enables model training across decentralized devices or servers 

without exchanging raw data. Privacy is a significant concern in federated learning, and the data transfer process is designed 

to protect sensitive information. Here's an overview of the data transfer process in federated learning with a focus on privacy. 
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Fig-3 Proposed architecture: Send perturbed model to central aggregator and receive updated central model 

In the model above, in the first step, Hospital 1 data will be used to create a model with differential privacy by adding noise. 

This model will then be transferred to the central aggregator. At the central aggregator, FedAvg will be applied, resulting in 

the creation of the central model. In the next step, the central model will be transferred back to Hospital 1 from the central 

aggregator. Same process will be repeated for hospital 2 & hospital 3 and result will be checked. Here, every model sent 

from the hospital are sent with added Gaussian noise such that patient health records cannot be re-constructed. 

Algorithm -1 (Federated Averaging) 

 

In the federated optimization setup, the central aggregator computes the average of the client model parameters, with each 

client's contribution being weighted, after every communication round. In our proposed method, we transmit model 

parameters to the central aggregator with added differential privacy, concealing each client's individual contribution during 

the aggregation process. We adopted the following method to produce model parameters with differential privacy: 

Figure 2 is derived from a variant of Stochastic Gradient Descent known as DP-SGD, which incorporates differential privacy. 

This modified algorithm adjusts the traditional mini-batch stochastic optimization process to ensure differential privacy 

guarantees.                                                                                                                                  
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To ensure privacy for each data point in the batch, the algorithm includes Gaussian noise that obscures the most substantial 

gradient. Let's denote C as the intended limit for the maximum gradient norm. For every data point in the sample, the 

algorithm calculates its parameter gradient. If the norm of this gradient exceeds the value of C, it is scaled down or "clipped" 

to match C. 

Algorithm -2 (Differentially Private SGD Algorithm) 

 

Objective perturbation methods are implemented on the local model before sending it to the central aggregator. The primary 

aim of the client-trained model is to determine parameters that effectively map inputs to outputs while minimizing an error 

function. Stochastic gradient descent is employed as a method to iteratively adjust these parameters towards optimal values. 

To ensure data security, we've utilized a variant of differentially private stochastic gradient descent. This approach is defined 

by the following update rule, where the parameter C represents the clipping parameter, setting the maximum limit on the l2-

norm for each gradient update, represents a function that adjusts a given vector to ensure its 12-norm does not exceed the 

value C. Additionally, it denotes the noise multiplier, which signifies the relationship between the clipping parameter and 

the standard deviation of the noise added to each gradient update. 

[𝑥]𝑐 =
𝑥

(1,
||𝑥||2

𝑐
) 

 

We've employed a straightforward approach involving clients that are independent and identically distributed (IID), each 

equipped with local models. Gaussian noise is added to the gradient of these models before transmitting them to the central 

aggregators. The central aggregators utilize the FedAvg algorithm to combine these gradients and construct the final model, 

which is then distributed to all IID nodes. 
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Algorithm-3 (Differentially Private Federated Learning Algo) 

 

To create the privacy-preserving model, we have employed an objective perturbation technique. This involves adding noise 

to the objective function prior to optimizing across classifier spaces. At each node, DP-SGD collects gradient updates 

aggregated over mini batches, and then manages the process of clipping and applying noise to these gradients. It gets input 

C and σ and makes sure that the 12-norm of each gradient update is at mot C, and subsequently applies Gaussian noise with 

standard deviation σC to the gradient. 

The primary model utilizes the Federated Averaging algorithm (FedAvg) to compute a weighted average based on the 

received model parameters, thereby constructing a new model. Subsequently, the central aggregator redistributes the newly 

weighted parameters of the main model to all nodes for continued learning. This iterative process can be repeated multiple 

times to enhance the performance of the main model. 

6. RESULTS AND DISCUSSION   

 

Fig-4 Accuracy of model on individual hospital data 
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Fig-4 shows the accuracy of a machine learning model trained on data from three different hospitals (Hospital-1, Hospital-

2, and Hospital-3) over 10 epochs. The accuracy metric, which ranges from 0 to 0.9, is plotted on the y-axis, while the number 

of epochs is plotted on the x-axis. 

Hospital-1 Starts with the lowest initial accuracy (~0.4) but improves steadily, achieving around 0.8 accuracy at the 10th 

epoch. Hospital-2 Begins with slightly higher accuracy than Hospital-1 and shows a steady increase, reaching close to 0.85 

accuracy by the 10th epoch. Hospital-3 Starts with the highest initial accuracy (~0.45) and shows the fastest improvement 

initially. By the 10th epoch, its accuracy is similar to Hospital-2, around 0.85. 

 

Fig-5 Performance comparison on Central aggregated Model 

Fig-5 compares the performance of three hospitals (Hospital-1, Hospital-2, and Hospital-3) using different models 

(Individual and Global) across three performance metrics: Precision, Recall, and F1-Score. 

Metrics: 

Precision: Measures the accuracy of the positive predictions. High precision indicates that the model returns more relevant 

results than irrelevant ones. 

Recall: Measures the ability of the model to identify all relevant instances. High recall indicates that the model returns most 

of the relevant results. 

F1-Score: The harmonic mean of precision and recall, providing a single metric that balances both concerns. 

Performance Comparisons: 

Individual vs. Global Models: 

The "Individual" model represents performance metrics for each hospital’s unique model. The "Global" model represents 

performance metrics for a centralized aggregated model, likely combining data from all hospitals. 

Hospital-1: 

Precision: The individual model has slightly higher precision compared to the global model. 

Recall: Both models show comparable performance. 

F1-Score: Similar performance in both individual and global models, with the global model being slightly better. 

Hospital-2: 

Precision: The global model performs better than the individual model. 

Recall: Slightly better recall in the global model compared to the individual. 

F1-Score: The global model shows better performance. 

Hospital-3: 

Precision: The global model performs significantly better than the individual model. 

Recall: The individual model has lower recall compared to the global model. 

F1-Score: The global model performs better than the individual model. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Individual Global Individual Global Individual Global

Precision Recall F1-Score

Hospital-1 Hospital-2 Hospital-3
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Overall Observations: 

The global model generally shows improved or comparable performance across all metrics and hospitals. 

There is variability in the performance gains from the global model among the hospitals, with Hospital-3 benefiting the most. 

The individual models for each hospital show strong performance but do not consistently outperform the global model. 

7. CONCLUSION 

In this paper, we have explored the use of differential privacy, federated learning, and federated averaging to preserve the 

privacy of disease data. Our experimental results demonstrate the feasibility and effectiveness of this approach in protecting 

the privacy of sensitive healthcare information. Future work could involve applying these techniques to real-world healthcare 

datasets to evaluate their performance in practical settings. By leveraging these privacy-preserving techniques, we can ensure 

that individuals' privacy is protected while still enabling valuable analysis of disease data. 
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