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ABSTRACT 

In order to improve the identification and diagnosis of cardiovascular diseases (CVDs), this study provides a fresh suggested 

model that uses Graph Convolutional Networks (GCNs) for the multi-label classification of phonocardiographic data. The 

complex temporal and spectral properties included in heartbeat sounds are often too complex for traditional machine learning 

frameworks to fully capture. Mel-Frequency Cepstral Coefficients (MFCC) and MEL-spectrograms, two sophisticated 

feature extraction techniques, work together in our suggested model to improve the representation of important audio aspects 

that are essential for cardiovascular diagnoses. Through the utilization of GCNs' intrinsic relational structure, the model 

enhances the propagation of superior information among associated nodes, which in turn improves the categorization of 

various cardiovascular conditions. Moreover, dynamic customization of node feature representations is made possible by the 

design, which enhances the resilience of real-world pulse recordings against noise and fluctuation. The results highlight the 

usefulness of the suggested model in clinical settings, opening the door for further research into hybrid modelling methods 

and the incorporation of advanced brain architectures with the goal of improving cardiovascular health assessment and 

intervention plans. 

 

Keywords: Cardiovascular disease, Prediction, ML-GCN model, MFCC, Deep learning, GCN, Heartbeat Sounds, Multi-
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1. INTRODUCTION 

Heart sound classification aids in the early detection of cardiovascular illnesses. Despite recent advancements in heart sound 

categorization, most methods still rely on Traditional segmented features and shallow structure-based classifiers.[1] Heart 

sounds are natural signals that represent physiological information from the human heart. Cardiovascular disease is a term 

used to describe a group of diseases, including coronary heart disease, cerebrovascular disease, and rheumatic heart disease. 

A patient’s blood pressure, blood sugar, and lipid levels can be raised by fried foods, fast foods, alcohol, and tobacco, as well 

as weight gain and obesity, leading to premature death.[2] Prevention of sudden death from cardiovascular disease can be 

achieved by finding groups at risk for cardiovascular disease and ensuring they receive the proper treatment. It is possible to 

reduce the risk of sudden death from cardiovascular disease by reducing alcohol consumption, reducing salt intake, eating 

more fruits and vegetables, and exercising moreCardio vascular disease has a major negative influence on people's health 

and quality of life and is one of the leading causes of disability and mortality in the globe. [3]It is anticipated that the 

proportion of CVD cases in the US, especially heart failure and stroke, would significantly increase between 2025 and 

2060.rise. Furthermore, studies from throughout the world show that during the COVID-19 pandemic, [4]the number of extra 

fatalities due to cardiovascular disease increased. This rise raises the possibility of decreased monitoring of cardiovascular 

risk factors and behaviours during the pandemic as well as restricted access to preventative Cardiovascular disease 

interventions [5]. However, auxiliary diagnostics may assist accomplish distant diagnosis and therapy, as well as increase 

the efficiency and accuracy of diagnosis. This may increase access to preventative cardiovascular disease care without adding 

to the amount of available medical resources.  
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The first, second, third, and fourth heart sounds are produced throughout a cardiac cycle, which happens when one pulse 

comes before the next. checking for heart problems with heart sound auscultatory Auscultation is a procedure that has been 

used for over 180 years and is straightforward, essential, and efficient. Liu and associates (2016). The first cardiac sound, 

which is loud, long-lasting, and intense, signals the start of ventricular systole. The second heart sound, which has shorter 

length, lower intensity, and less sound, signals the start of ventricular diastole. The third heart sound happens after the second 

heart sound. It has a larger wavelength and lasts for 0.04 to 0.05 seconds. It is heard by most kids and around half of young 

[6]adults, and it does not always signify abnormality. A long wave sound that lasts for around 0.04 seconds comes before 

the first heart sound in the fourth heart sound.  A heartbeat is a two-part pumping activity lasting around a second. As blood 

accumulates in the upper chambers (the right and left atria), the heart's natural pacemaker (the SA node) emits an electrical 

signal, causing the atria to constrict. [7] This contraction forces blood through the tricuspid and mitral valves into the resting 

lower chambers (the right and left ventricles). Diastole refers to the lengthier of the two pumping phases. When the ventricles 

are full with blood, the second phase of the pumping cycle starts. Electrical impulses from the SA node pass via a network 

of cells to the ventricles, causing them to contract. [2]This is known as systole. As the tricuspid and mitral valves close to 

prevent blood backflow, the pulmonary and aortic valves open. While the right ventricle pushes blood into the lungs to absorb 

oxygen, the left ventricle pumps oxygen-rich blood to the heart and other regions of the body. 

 

Figure 1 structure of human heart 

There are also noticeable variations in the PCGs of various heart sound kinds, as Figure 1 illustrates. Differentiating between 

focused cardiac sound signals is simple. Thus, many researchers are interested in the automated diagnosis of cardiac problems 

using cardiac sound waves. One may consider this subject to be an interdisciplinary field of study that includes 

telemedicine.[8] Researchers have worked hard in the last several years to increase the precision and effectiveness of heart 

sound signal categorization.  

 

Figure 2 Three kinds of heart sound signals 
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The primary emphasis of early heart sound signal categorization research was on machine learning algorithms and 

conventional signal processing methods. These approaches were usually less accurate, lacked [9]the capacity for 

generalisation, and needed human feature extraction and classifier building. On the other hand, these techniques laid the 

groundwork for subsequent deep learning strategies. Phonocardiography (PCG) is the measurement of a heart sound, which 

is a kind of physiological signal. Systole and diastole of the heart create it, and it may represent physiological data about 

bodily parts including the atria, ventricles, and substantial boats and their operational conditions.[10] Fundamental heart 

sounds, or FHSs, are often divided into two categories: first heart sounds, or S1, and second heart sounds, or S2, respectively. 

S1 typically happens when the ventricles' rapidly increasing pressure causes the mitral and tricuspid valves, which are already 

closed, to abruptly approach their elastic limit, signalling the start of isovolumetric ventricular contraction. When the aortic 

and pulmonic valves shut at the start of the diastole, S2 takes place.  

 

Figure 3 PCG with simultaneous ECG  

recording and the four states of the PCG recording: S1, the systole, S2, and the diastole Accurate segmentation of the FHSs 

is crucial for determining the state sequence of S1, S2, and Diastole. Figure 1 shows a PCG procedure with simultaneous 

ECG recording and its four states: S1, the Systole, S2 and diastole. The QRS waveform of the ECG and the cardiac sound 

signal are utilised to determine the S1 and S2 positions. FHSs are crucial for assessing heart disease and guiding future 

diagnostics. To accurately diagnose heart disorders, it's crucial to extract characteristics from the whole FHS for quantitative 

analysis. Over the last several decades, there has been a growing interest in automatically classifying heart sounds. 

2. LITERATIRE REVIEW 

Yang and Hsieh (2016) found the mel frequency cepstral coefficients (MFCC). [11]This work presents the first and second-

order MFCC-based Difference coefficients are used as the neural network's input tensor. By removing noise from the data, 

this feature extraction technique improves classification accuracy by enabling the neural network to collect both healthy and 

pathological information from the heart sound signal. [12]The issues of human intervention, intricate procedures, and 

inadequate generalisation are avoided by deep learning approaches as compared to conventional heart sound categorization 

algorithms. Graph convolutional networks (GCNs) have shown remarkable performance in several medical contexts 

including graph node categorization problems.[13] Transfer learning for graph representation learning and graph network 

models presents challenges, nonetheless. Most GNNs function only in one domain and cannot apply acquired knowledge to 

many spheres[14]. This is a result of the significant developments in modern theories on the creation of artificial intelligence 

[15] Graph Convolutional Networks (GCNs) with Attention Mechanisms improve task performance on graph-structured data 

by fusing the advantages of attention with the power of graph-based learning. [16]GCNs are good at gathering local 

neighbourhood information because they operate on nodes in a graph using convolutional processes. By including attention 

methods, the model is able to dynamically concentrate on the most significant regions of the network and assign varying 

weights to neighbouring nodes. [17] By offering a more flexible and context-sensitive aggregation of node information, this 

synergy enhances the model's capacity to handle large, heterogeneous networks and improves performance in tasks like node 

classification, link prediction, and graph classification. The brand-new architecture called the Graph Convolutional Attention 

Network (GCAN) to forecast possible relationships between RNAs and diseases. Despite dozens of organisations, GCAN 

offers advantages from the deep learning model's effectiveness.[18]  

Using Mel-frequency Cepstral coefficients (MFCC) as feature extraction,[19] Han Li et al. suggested a model for 

classification using a Convolutional Neural Network. CNN stands for [ CNN]. Their accuracy comes out to be 90.43%. There 

are PCG signals in 175 of their datasets. Using dynamic content characteristics and multichannel PCG signals will help to 

improve the accuracy of CAD detection. [20] Castro et al study uses a variety of artificial neural networks (ANN) and the 
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fusion of spectral information to analyse PCG signals in order to diagnose CVD. A self-designed PCG acquisition setup is 

used to get the PCG signal via the subject's heart. Following pre-processing, five spectral characteristics with the largest pair-

wise differences are retrieved. With 99.99% accuracy, five distinct ANN types—narrow, broad, tri-layered, bi-layered, and 

medium—are simulated. In comparison to existing methods, this suggested design is non-invasive, reasonable, and 

dependable. It also provides excellent direction for developing new, affordable options for CVD diagnostic procedures.  

 

Figure 4 PCG Acquisition Areas 

Using the ECG signal as a reference, the segmentation procedure may be either direct or indirect. By envelope (direct) or by 

ML (using outside medical knowledge) is another way to categorise segments. Certain techniques that are commonly used 

for direct segmentation include normalised average Shannon energy [21], [22], the Hilbert transform, the cardiac sound 

characteristic waveform (CSCW) [23], autoregressive moving average spectral methods, power spectral density, energy of 

wavelet coefficients, complexity signatures, and Wigner-Ville distribution . In order to ascertain the temporal position of the 

start and finish of each cardiac cycle in the signal (the onset and offset), the authors of  used the segmentation approach based 

on the Matching Pursuit algorithm introduced in [24]. The algorithm has shown a 97.5% accuracy rate for the onset. 

[25] used the local three-valued pattern (LTP) to extract the local binary pattern (LBP) of heart sounds, and then trained it 

using a 1D-CNN with an accuracy of 90% of the dataset from PhysioNet.  

[26] achieved an unweighted average recall of 51.2% by using the attention mechanism to investigate the interpretable heart 

sound classification algorithm for the heart sound triple classification task on the PhysioNet dataset. [27] used a support 

vector machine and a 1D adaptive local ternary model based on MFCC to achieve 98.3% accuracy on the heart sound double 

classification task.   

Using a discrete wavelet transform and a support vector machine optimised using Bayesian optimisation,[28] achieved an 

accuracy of 89.26%. Neural networks based on MFCC characteristics outperform other neural networks in the heart-tone 

classification problem. This study computes first-order and second-order difference coefficients for describing the dynamic 

aspects of heart sound signals in order to further improve the benefits of MFCC features in expressing heart sound signals. 

The approach is innovative in three ways: 1) Using the credible heart sound datasets from three distinct sources, which 

significantly enhances the deep learning model's performance. 2) Choosing enhanced MFCC input features to more 

accurately capture the static and dynamic properties of the cardiac sound signal. 3) Making use of a residual neural network, 

which reduces training-related gradient disappearance and deterioration  

3. SCOPE AND METHODOLOGY 

Previous research on PCG signal classification for CAD detection identifies gaps in extensive spectral analysis, comparative 

segmentation technique comparison, multichannel PCG integration, non-invasive diagnostic approaches, architecture 

comparisons of ANNs, optimization of feature extraction, refinement of attention mechanisms, dataset generalizability, 

hybrid model assessment, and validation of temporal position accuracy. 

Graph Convolutional Networks (GCNs) used with the Multi-Label Image Recognition model fills in a lot of these gaps. In 

order to improve feature representation and detection accuracy, GCNs include a variety of spectral and dynamic features. 

They facilitate the development of useful, non-invasive diagnostic techniques and manage multichannel data efficiently. 

Because GCNs have built-in sophisticated optimization methods and may include attention mechanisms for more 

complicated tasks, they provide a strong substitute for classic ANNs. Model generalizability is ensured by their strong 

performance across a variety of datasets. Furthermore, a hybrid method is represented by GCNs paired with conventional 

signal processing, which indirectly enhances algorithms for estimating the temporal locations of cardiac cycles. Overall, by 

filling up these important research gaps, GCNs greatly improve PCG signal categorization for CAD diagnosis. 

Methodology: 
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One method that may be used to create models that effectively forecast cardiovascular diseases is deep learning. Any 

individual exhibiting abnormal heart sounds, which may be a sign of early-stage cardiovascular illness, may be identified by 

this model. This model may be used to identify irregular heart sounds and can be stopped early, when the problem is easier 

to treat. We locate the illness as soon as possible, making its eradication much simpler. As far as you know, it will be difficult 

to remove the illness.  

Data Collection: 

The "Heartbeat Sounds" dataset on Kaggle provided the information needed for the categorization study of heartbeat sounds. 

Heartbeat audio recordings are included in this dataset, which is divided into classifications for normal and pathological 

heartbeats. The recordings, which cover a range of cardiac states, were gathered from many sources. Every recording is 

a.wav file with associated metadata that contains details on the patient and the setting in which it was made. The dataset has 

been organised in a way that makes it easier to train and assess Deep learning models that categorise pulse sounds. 

Dataset: 

The Heartbeat Sounds dataset utilized in this research was sourced from Heartbeat Sounds  

(https://www.kaggle.com/code/brsdincer/heartbeat-sounds-classification-analysis/input?select=set_b.csv ). 

file_path = "/content/Heartbeat_Sound" 

print(os.listdir(file_path)) 

Input: Heart Sound Signals 

Output: Classification 

 

Figure 5 Architecture 

Graph Convolutional Network (GCN):  

The semi-supervised classification function of the Graph Convolutional Network (GCN) was presented in [29]. Updating 

node representations by information propagation between nodes is the fundamental concept. In contrast to standard 

convolutions, which work on local the Euclidean structures in an image, GCN aims to learn a function 
( ),  

 on a graph 


. It does this by updating node features as 
1l n dh r

+   and receiving as inputs feature descriptions 
l n dh r   and the 

corresponding correlation matrix 
n na r  , where n is the number of nodes and D  denotes the dimensionality of node 

features. Each GCN layer may be expressed as a non-linear function by 

( )1 , .l lh h a+ = 
                                            (1) 

Once the convolutional operation is applied, 
( ),  

 may be expressed as 

( )1 ˆ ,l l lh H ah w+ =
                                       (2) 

where ˆ n na r   is the normalised version of correlation matrix a , 
( )H 

 indicates a non-linear operation, and  
l D Dw r

  

is a transformation matrix to be learnt, which in our studies is handled by LeakyReLU [30]. As a result, by stacking many 

GCN layers, we are able to understand and simulate the intricate interactions between the nodes. We direct interested readers 

to for more information. 

https://www.kaggle.com/code/brsdincer/heartbeat-sounds-classification-analysis/input?select=set_b.csv
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Figure 5 Overall framework of our ML-GCN model for multi-label image recognition 

ML- GCN for Multi-label Recognition: 

GCN is the foundation of our ML-GCN. For semi-supervised classification, GCN was suggested, where each node's 

prediction score represents the node-level output. In contrast, we plan for each GCN node's final output to be the classifier 

for the associated label in our job. Furthermore, in other tasks, the network structure, or correlation matrix, is often 

predefined; in the multilabel image recognition task, this is not the case. As a result, we must create the correlation matrix 

from scratch. Fig.6 depicts the general architecture of our method, which is made up of the GCN-based classifier learning 

and image representation learning modules. 

GCN based classifier learning 

Using a GCN-based mapping function, we may train inter-dependent object classifiers 
 

1

c

i i
w 

=
=

  using label 

representations, where c  is the number of categories. We use stacked GCNs, in which every GCN layer l receives as inputs 

the node representations from the preceding layer 
( )h

 and outputs new node representations, or 
1lh +

. The 
c Dz r   matrix, 

where D  is the dimensionality of the label-level word embedding, is the input for the first layer. The output for the last layer 

is 
c dw r  , where d  is the number of dimensions in the picture representation. We may acquire the expected scores as 

follows by using the learnt classifiers on picture representations. 

ˆ .wX =                                                            (3) 

We take it for granted that an image's ground truth label is 
cr  , where 

 0,1I =
 indicates whether or not label I  

occur in the picture. Using the conventional multi-label classification loss, the whole network is trained as follows. 

( )( ) ( ) ( )( )
1

ˆ ˆlog 1 log 1 ,
c

C C C C

C

L      
=

= + + −
                                                                            (4) 

Beta function is represented by 
( ) 

 . 

4. EVALUATION METRICS 

Accuracy: It is easy to evaluate the classifier's accuracy by looking at how often it produces correct predictions. The 

percentage of correct forecasts to all estimations offers an additional meaning. 
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TP TN
Accuracy

S

+
=

 

Precision: Recall is acquired by dividing precision by one, whereas this ratio, which reflects the proportion of false negatives, 

is obtained by subtracting one for it, i.e., (1 – exact). 

TP
Precision

TP FP
=

+  

Recall: In contrast to true negatives, there are also things known as false negatives. 

TP
Recall

TP FN
=

+  

F1-Score: This is determined by squaring the accuracy and recall values. For this. 

1

2* *Precision Recall
F

Precision Recall
=

+  

5. RESULT AND DISCUSSION 

Results:  

The study, which used Kaggle's Heartbeat Sounds dataset, shows that our ML-GCN technique classifies heartbeat sounds 

well. Our deep learning models were trained and evaluated using normal and abnormal cardiac acoustic recordings. The 

metadata-rich.wav files enabled for thorough cardiac state analysis.  

We used a GCN to construct a multi-label recognition system. The correlation matrix was created from scratch in our 

technique, unlike standard methods. Our GCN-based classifier learning and image representation learning architecture 

worked well. This novel modification of GCN accurately classified heartbeat sounds, proving its suitability for complicated 

multi-label medical data processing. 

Confusion Matrix: 

MFCC Feature Extraction(Confusion Matrix) 

 

 

 

 

Figure 6: Confusion Matrix of  Proposed Model 

 

 

 

Figure 7 :Confusion Matrix GCN Model 
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Figure 8 :Confusion Matrix of CNN Model 

 

 

Figure 9:Confusion Matrix of VGGish Model 

 

Figure 10:Confusion Matrix of LDA Model 

 

The picture shows the confusion matrices for five distinct models that are used to categorize three cardiac conditions: normal, 

murmur, and extrasystole: the Proposed Model, CNN (Convolutional Neural Network), VGGish, and LDA (Linear 

Discriminant Analysis). Darker hues indicate a larger number of cases that were successfully or wrongly identified, with the 

real labels on the y-axis and the predicted labels on the x-axis in each matrix.The proposed model's confusion matrix is 

shown in Figure 7. With 239 accurate classifications, the suggested model has rather good performance in categorizing 

typical occurrences. But it misclassifies five cases as extrasystole and six as murmur. Seven cases of extrasystole and 37 

cases of normal are misclassified as murmurs, whereas 57 cases are correctly labelled. The categorization of extrasystole is 

moderate, with 53 accurate predictions, while 16 are incorrectly categorized as normal and 27 as murmur. 

GCN Model Confusion Matrix, Figure 8 The GCN model misclassifies 32 instances as murmur and 134 as extrasystole, 

while correctly classifying 59 normal cases. Although it correctly detects 60 murmur instances, 17 and 64 are incorrectly 

labelled as extrasystole and normal, respectively. Only three cases of extrasystole are accurately identified by the model, and 

it misclassifies a large number of cases in other categories, suggesting that its classification capacity is limited.CNN Model 

Confusion Matrix, Figure 9 When it comes to identifying normal cases, the CNN model does a respectable job; 95 cases 

were accurately recognized, while 35 were incorrectly labelled as murmur and 116 as extrasystole. While it correctly predicts 

14 murmurs, it incorrectly labels 78 as normal and 15 as extrasystole. A considerable percentage of extrasystole cases are 

misclassified as normal or murmur, with only six cases being accurately labelled. 

Confusion Matrix of VGGish Model, Figure 10 Only 12 of the normal instances are correctly predicted by the VGGish 

model, but 2 and 13 examples are incorrectly labelled as extrasystole and murmur, respectively. Only two occurrences of 

extrasystole are successfully predicted by the model, suggesting low overall performance, but 18 instances of murmur are 

correctly identified, despite a significant incidence of misclassification.Confusion Matrix of the LDA Model, Figure 11 Five 

cases were misclassified as extrasystole and six as murmur, whereas the LDA model correctly classified 11 cases for normal 

circumstances. Murmur receives nine accurate classifications, but it misclassifies a number of cases, particularly in the usual 
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group. The majority of cases are mislabeled, and the extrasystole categorization is restricted.All things considered, the 

confusion matrices show that the Proposed Model performs the best out of the five models, with comparatively greater 

accurate classifications in every category, particularly for the normal and murmur classes. Although they perform somewhat, 

the GCN and CNN models have trouble with serious misclassifications. The low classification accuracy of the VGGish and 

LDA models, particularly for extrasystole, suggests that there is much space for development in these models' capacity to 

differentiate between the various cardiac diseases. 

MEL-Spectrogram Feature Extraction (Confusion Matrix): 

 

Figure 11: Confusion Matrix of Proposed Model 

 

Figure 12: Confusion Matrix of GCN Model 

 

 

Figure 4: Confusion Matrix of CNN Mode 

 

 

Figure 14:  Confusion Matrix of VGGish Model 



Divya Lalita Sri Jalligampala, Gangadhar Rao Kancherla, R.V.S. Lalitha 
 

pg. 212 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 4s 

 

 

When applied to a classification problem, the graphic shows five confusion matrices for various machine learning models. 

The x- and y-axes of each confusion matrix indicate the classes, and the true vs anticipated labels are shown. Each cell's 

color intensity reflects the number of predictions for each pair of classes; larger counts are indicated by deeper hues. Below 

is an explanation of every matrix:The performance of a customized or optimized model is probably depicted in Figure 12's 

confusion matrix of the suggested model. The darker diagonal cells indicate a large number of cases properly identified by 

the model for each class.The GCN Model's Confusion Matrix in Figure 13 Although there are several misclassifications in 

the confusion matrix of the GCN (Graph Convolutional Network) model, heavier diagonal colors suggest that certain 

categories were classified with respectable accuracy.Figure 14 shows the CNN Model Confusion Matrix The CNN 

(Convolutional Neural Network) model performs well, with the majority of predictions centered along the diagonal, 

suggesting that it categorized many examples correctly. 

The VGGish Model's Confusion Matrix in Figure 15 Although there are some incorrect classifications, as shown by lighter 

cells outside the diagonal, the confusion matrix of the VGGish model displays a sizable number of accurate classifications 

on the diagonal.Figure 16 shows the LDA Model's confusion matrix. In contrast to some of the other models, the LDA 

(Linear Discriminant Analysis) model exhibits more misclassifications in addition to having a deeper hue for specific classes 

along the diagonal, suggesting correct classifications for them.Though some models achieve more accuracy as shown by the 

intensity of their diagonal cells, each confusion matrix provides insight into the models' strengths and shortcomings in terms 

of identifying situations. 

ROC Curve: 

ROC Curve(MFCC) 

 

 

Figure 16 Proposed Model of ROC Curve 

 

 

Figure 17 GCN Model of Roc Curve 

 

Figure 515:Confusion Matrix of LDA Model 
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Figure 18: CNN Model of ROC Curve 

 

 

 

Figure 19: VGGish Moddel of ROC Curve 

 

 

Figure 20: LDA Model of ROC Curve 

 

In order to classify three cardiac conditions normal, murmur, and extrasystole five machine learning models the Proposed 

Model, CNN (Convolutional Neural Network), VGGish, and LDA (Linear Discriminant Analysis)—are shown in the image 

along with their ROC (Receiver Operating Characteristic) curves. By showing the True Positive Rate (sensitivity) on the y-

axis versus the False Positive Rate on the x-axis, each plot graphically illustrates how well a model performs. The AUC 

(Area Under Curve) values for each of the three classes are displayed alongside color-coded ROC curves. Higher values of 

the AUC, a crucial statistic, show that a model is more effective at discriminating across classes.With an AUC of 0.82 for 

the normal class, 0.85 for the murmur class, and 0.88 for the extrasystole class, the suggested model outperforms the other 

five models (Figure 17: Proposed Model of ROC Curve). These results show that the suggested model has a robust 

classification capability across all categories and performs very well in correctly recognizing each condition, especially 

extrasystole.Figure 18 (ROC Curve GCN Model): With an AUC of 0.78 for the normal class, 0.79 for murmur, and 0.88 for 

extrasystole, the GCN model likewise exhibits strong performance. Although its performance in identifying extrasystole is 

comparable to that of the suggested model, it exhibits somewhat reduced sensitivity for the normal and murmur classes, 

indicating a little decline in accuracy for these classes in comparison to the suggested model.The CNN model produces an 

AUC of 0.77 for normal, 0.85 for murmur, and 0.80 for extrasystole (Figure 19: CNN Model of ROC Curve). This shows 

that although the CNN does well, especially for the murmur class, it is not quite as well as the suggested model for classifying 

extrasystole. This model could have trouble differentiating this specific condition, as seen by the lower AUC for 

extrasystole.With AUC values of 0.55 for the normal class, 0.62 for murmur, and 0.54 for extrasystole, the VGGish model 

performs the worst out of all the models shown (Figure 20, VGGish Model of ROC Curve). These scores are around the 0.5 

threshold, suggesting that the VGGish model has poor classification accuracy and finds it difficult to distinguish between 

cases of extrasystole, murmur, and normal.The LDA model also exhibits poorer discriminative ability, with an AUC of 0.58 

for the normal class, 0.56 for murmur, and 0.64 for extrasystole (Figure 21: LDA Model of ROC Curve). Its shortcomings 
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as a classifier in this application are highlighted by the fact that, although doing somewhat better than the VGGish model, 

particularly for extrasystole, it is still unable to reliably distinguish the classes.In conclusion, the suggested model is the most 

successful of the five, obtaining the greatest AUC in every class, especially when it comes to extrasystole detection. The 

sensitivity of the GCN model is slightly lower for the normal and murmur classes, although it still follows closely. While it 

does a decent job, the CNN model is not very good at identifying extrasystole. The VGGish and LDA models, on the other 

hand, both show noticeably worse classification accuracy, highlighting their limited applicability in this situation.  

This comparison demonstrates how well the suggested model performs in classifying heart conditions.The image displays 

the Receiver Operating Characteristic (ROC) curves for five machine learning models, each of which aims to classify three 

cardiac conditions: normal, murmur, and extrasystole. These models are the Proposed Model, CNN (Convolutional Neural 

Network), VGGish, and LDA (Linear Discriminant Analysis). By showing the True Positive Rate (sensitivity) on the y-axis 

versus the False Positive Rate on the x-axis, each plot graphically illustrates how well a model performs. The AUC (Area 

Under Curve) values for each of the three classes are displayed alongside color-coded ROC curves. Higher values of the 

AUC, a crucial statistic, show that a model is more effective at discriminating across classes.Figure 17 (ROC Curve Proposed 

Model), with an AUC of 0.82 for the normal class, 0.85 for the murmur class, and 0.88 for the extrasystole class, the suggested 

model performs the best out of the five models. These results show that the suggested model has a robust classification 

capability across all categories and performs very well in correctly recognizing each condition, especially extrasystole. 

Figure 18 (ROC Curve GCN Model),with an AUC of 0.78 for the normal class, 0.79 for murmur, and 0.88 for extrasystole, 

the GCN model likewise exhibits strong performance. Although its performance in identifying extrasystole is comparable to 

that of the suggested model, it exhibits somewhat reduced sensitivity for the normal and murmur classes, indicating a little 

decline in accuracy for these classes in comparison to the suggested model.Figure 19 (ROC Curve CNN Model),the CNN 

model's AUC is 0.80 for extrasystole, 0.85 for murmur, and 0.77 for normal. This shows that although the CNN does well, 

especially for the murmur class, it is not quite as well as the suggested model for classifying extrasystole. This model could 

have trouble differentiating this specific condition, as seen by the lower AUC for extrasystole. 

Figure 20 (ROC Curve VGGish Model),with AUC values of 0.55 for the normal class, 0.62 for murmur, and 0.54 for 

extrasystole, the VGGish model performs the worst out of all the models that are shown. These scores are around the 0.5 

threshold, suggesting that the VGGish model has poor classification accuracy and finds it difficult to distinguish between 

cases of extrasystole, murmur, and normal.The LDA model also exhibits poorer discriminative ability, with an AUC of 0.58 

for the normal class, 0.56 for murmur, and 0.64 for extrasystole (Figure 21: LDA Model of ROC Curve). Its shortcomings 

as a classifier in this application are highlighted by the fact that, although doing somewhat better than the VGGish model, 

particularly for extrasystole, it is still unable to reliably distinguish the classes.In conclusion, the suggested model is the most 

successful of the five, obtaining the greatest AUC in every class, especially when it comes to extrasystole detection. The 

sensitivity of the GCN model is slightly lower for the normal and murmur classes, although it still follows closely. While it 

does a decent job, the CNN model is not very good at identifying extrasystole. The VGGish and LDA models, on the other 

hand, both show noticeably worse classification accuracy, highlighting their limited applicability in this situation. This 

comparison demonstrates how well the suggested model performs in classifying heart conditions. 

ROC Curve(MEL-Spectrogram) 
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Figure 22: GCN Model of Roc Curve 
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Figure 23: CNN Model of ROC Curve 

 

Figure 24: VGGish Model of ROC 

Curve 

 

 

Figure 25: LDA Model of ROC Curve 

 

In order to classify three cardiac conditions normal, murmur, and extrasystole—the image displays ROC (Receiver Operating 

Characteristic) curves for five distinct models: the Proposed Model, CNN (Convolutional Neural Network), VGGish, GCN 

(Graph Convolutional Network), and LDA (Linear Discriminant Analysis). With different coloured lines denoting each class, 

each plot contrasts the True Positive Rate (sensitivity) on the y-axis with the False Positive Rate on the x-axis. Each class's 

AUC (Area Under Curve) values are displayed to indicate how well each model performed in differentiating between the 

three circumstances. 

Figure 22 (ROC Curve Proposed Model),with an AUC of 0.63 for normal, 0.59 for murmur, and 0.62 for extrasystole, the 

suggested model performs moderately. The AUC values indicate that it has limited capacity to categorize the three 

circumstances, despite its somewhat superior performance compared to some of the other models.The GCN model produces 

an AUC of 0.59 for normal, 0.53 for murmur, and 0.59 for extrasystole (Figure 23: GCN Model of ROC Curve). The fact 

that these AUC values are less than those of the suggested model indicates that the GCN model performs worse in 

classification across all classes, particularly when it comes to murmur differentiation.The CNN model yields an AUC of 0.53 

for normal, 0.58 for murmur, and 0.61 for extrasystole (Figure 24: CNN Model of ROC Curve). Although it performs 

somewhat better than the GCN model for murmur and extrasystole, the CNN model's overall classification accuracy is still 

poor, suggesting that it would have trouble successfully differentiating between the three situations. 

Figure 25 (ROC Curve VGGish Model),with AUC values of 0.57 for normal, 0.53 for murmur, and 0.57 for extrasystole, 

the VGGish model performs poorly in classification. According to these findings, the VGGish model performs similarly to 

a random classifier (AUC ~0.5), showing difficulty in correctly classifying each situation.Figure 26 (ROC Curve LDA 

Model),the AUC of the LDA model is 0.53 for extrasystole, 0.52 for murmur, and 0.53 for normal. Though the AUC is still 

low, the LDA model, like the other models, exhibits limited classification skills. It performs best in extrasystole 

classification.Overall, the findings show that none of the models is able to differentiate between extrasystole, murmur, and 

normal circumstances with good accuracy. The VGGish and LDA models had the worst classification performance across 

all classes, while the suggested model performs somewhat better than the others, particularly for the normal and extrasystole 

classes. This implies that in order to increase classification accuracy, more optimization or different modeling techniques 

could be required. 
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Performance Metrics  

Table 1 Performance Evaluation Metrics 

Feature Extraction Method Models Accuracy Precission Recall F1-Score 

MFCC Proposed Model 0.92 0.93 0.92 0.92 

GCN 0.79 0.81 0.79 0.79 

CNN 0.68 0.77 0.68 0.70 

VGGish 0.30 0.75 0.30 0.24 

LDA 0.53 0.62 0.53 0.56 

MEL-Spectrogram Proposed Model 0.55 0.70 0.55 0.55 

GCN 0.54 0.59 0.54 0.54 

CNN 0.64 0.47 0.64 0.54 

VGGish 0.40 0.60 0.40 0.37 

LDA 0.33 0.61 0.34 0.29 

 

Using two different feature extraction techniques MFCC and MEL-Spectrogram,this performance evaluation contrasts the 

efficacy of the model across different topologies. The suggested model has strong classification skills in MFCC, achieving 

the top metrics with an accuracy of 0.92, precision of 0.93, and F1-score of 0.92. With an accuracy of 0.92 and a similar F1-

score (0.79), the GCN model comes in second, demonstrating its ability to manage MFCC characteristics efficiently. Despite 

its modest effectiveness, the CNN's F1-score of 0.70 indicates restricted performance in comparison to the suggested model 

and GCN, as evidenced by its lower accuracy of 0.68. With an accuracy of 0.30 and an F1-score of 0.24, the VGGish model 

notably performs much worse, suggesting that this feature extraction technique is not a good addition to VGGish. Likewise, 

LDA produces less than ideal results, achieving an accuracy of 0.53 and an F1-score of 0.56. 

Overall model performance decreases when MEL-Spectrogram features are included. With an F1-score of 0.55, the suggested 

model retains the greatest accuracy in this group (0.55), but much worse than its MFCC-based performance. Although CNN's 

precision-recall balance fluctuates, as seen by an F1-score of 0.54, the GCN and CNN models perform similarly, attaining 

accuracies of 0.54 and 0.64, respectively. With an F1-score of 0.37 and an accuracy of 0.40, the VGGish model once again 

demonstrates its diminished effectiveness with this feature type. With an accuracy of 0.33 and an F1-score of 0.29, LDA 

performs the worst. According to this research, MEL-Spectrogram features provide less cross-model compatibility than 

MFCC characteristics, which match the evaluated architectures more well, especially for the suggested model and GCN. 

The findings show that feature extraction methods are critical in determining model performance, and that, in this particular 

situation, MFCC is unquestionably a better option for both the suggested model and the identification of cardiovascular 

illness. The decrease in performance seen in all models when using MEL-spectrogram suggests that MFCC may be a more 

effective method of capturing the fine features needed for this job. Furthermore, compared to GCN and CNN, the suggested 

model performs better in both feature extraction situations, suggesting that it is more capable of handling a wider range of 

input representations; nevertheless, it still largely depends on the kind and quality of the input features. 

Discussion: 

This study shows that feature extraction strategies significantly affect machine learning models' cardiovascular disease 

detection ability. The Mel-Frequency Cepstral Coefficients (MFCC) model captures crucial audio aspects for medical signal 

processing due to its excellent performance. As it resembles the human ear's sound perception, MFCC has long been used in 

speech and audio processing. Important information about feature compatibility with different deep learning architectures is 

shown by this comparison of model performance across MFCC and MEL-Spectrogram feature extractions. With the 

suggested model and GCN, which attain noteworthy accuracies (0.92and 0.93, respectively) and robust F1-scores, the 

MFCC-based strategy continuously produces better performance across all models. Given that MFCC focuses on low-

frequency signals, which are frequently essential in audio classification tasks, this implies that MFCC features capture 

important spectral properties that are advantageous for these models. The appropriateness of MFCC features is further 

supported by the high accuracy and recall values for both the suggested model and GCN, which show a balanced 

classification capacity with fewer false positives and false negatives. 

The suggested model only achieves an accuracy of 0.55, and additional decreases in precision and recall for GCN and CNN 
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are shown by the performance seen with MEL-Spectrogram features. According to these measurements, MEL-Spectrogram 

could add noise or feature complexity that make feature learning more difficult, especially for VGGish and LDA, which 

perform noticeably worse. The noticeable decline in LDA performance for both feature types supports the idea that LDA 

may be intrinsically incapable of capturing the high-dimensional representations offered by MFCC and MEL-Spectrogram. 

The results highlight the significance of choosing feature extractions that are appropriate for the model architecture, since 

MEL-Spectrogram requires further optimization or possibly different architectures for better performance, whereas MFCC 

clearly improves feature interpretability for graph-based and convolutional models. 

6. CONCLUSION 

This work illustrates how the novel use of feature extraction techniques, namely MFCC, may effectively identify 

cardiovascular illness using the suggested model. With a 92% accuracy rate, the suggested model demonstrated the ability 

of MFCC to capture the key features of cardiovascular signals, surpassing the performance of more established models such 

as GCN and CNN. The findings show that the suggested model's ability to successfully identify subtle patterns which are 

essential for early detection and diagnosis is made possible by the incorporation of MFCC.However, when employing both 

MFCC and MEL-spectrogram characteristics, the GCN and CNN models performed much worse, indicating their limits in 

terms of utilizing the rich information included in these audio representations. The results imply that, despite their individual 

advantages, GCN and CNN are unable to completely take advantage of the subtleties that MFCC has to offer, especially 

when it comes to cardiovascular health.The effectiveness of the suggested model emphasizes how crucial it is to choose 

suitable feature extraction methods based on the unique characteristics of the data and the analytical goals. This work not 

only establishes the importance of MFCC in medical signal processing, but it also paves the way for more research that may 

enhance model architectures and feature extraction techniques. The encouraging findings motivate more research into 

sophisticated neural network architectures and hybrid models to identify cardiovascular illness more effectively and maybe 

improve patient outcomes. All things considered, the suggested model represents a major development in the discipline, 

opening the door to more successful cardiovascular monitoring and intervention techniques. 
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